The "Galois" connection $Pat^{(\ell)} - Comp^{(n)}$

Questions and answers

Permutation patterns and permutation groups

Erkko Lehtonen and Reinhard Pöschel

Technische Universität Dresden Institute of Algebra

AAA91

Arbeitstagung Allgemeine Algebra Workshop on General Algebra Brno 7.2.2016

AAA91, Brno, Febr., 2016

The "Galois" connection $Pat^{(\ell)} - Comp^{(n)}$

Questions and answers

Further problems

Outline

Permutation patterns

The "Galois" connection $Pat^{(\ell)} - Comp^{(n)}$

Questions and answers

Further problems

AAA91, Brno, Febr., 2016

The "Galois" connection $Pat^{(\ell)} - Comp^{(n)}$

Questions and answers

Further problems

Outline

Permutation patterns

The "Galois" connection $Pat^{(\ell)} - Comp^{(n)}$

Questions and answers

Further problems

AAA91, Brno, Febr., 2016

Questions and answers

Further problems

Some motivation

Which number sequences (permutations) can be sorted by a stack?

AAA91, Brno, Febr., 2016

AAA91, Brno, Febr., 2016

A permutation π can be sorted by a stack if and only if it does not contain a subsequence ... a... b...c... with c < a < b.

A permutation π can be sorted by a stack if and only if it does not contain a subsequence ... a... b...c... with c < a < b.

i.e., such *"patterns" abc* (like 352) must be avoided

AAA91, Brno, Febr., 2016

Questions and answers

Further problems

Permutations

A permutation $\pi \in S_n$ (bijection $\pi \in [n]^{[n]}$, $[n] := \{1, \ldots, n\}$) will be considered as a word (*n*-tuple $\pi \in [n]^n$) of length *n*:

$$(\pi_1,\ldots,\pi_n):=(\pi(1),\ldots,\pi(n)).$$

e.g. $\pi = (31524) \in [5]^5$ is the permutation $1 \mapsto 3, 2 \mapsto 1, 3 \mapsto 5, 4 \mapsto 2, 5 \mapsto 4$

graphical representation:

Questions and answers

Further problems

Permutations

A permutation $\pi \in S_n$ (bijection $\pi \in [n]^{[n]}$, $[n] := \{1, \ldots, n\}$) will be considered as a word (*n*-tuple $\pi \in [n]^n$) of length *n*:

$$(\pi_1,\ldots,\pi_n):=(\pi(1),\ldots,\pi(n)).$$

e.g. $\pi = (31524) \in [5]^5$ is the permutation $1 \mapsto 3, 2 \mapsto 1, 3 \mapsto 5, 4 \mapsto 2, 5 \mapsto 4$

graphical representation:

Questions and answers

Further problems

Permutations

A permutation $\pi \in S_n$ (bijection $\pi \in [n]^{[n]}$, $[n] := \{1, \ldots, n\}$) will be considered as a word (*n*-tuple $\pi \in [n]^n$) of length *n*:

$$(\pi_1,\ldots,\pi_n):=(\pi(1),\ldots,\pi(n)).$$

e.g. $\pi = (31524) \in [5]^5$ is the permutation $1 \mapsto 3, 2 \mapsto 1, 3 \mapsto 5, 4 \mapsto 2, 5 \mapsto 4$

graphical representation:

Questions and answers

Further problems

Permutations

A permutation $\pi \in S_n$ (bijection $\pi \in [n]^{[n]}$, $[n] := \{1, \ldots, n\}$) will be considered as a word (*n*-tuple $\pi \in [n]^n$) of length *n*:

$$(\pi_1,\ldots,\pi_n):=(\pi(1),\ldots,\pi(n)).$$

AAA91, Brno, Febr., 2016

The "Galois" connection $Pat^{(\ell)} - Comp^{(n)}$

Questions and answers

Further problems

Permutation patterns (Example)

AAA91, Brno, Febr., 2016

The "Galois" connection $Pat^{(\ell)} - Comp^{(n)}$

Questions and answers

Further problems

Permutation patterns (Example)

AAA91, Brno, Febr., 2016

The "Galois" connection $Pat^{(\ell)} - Comp^{(n)}$

Questions and answers

Further problems

Permutation patterns (Example)

