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Introduction

For MV-algebras, the so-called tense operators were already introduced by
Diaconescu and Georgescu. Tense operators express the quantifiers “it is
always going to be the case that” and “it has always been the case that” and
hence enable us to express the dimension of time in the logic.

A crucial problem concerning tense operators is their representation. Having
a MV-algebra with tense operators, Diaconescu and Georgescu asked if there
exists a frame such that each of these operators can be obtained by their
construction for [0,1]. We solved this problem for semisimple MV-algebras,
i.e. those having a full set of MV-morphisms into a standard MV-algebra [0,1].
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Tense operators on [0,1]

Tense operators were used to express the dimension of time in logics.
Let T be a time scale,
then elements f (t) from [0,1]T correspond to the evaluation of the
validity of the formula f in time.

For a moment, let T be the interval [0,2.5].

0 1 2
0

1
f (t)
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Tense operators on [0,1]

On the time scale T we will introduce a relation R⊆ T 2.

x R y means that the moment x is before the moment y.

Moreover, we introduce operators G a H on [0,1]T as follows:

G f means that f will be true in future with at least the same degree as f
is now.

H f means that f was true in past with at least the same degree as f is
in present.
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Tense operators on [0,1]

Example: Let R be the relation ≤ on the interval [0,2.5].

Then the operators G and H are introduced as follows.

0 1 2
0
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Basic definition – MV-algebras

Definition (Chang, 1958)

An MV-algebra M = (M;⊕,�,¬,0,1) is a structure where ⊕ is associative
and commutative with neutral element 0, and, in addition,
¬0 = 1,¬1 = 0,x⊕1 = 1,x� y = ¬(¬x⊕¬y), and y⊕¬(y⊕¬x) = x⊕¬(x⊕¬y)
for all x,y ∈M.

MV-algebras are a natural generalization of Boolean algebras. Namely, whilst
Boolean algebras are algebraic semantics of Boolean two-valued logic,
MV-algebras are algebraic semantics for Łukasiewicz many valued logic.

Example

An example of a MV-algebra is the real unit interval [0,1] equipped with the
operations

¬x = 1− x,x⊕ y = min(1,x+ y),x� y = max(0,x+ y−1)

We refer to it as a standard MV-algebra.
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Basic definitions – MV-algebras

On every MV-algebra M, a partial order ≤ is defined by the rule

x≤ y⇐⇒¬x⊕ y = 1.

In this partial order, every MV-algebra is a distributive lattice bounded by 0
and 1.

An MV-algebra is said to be linearly ordered (or a MV-chain) if the order is
linear.

Partial tense MV-algebras 19 / 40
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Basic definitions – MV-morphisms and filters

Morphisms of MV-algebras (shortly MV-morphisms) are defined as usual,
they are functions which preserve the binary operations ⊕ and �, the unary
operation ¬ and nullary operations 0 and 1.

A filter of a MV-algebra M is a subset F ⊆M satisfying:
(F1) 1 ∈ F
(F2) x ∈ F, y ∈M, x≤ y ⇒ y ∈ F
(F3) x,y ∈ F ⇒ x� y ∈ F .

A filter is said to be proper if 0 6∈ F . Note that there is one-to-one
correspondence between filters and congruences on MV-algebras.
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Basic definitions – Prime and maximal filters

A filter Q is prime if it satisfies the following conditions:

(P1) 0 /∈ Q.
(P2) For each x, y in M such that x∨ y ∈ Q, either x ∈ Q or y ∈ Q.
In this case the corresponding factor MV-algebra M/Q is linear.

A filter U is maximal (and in this case it will be also called an ultrafilter) if
0 /∈U and for any other filter F of M such that U ⊆ F , then either F = M or
F =U . There is a one-to-one correspondence between ultrafilters and
MV-morphisms from M into [0,1].

An MV-algebra M is called semisimple if the intersection of all its maximal
filters is {1}.
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Basic definitions – states

We say that a state on a MV-algebra M is any mapping s : M→ [0,1] such that
(i) s(1) = 1, and (ii) s(a⊕b) = s(a)+ s(b) whenever a�b = 0.

A state s is extremal if, for all states s1, s2 such that s = λ s1 +(1−λ )s2 for
λ ∈ (0,1) we conclude s = s1 = s2.

