Reconstructing functions and unique identification minors

Erkko Lehtonen

Institut für Algebra
Technische Universität Dresden
Erkko.Lehtonen@tu-dresden.de
joint work with
Miguel Couceiro (LORIA)
Karsten Schölzel (University of Luxembourg)

91st Workshop on General Algebra (AAA91)
Brno, 5-7 February 2016

Minors

$f: A^{n} \rightarrow B, \quad g: A^{m} \rightarrow B$
f is a minor of $g \quad$ (denoted $f \leq g$)
if there exists $\sigma:\{1, \ldots, m\} \rightarrow\{1, \ldots, n\}$ such that

$$
f\left(a_{1}, \ldots, a_{n}\right)=g\left(a_{\sigma(1)}, \ldots, a_{\sigma(m)}\right)
$$

for all $a_{1}, \ldots, a_{n} \in A$.
The minor relation \leq is a quasiorder on $\mathcal{F}_{A B}$.
f and g are equivalent (denoted $f \equiv g$)
if $f \leq g$ and $g \leq f$.

Identification minors

$\binom{n}{2}=$ the set of all 2-element subsets of $\{1, \ldots, n\}$
$f: A^{n} \rightarrow B \quad(n \geq 2)$
For $I=\{i, j\} \in\binom{n}{2}$ with $i<j$, define $f_{l}: A^{n-1} \rightarrow B$ as

$$
f_{l}\left(a_{1}, \ldots, a_{n-1}\right)=f\left(a_{1}, \ldots, a_{j-1}, a_{i}, a_{j}, \ldots, a_{n-1}\right)
$$

for all $a_{1}, \ldots, a_{n-1} \in A$.
f_{l} is an identification minor of f.

Identification minors - examples

Example

Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$,

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{3}-x_{2}^{2} x_{3} .
$$

The identification minors of f are the following:

$$
f_{\{1,2\}}=x_{1}^{3}-x_{1}^{2} x_{2}, \quad f_{\{1,3\}}=x_{1}^{3}-x_{1} x_{2}^{2}, \quad f_{\{2,3\}}=0 .
$$

Identification minors - examples

Example

Let $n \geq 2$ and let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be given by the rule

$$
f\left(x_{1}, \ldots, x_{n}\right)=x_{1}+x_{2}+\cdots+x_{n}
$$

(addition modulo 2).
For every $I \in\binom{n}{2}, f_{l}$ is equivalent to the function $g:\{0,1\}^{n-1} \rightarrow\{0,1\}$,

$$
g\left(x_{1}, \ldots, x_{n-1}\right)=x_{1}+\cdots+x_{n-2}
$$

Reconstruction problem for functions

Question

Is a function $f: A^{n} \rightarrow B$ uniquely determined, up to equivalence, by the collection of its identification minors?

Reconstruction problem for functions

Question

Is a function $f: A^{n} \rightarrow B$ uniquely determined, up to equivalence, by the collection of its identification minors?

Example

$$
\begin{array}{ll}
f:\{0,1\}^{3} \rightarrow\{0,1\}, & f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{2}+x_{3} \\
g:\{0,1\}^{3} \rightarrow\{0,1\}, & g\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} \\
h:\{0,1\}^{3} \rightarrow\{0,1\}, & h\left(x_{1}, x_{2}, x_{3}\right)=x_{1}
\end{array}
$$

(addition and multiplication modulo 2)
All identification minors of f, g, and h are projections.

Reconstruction problem for functions

Assume that $n \geq 2$ and $f: A^{n} \rightarrow B$.
(1) The deck of f, denoted deck f, is the multiset $\left\langle f_{I} / \equiv: I \in\binom{n}{2}\right\rangle$. The elements of the deck of f are called cards of f.
(2) A function $g: A^{n} \rightarrow B$ is a reconstruction of f, if $\operatorname{deck} f=\operatorname{deck} g$.
(3) A function is reconstructible if it is equivalent to all of its reconstructions.
(9) A class $\mathcal{C} \subseteq \mathcal{F}_{A B}$ of functions is reconstructible, if all members of \mathcal{C} are reconstructible.
(6) A class $\mathcal{C} \subseteq \mathcal{F}_{A B}$ is weakly reconstructible, if for every $f \in \mathcal{C}$, all reconstructions of f that are members of \mathcal{C} are equivalent to f.
(0) A class $\mathcal{C} \subseteq \mathcal{F}_{A B}$ is recognizable, if all reconstructions of members of \mathcal{C} are members of \mathcal{C}.

Reconstruction problem for functions

Reconstructible classes:

- totally symmetric functions
- affine functions over finite fields

Weakly reconstructible classes:

- affine functions over cancellative nonassociative right semirings
- linear functions over nonassociative right semirings
- functions determined by the order of first occurrence

Negative results:

- Infinite families of non-reconstructible monotone functions were discovered in
M. Couceiro, E. Lehtonen, K. Schölzel, Hypomorphic Sperner systems and non-reconstructible functions, Order 32 (2015) 255-292.