AAA91, Brno, Febr., 2016

The "Galois" connection $Pat^{(\ell)} - Comp^{(n)}$

Questions and answers

Further problems

Permutation patterns (Example)

AAA91, Brno, Febr., 2016

The "Galois" connection $Pat^{(\ell)} - Comp^{(n)}$

Questions and answers

Further problems

Permutation patterns (Example)

AAA91, Brno, Febr., 2016

The "Galois" connection $Pat^{(\ell)} - Comp^{(n)}$

Questions and answers

Further problems

Permutation patterns (Example)

AAA91, Brno, Febr., 2016

The "Galois" connection $Pat^{(\ell)} - Comp^{(n)}$

Questions and answers

Further problems

Permutation patterns (Example)

AAA91, Brno, Febr., 2016

Questions and answers

Further problems

Permutation patterns

 $\mathsf{Pat}^{(\ell)}\,\pi:=\{\sigma\in S_\ell\mid\sigma\leq\pi\}$

The pattern involvement relation \leq is a partial order on the set $\mathbb{P} := \bigcup_{n \geq 1} S_n$ of all finite permutations and we have:

 $\ell \leq m \leq n, \ \sigma \in S_\ell, \ \pi \in S_m, \ \tau \in S_n$:

- $\sigma \leq \pi$ and $\pi \leq \tau$ implies $\sigma \leq \tau$ (transitivity),
- $\sigma \leq \tau$ implies $\exists \pi \in S_m : \sigma \leq \pi \leq \tau$.

AAA91, Brno, Febr., 2016

Questions and answers

Further problems

Permutation patterns

$$\mathsf{Pat}^{(\ell)} \pi := \{ \sigma \in S_\ell \mid \sigma \le \pi \}$$

The pattern involvement relation \leq is a partial order on the set $\mathbb{P} := \bigcup_{n \geq 1} S_n$ of all finite permutations and we have:

 $\ell \leq m \leq n, \ \sigma \in S_\ell, \ \pi \in S_m, \ \tau \in S_n$

- $\sigma \leq \pi$ and $\pi \leq \tau$ implies $\sigma \leq \tau$ (transitivity),
- $\sigma \leq \tau$ implies $\exists \pi \in S_m : \sigma \leq \pi \leq \tau$.

Questions and answers

Further problems

Permutation patterns

 $\mathsf{Pat}^{(\ell)}\,\pi := \{\sigma \in S_\ell \mid \sigma \le \pi\}$

The pattern involvement relation \leq is a partial order on the set $\mathbb{P} := \bigcup_{n \geq 1} S_n$ of all finite permutations and we have:

 $\ell \leq m \leq n, \ \sigma \in S_{\ell}, \ \pi \in S_m, \ \tau \in S_n$

- $\sigma \leq \pi$ and $\pi \leq \tau$ implies $\sigma \leq \tau$ (transitivity),
- $\sigma \leq \tau$ implies $\exists \pi \in S_m : \sigma \leq \pi \leq \tau$.

AAA91, Brno, Febr., 2016

Questions and answers

Further problems

Permutation patterns

$$\mathsf{Pat}^{(\ell)}\,\pi := \{\sigma \in S_\ell \mid \sigma \le \pi\}$$

The pattern involvement relation \leq is a partial order on the set $\mathbb{P} := \bigcup_{n \geq 1} S_n$ of all finite permutations and we have:

$\ell \leq m \leq n, \ \sigma \in S_{\ell}, \ \pi \in S_m, \ \tau \in S_n$

- $\sigma \leq \pi$ and $\pi \leq \tau$ implies $\sigma \leq \tau$ (transitivity),
- $\sigma \leq \tau$ implies $\exists \pi \in S_m : \sigma \leq \pi \leq \tau$.