We recall that a state s is extremal iff {a ∈M : s(a) = 1} is an ultrafilter of M iff
s(a⊕b) = min{s(a)+ s(b),1}, a,b ∈M iff s is a morphism of MV-algebras.
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Partial semi-states on MV-algebras

In this section we characterize the restriction of arbitrary meets of
MV-morphism to a suitable domain into a unit interval as so-called partial
semi-states.

Definition

Let A be an MV-algebra. A partial map s : A→ [0,1] is called a partial
semi-state on A if

(i) 1 ∈ Dom(s) and s(1) = 1,

(ii) x,y ∈ Dom(s) implies x∧ y ∈ Dom(s) and s(x∧ y) = s(x)∧ s(y),

(iii) x ∈ Dom(s) implies x� x ∈ Dom(s) and s(x)� s(x) = s(x� x),

(iv) x ∈ Dom(s) implies x⊕ x ∈ Dom(s) and s(x)⊕ s(x) = s(x⊕ x).
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The main theorem and its applications

Partial semi-states and MV-morphism

Note that any MV-morphism s from an MV-algebra A into a unit interval
restricted to a set D⊆ A such that

(a) 1 ∈ D,

(b) x,y ∈ D, implies x∧ y ∈ D,

(c) x ∈ D implies x� x ∈ D and x⊕ x ∈ D.

is a partial semi-state, i.e., s/D satisfies conditions (i)-(iv) from the preceding
page.
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Meets of MV-morphism

Lemma

Let A be an MV-algebra, T a non-empty set of partial semi-states on A with
the same domain D. Then the point-wise meet t =

∧
T : D→ [0,1] is a partial

semi-state on A.

Lemma

Let A be an MV-algebra, s, t partial semi-states on A with the same domain D.
Then t ≤ s iff t(x) = 1 implies s(x) = 1 for all x ∈ D.

Proposition

Let A be an MV-algebra, t a partial semi-state on A with a domain D and
Tt = {s : A→ [0,1] | s is an MV-morphism,s/D ≥ t}. Then
t = (

∧
Tt)/D =

∧
(Tt)/D.
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Any partial semi-state on the standard MV-algebra [0,1] is the partial identity

Corollary

The only partial semi-state s on an MV-algebra A with a domain D such that
0 ∈ D and s(0) 6= 0 is the partial constant function s(x) = 1 for all x ∈ D.

Corollary

The only partial semi-state s on the standard MV-algebra [0,1] with a domain
D such that s 6= 1/D is the partial identity function idD.
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Partial semi-states on MV-algebras
Partial functions between MV-algebras and their construction

The main theorem and its applications

Partial functions between MV-algebras

This section studies the notion of a partial fm-function between MV-algebras.
The main purpose of this section is to establish in some sense a canonical
construction of total fm-function between MV-algebras. This construction is
an ultimate source of numerous examples.

Definition

By a partial fm-function between MV-algebras G is meant a partial function
G : A1→ A2 such that A1 = (A1;⊕1,�1,¬1,01,11) and
A2 = (A2;⊕2,�2,¬2,02,12) are MV-algebras and

(FM1) 11 ∈ Dom(G) and G(11) = 12,

(FM2) x,y ∈ Dom(G) implies x∧ y ∈ Dom(G) and G(x∧ y) = G(x)∧G(y),

(FM3) x ∈ Dom(G) implies x�1 x ∈ Dom(G) and G(x)�2 G(x) = G(x�1 x),

(FM4) x ∈ Dom(G) implies x⊕1 x ∈ Dom(G) and G(x)⊕2 G(x) = G(x⊕1 x).
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Partial semi-states on MV-algebras
Partial functions between MV-algebras and their construction

The main theorem and its applications

The construction of total fm-functions between MV-algebras I

By a frame is meant a triple (S,T,R) where S,T are non-void sets and
R⊆ S×T .

Having an MV-algebra M = (M;⊕,�,¬,0,1) and a non-void set T , we can
produce the direct power MT = (MT ;⊕,�,¬,o, j) where the operations ⊕, �
and ¬ are defined and evaluated on p,q ∈MT componentwise. Moreover, o, j
are such elements of MT that o(t) = 0 and j(t) = 1 for all t ∈ T . The direct
power MT is again an MV-algebra.
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The construction of total fm-functions between MV-algebras II

Theorem

Let M be a linearly ordered complete MV-algebra, (S,T,R) be a frame and G∗

be a map from MT into MS defined by

G∗(p)(s) =
∧
{p(t) | t ∈ T,sRt},

for all p ∈MT and s ∈ S. Then G∗ is a total fm-function between MV-algebras
which has a left adjoint P∗.