Reconstruction problem for functions

As a tool, we formulated and solved reconstruction problems for other kinds of mathematical objects.

For example, linear functions

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}
$$

are completely described, up to permutation of arguments, by the multiset $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ of coefficients.

Functions with a unique identification minor

A function $f: A^{n} \rightarrow B$ has a unique identification minor, if $f_{l} \equiv f_{J}$ for all $l, J \in\binom{n}{2}$.

Problem
 Determine all functions with a unique identification minor.
 This problem was previously posed in
 M. Bouaziz, M. Couceiro, M. Pouze' ${ }^{-}$, Join-irreducible Boolean functions, Order 27 (2010) 261-282.

Functions with a unique identification minor

A function $f: A^{n} \rightarrow B$ has a unique identification minor, if $f_{l} \equiv f_{J}$ for all $l, J \in\binom{n}{2}$.

Problem

Determine all functions with a unique identification minor.

This problem was previously posed in
M. Bouaziz, M. Couceiro, M. Pouzet, Join-irreducible Boolean functions, Order 27 (2010) 261-282.

Functions with a unique identification minor

Example

Examples of functions with a unique identification minor:

- 2-set-transitive functions,
- functions determined by the order of first occurrence,
- functions determined by content and singletons,
- other known examples of small arity.

2-set-transitive functions

$f: A^{n} \rightarrow B, \quad \sigma \in S_{n}$
f is invariant under σ if for all $a_{1}, \ldots, a_{n} \in A$,

$$
f\left(a_{1}, \ldots, a_{n}\right)=f\left(a_{\sigma(1)}, \ldots, a_{\sigma(n)}\right) .
$$

The set of all permutations under which f is invariant constitutes a permutation group, the invariance group of f, and it is denoted by $\operatorname{lnv} f$.
f is totally symmetric if $\operatorname{lnv} f=S_{n}$.
A permutation group G is 2-set-transitive if for all $I, J \in\binom{n}{2}$, there exists a permutation $\sigma \in G$ such that $\sigma[I]=J$.
f is 2 -set-transitive if $\operatorname{lnv} f$ is 2 -set-transitive.

Functions determined by the order of first occurrence

ofo : $A^{*} \rightarrow A^{\sharp}$
ofo(a) is the string obtained from a by removing all repeated occurrences of elements, retaining only the first occurrence of each element occurring in a

Example

ofo(miscalculations) $=$ miscaluton
ofo(unprosperousness) = unprose
ofo(exclusion) $=$ exclusion
$f: A^{n} \rightarrow B$ is determined by the order of first occurrence if there exists a map $f^{*}: A^{\sharp} \rightarrow B$ such that $f=f^{*} \circ$ ofo $\left.\right|_{A^{n}}$.

Functions determined by content and singletons

cs: $A^{*} \rightarrow \mathcal{M}(A) \times A^{\sharp}$
$\operatorname{cs}(\mathbf{a})=(\mathrm{ms}(\mathbf{a}), \operatorname{sng}(\mathbf{a}))$
$\mathrm{ms}\left(a_{1}, \ldots, a_{n}\right)=\left\langle a_{1}, \ldots, a_{n}\right\rangle$
sng(a) lists the letters occurring in a exactly once, in the order of appearance

Example

$\operatorname{cs}($ miscalculations $)=\left(\left\langle\mathrm{a}^{2}, \mathrm{c}^{2}, \mathrm{i}^{2}, \mathrm{l}^{2}, \mathrm{~m}, \mathrm{n}, \mathrm{o}, \mathrm{s}^{2}, \mathrm{t}, \mathrm{u}\right\rangle\right.$, muton $)$
$\operatorname{cs}($ unprosperousness $)=\left(\left\langle e^{2}, n^{2}, o^{2}, \mathrm{p}^{2}, r^{2}, \mathrm{~s}^{4}, \mathrm{u}^{2}\right\rangle, \varepsilon\right)$
$\operatorname{cs}($ exclusion $)=(\langle\mathrm{c}, \mathrm{e}, \mathrm{i}, \mathrm{l}, \mathrm{n}, \mathrm{o}, \mathrm{s}, \mathrm{u}, \mathrm{x}\rangle$, exclusion $)$
$f: A^{n} \rightarrow B$ is determined by content and singletons if there exists a $\operatorname{map} f^{*}: \mathcal{M}(A) \times A^{\sharp} \rightarrow B$ such that $f=\left.f^{*} \circ \mathrm{cs}\right|_{A^{n}}$.

Current work and open problems

- What are the functions with a unique identification minor?
- Are the functions with a unique identification minor reconstructible?
- Is the class of functions with inessential arguments reconstructible?
- How about set-reconstructibility?
- How about reconstructibility from a few cards?
- ...

The end

Thank you.