Questions and answers

Further problems

Permutation patterns

$$\begin{split} \ell &\leq n, \ \sigma \in S_{\ell}, \ \pi \in S_n \\ \sigma &\leq \pi : \iff \text{ there exists a substring } \mathbf{u} \text{ of } \pi \text{ of length } \ell \\ &\text{ such that } \sigma = \operatorname{red}(\mathbf{u}) \\ (\sigma \text{ is } \ell \text{-pattern of } \pi, \text{ or } \pi \text{ involves } \sigma) \\ \pi \text{ avoids } \sigma : \iff \sigma \nleq \pi. \end{split}$$

$$\mathsf{Pat}^{(\ell)}\,\pi:=\{\sigma\in S_\ell\mid\sigma\leq\pi\}$$

The pattern involvement relation \leq is a partial order on the set $\mathbb{P} := \bigcup_{n>1} S_n$ of all finite permutations and we have:

$$\ell \leq m \leq$$
 n, $\sigma \in S_\ell$, $\pi \in S_m$, $\tau \in S_n$:

• $\sigma \leq \pi$ and $\pi \leq \tau$ implies $\sigma \leq \tau$ (transitivity),

•
$$\sigma \leq \tau$$
 implies $\exists \pi \in S_m : \sigma \leq \pi \leq \tau$.

AAA91, Brno, Febr., 2016

Questions and answers

Further problems

Permutation patterns

$$\begin{split} \ell &\leq n, \ \sigma \in S_{\ell}, \ \pi \in S_n \\ \sigma &\leq \pi : \iff \text{ there exists a substring } \mathbf{u} \text{ of } \pi \text{ of length } \ell \\ &\text{ such that } \sigma = \operatorname{red}(\mathbf{u}) \\ (\sigma \text{ is } \ell \text{-pattern of } \pi, \text{ or } \pi \text{ involves } \sigma) \\ \pi \text{ avoids } \sigma : \iff \sigma \nleq \pi. \end{split}$$

$$\mathsf{Pat}^{(\ell)}\,\pi:=\{\sigma\in S_\ell\mid\sigma\leq\pi\}$$

The pattern involvement relation \leq is a partial order on the set $\mathbb{P} := \bigcup_{n>1} S_n$ of all finite permutations and we have:

$$\ell \leq m \leq n, \ \sigma \in S_\ell, \ \pi \in S_m, \ \tau \in S_n$$
:

• $\sigma \leq \pi$ and $\pi \leq \tau$ implies $\sigma \leq \tau$ (transitivity),

•
$$\sigma \leq \tau$$
 implies $\exists \pi \in S_m : \sigma \leq \pi \leq \tau$.

The "Galois" connection $\mathsf{Pat}^{(\ell)} - \mathsf{Comp}^{(\ell)}$

Questions and answers

Further problems

Closed classes of permutations

M.D. ATKINSON AND R. BEALS ([1999], Permuting mechanisms and closed classes of permutations) consider closed classes of permutations, i.e., subsets $A \subseteq \mathbb{P} = \bigcup_{n \geq 1} S_n$ which are closed under taking patterns (order ideal in (\mathbb{P}, \leq)):

$$\pi \in A, \ \sigma \leq \pi \implies \sigma \in A.$$

Then, for the sequence

$$(A_1, A_2, \ldots, A_\ell, \ldots, A_n, \ldots)$$

where $A_{\ell} := A \cap S_{\ell}$, we get $\operatorname{Pat}^{(\ell)} A_n \subseteq A_{\ell}$ for $\ell \leq n$.

AAA91, Brno, Febr., 2016

The "Galois" connection $\mathsf{Pat}^{(\ell)} - \mathsf{Comp}^{(\ell)}$

Questions and answers

Further problems

Closed classes of permutations

M.D. ATKINSON AND R. BEALS ([1999], Permuting mechanisms and closed classes of permutations) consider closed classes of permutations, i.e., subsets $A \subseteq \mathbb{P} = \bigcup_{n \geq 1} S_n$ which are closed under taking patterns (order ideal in (\mathbb{P}, \leq)):

$$\pi \in A, \ \sigma \leq \pi \implies \sigma \in A.$$

Then, for the sequence

$$(A_1, A_2, \ldots, A_\ell, \ldots, A_n, \ldots)$$

where $A_{\ell} := A \cap S_{\ell}$, we get $\operatorname{Pat}^{(\ell)} A_n \subseteq A_{\ell}$ for $\ell \leq n$.