In this case, for all q ∈MS and t ∈ T ,

P∗(q)(t) =
∨
{q(s) | s ∈ T,sRt}.

We say that G∗ : MT →MS is the canonical total fm-function between
MV-algebras induced by the frame (S,T,R) and the MV-algebra M.
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The main theorem and its applications

Semisimple MV-algebras

Recall that
1 semisimple MV-algebras are just subdirect products of the simple

MV-algebras,
2 any simple MV-algebra is uniquelly embeddable into the standard

MV-algebra on the interval [0,1] of reals,
3 an MV-algebra is semisimple if and only if the intersection of the set of its

maximal (prime) filters is equal to the set {1},
4 any complete MV-algebra is semisimple.

A semisimple MV-algebra A is embedded into [0,1]T where T is the set of all
ultrafilters of A (morphisms from A into the standard MV-algebra ) and
πF (x) = x(F) = x/F ∈ [0,1] for any x ∈ S⊆ [0,1]T and any F ∈ T ; here
πF : [0,1]T → [0,1] is the respective projection onto [0,1].
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Main theorem

Theorem

Let G : A1→ A2 be a partial fm-function between semisimple MV-algebras, T
(S) a set of all MV-morphism from A1 (A2) into the standard MV-algebra [0,1].
Further, let (S,T,ρG) be a frame such that the relation ρG ⊆ S×T is defined by

sρGt if and only if s(G(x))≤ t(x) for any x ∈ Dom(G).

Then G is representable via the canonical total fm-function G∗ : [0,1]T → [0,1]S

between MV-algebras induced by the frame (S,T,ρG) and the standard
MV-algebra [0,1], i.e., the following diagram of partial fm-functions commutes:

A1
G - A2

[0,1]T

iTA1

?

G∗
- [0,1]S

iSA2

?
.
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Tense operators on MV-algebras

Definition (Botur and Paseka, Diaconescu and Georgescu)

Let M be an MV-algebra with total fm-functions G and H on M. The structure
(M;G,H) is called a tense MV-algebra if the following condition is fulfilled:

(GH) x≤ G(¬H(¬x)), x≤ H(¬G(¬x)), for all x ∈M.

G “It will always be the case that . . . ”
P = ¬◦H ◦¬ “It has at some time been the case that . . . ”
H “It has always been the case that . . . ”
F = ¬◦G◦¬ “It will at some time be the case that . . . ”

P and F are known as the weak tense operators, while H and G are known as
the strong tense operators.

Moreover, P is a left adjoint to G and F is a left adjoint to H.
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Diaconescu and Georgescu formulated the following open problem:

Characterize those tense MV-algebras (M;G,H) such that
iM : (M;G,H)→ ([0,1]T ;G∗,H∗) is a morphism of tense MV-algebra, i.e., the
following diagrams of fm-functions commute:

M
G - M

[0,1]T

iTM
?

G∗
- [0,1]T

iTM
?

M
H - M

[0,1]T

iTM
?

H∗
- [0,1]T

iTM
?

.
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Theorem (Representation theorem for tense MV-algebras)

For any semisimple tense MV-algebra (M;G,H), (M;G,H) is embeddable via
the morphism iM of tense MV-algebras into the canonical tense MV-algebra
LG,H = ([0,1]T ;G∗,H∗) with tense operators G∗,H∗ induced by the canonical
frames (T,RG), (T,RH) and the standard MV-algebra [0,1].
Further RG = (RH)

−1 and, for all x ∈M and for all s ∈ T ,
s(G(x)) = G∗((t(x))t∈T )(s) and s(H(x)) = H∗((t(x))t∈T )(s), i.e., the following
diagrams of fm-functions commute:

M
G - M

[0,1]T

iTM
?

G∗
- [0,1]T

iTM
?

M
H - M

[0,1]T

iTM
?

H∗
- [0,1]T

iTM
?

.
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logics, Doctoral thesis, Université de Liege, 2009, http://orbi.ulg.ac.be/
handle/2268/10887.

Partial tense MV-algebras 39 / 40



Appendix

Thank you for your attention.
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