AAA91, Brno, Febr., 2016

The "Galois" connection $\mathsf{Pat}^{(\ell)} - \mathsf{Comp}^{(\ell)}$

Questions and answers

Further problems

Closed classes of permutations

M.D. ATKINSON AND R. BEALS ([1999], Permuting mechanisms and closed classes of permutations) consider closed classes of permutations, i.e., subsets $A \subseteq \mathbb{P} = \bigcup_{n \ge 1} S_n$ which are closed under taking patterns (order ideal in (\mathbb{P}, \le)):

$$\pi \in A, \ \sigma \leq \pi \implies \sigma \in A.$$

Then, for the sequence

$$(A_1, A_2, \ldots, A_\ell, \ldots, A_n, \ldots)$$

where $A_{\ell} := A \cap S_{\ell}$, we get $\operatorname{Pat}^{(\ell)} A_n \subseteq A_{\ell}$ for $\ell \leq n$.

AAA91, Brno, Febr., 2016

The "Galois" connection $Pat^{(\ell)} - Comp^{(n)}$

Questions and answers

Further problems

Outline

Permutation patterns

The "Galois" connection $Pat^{(\ell)} - Comp^{(n)}$

Questions and answers

Further problems

AAA91, Brno, Febr., 2016

The "Galois" connection $Pat^{(\ell)} - Comp^{(n)}$ $\bullet \circ$

Questions and answers

A (monotone) Galois connection

The relation $\sigma \nleq \pi$ (π avoids σ) induces a Galois connection between subsets of S_{ℓ} and S_n . The corresponding "monotone Galois connection" (residuation) is given by the following operators (monotone w.r.t. \subseteq):

 $\operatorname{Comp}^{(n)} S := \{ \tau \in S_n \mid \operatorname{Pat}^{(\ell)} \tau \subseteq S \} = \{ \tau \in S_n \mid \forall \sigma' \in S_\ell \setminus S : \sigma' \nleq \tau \}$ $\operatorname{Pat}^{(\ell)} T := \bigcup_{\tau \in T} \operatorname{Pat}^{(\ell)} \tau \qquad = S_\ell \setminus \{ \sigma' \in S_\ell \mid \forall \tau \in T : \sigma' \nleq \tau \}.$

Then we have:

 $\begin{array}{ll} \operatorname{Pat}^{(\ell)}\operatorname{Comp}^{(n)}S\subseteq S & (\operatorname{ker}^{\Gamma})\\ T\subseteq\operatorname{Comp}^{(n)}\operatorname{Pat}^{(\ell)}T & (\operatorname{clos}^{\Gamma})\\ \operatorname{Comp}^{(n)}S=\operatorname{Comp}^{(n)}\operatorname{Pat}^{(\ell)}\operatorname{Comp}^{(n)}S & (\operatorname{clos}^{\Gamma})\\ \operatorname{Pat}^{(\ell)}T=\operatorname{Pat}^{(\ell)}\operatorname{Comp}^{(n)}\operatorname{Pat}^{(\ell)}T & (\operatorname{ker}^{\Gamma})\\ \end{array}$

AAA91, Brno, Febr., 2016

The "Galois" connection $Pat^{(\ell)} - Comp^{(n)}$ •0

Questions and answers

A (monotone) Galois connection

The relation $\sigma \nleq \pi$ (π avoids σ) induces a Galois connection between subsets of S_{ℓ} and S_n . The corresponding "monotone Galois connection" (residuation) is given by the following operators (monotone w.r.t. \subseteq): For $S \subseteq S_{\ell}$, $T \subseteq S_n$ ($\ell \le n$) let $Comp^{(n)} S := \{\tau \in S_n \mid Pat^{(\ell)} \tau \subseteq S\} = \{\tau \in S_n \mid \forall \sigma' \in S_{\ell} \setminus S : \sigma' \nleq \tau\},$ $Pat^{(\ell)} T := \bigcup_{\tau \in T} Pat^{(\ell)} \tau \qquad = S_{\ell} \setminus \{\sigma' \in S_{\ell} \mid \forall \tau \in T : \sigma' \nleq \tau\}.$

Then we have:

$$\begin{array}{ll} \operatorname{Pat}^{(\ell)}\operatorname{Comp}^{(n)}S\subseteq S & (\operatorname{kernel operator}),\\ T\subseteq\operatorname{Comp}^{(n)}\operatorname{Pat}^{(\ell)}T & (\operatorname{closure operator}),\\ \operatorname{Comp}^{(n)}S=\operatorname{Comp}^{(n)}\operatorname{Pat}^{(\ell)}\operatorname{Comp}^{(n)}S & (\operatorname{closures}),\\ \operatorname{Pat}^{(\ell)}T=\operatorname{Pat}^{(\ell)}\operatorname{Comp}^{(n)}\operatorname{Pat}^{(\ell)}T & (\operatorname{kernels}). \end{array}$$

AAA91, Brno, Febr., 2016

The "Galois" connection $Pat^{(\ell)} - Comp^{(n)}$ •0

Questions and answers

A (monotone) Galois connection

The relation $\sigma \nleq \pi$ (π avoids σ) induces a Galois connection between subsets of S_{ℓ} and S_n . The corresponding "monotone Galois connection" (residuation) is given by the following operators (monotone w.r.t. \subseteq): For $S \subseteq S_{\ell}$, $T \subseteq S_n$ ($\ell \le n$) let $\operatorname{Comp}^{(n)} S := \{\tau \in S_n \mid \operatorname{Pat}^{(\ell)} \tau \subseteq S\} = \{\tau \in S_n \mid \forall \sigma' \in S_{\ell} \setminus S : \sigma' \nleq \tau\},$ $\operatorname{Pat}^{(\ell)} T := \bigcup_{\tau \in T} \operatorname{Pat}^{(\ell)} \tau \qquad = S_{\ell} \setminus \{\sigma' \in S_{\ell} \mid \forall \tau \in T : \sigma' \nleq \tau\}.$

Then we have:

 $\begin{array}{ll} \operatorname{Pat}^{(\ell)}\operatorname{Comp}^{(n)}S \subseteq S & (\text{kernel operator}), \\ T \subseteq \operatorname{Comp}^{(n)}\operatorname{Pat}^{(\ell)}T & (\text{closure operator}), \\ \operatorname{Comp}^{(n)}S = \operatorname{Comp}^{(n)}\operatorname{Pat}^{(\ell)}\operatorname{Comp}^{(n)}S & (\text{closures}), \\ \operatorname{Pat}^{(\ell)}T = \operatorname{Pat}^{(\ell)}\operatorname{Comp}^{(n)}\operatorname{Pat}^{(\ell)}T & (\text{kernels}). \end{array}$

AAA91, Brno, Febr., 2016

The "Galois" connection $Pat^{(\ell)} - Comp^{(n)}$ •0

Questions and answers

A (monotone) Galois connection

The relation $\sigma \nleq \pi$ (π avoids σ) induces a Galois connection between subsets of S_{ℓ} and S_n . The corresponding "monotone Galois connection" (residuation) is given by the following operators (monotone w.r.t. \subseteq): For $S \subseteq S_{\ell}$, $T \subseteq S_n$ ($\ell \le n$) let $\operatorname{Comp}^{(n)} S := \{\tau \in S_n \mid \operatorname{Pat}^{(\ell)} \tau \subseteq S\} = \{\tau \in S_n \mid \forall \sigma' \in S_{\ell} \setminus S : \sigma' \nleq \tau\},$ $\operatorname{Pat}^{(\ell)} T := \bigcup_{\tau \in T} \operatorname{Pat}^{(\ell)} \tau \qquad = S_{\ell} \setminus \{\sigma' \in S_{\ell} \mid \forall \tau \in T : \sigma' \nleq \tau\}.$

Then we have:

$$\begin{array}{ll} \operatorname{Pat}^{(\ell)}\operatorname{Comp}^{(n)}S\subseteq S & (\operatorname{kernel operator}), \\ T\subseteq\operatorname{Comp}^{(n)}\operatorname{Pat}^{(\ell)}T & (\operatorname{closure operator}), \\ \operatorname{Comp}^{(n)}S=\operatorname{Comp}^{(n)}\operatorname{Pat}^{(\ell)}\operatorname{Comp}^{(n)}S & (\operatorname{closures}), \\ \operatorname{Pat}^{(\ell)}T=\operatorname{Pat}^{(\ell)}\operatorname{Comp}^{(n)}\operatorname{Pat}^{(\ell)}T & (\operatorname{kernels}). \end{array}$$

AAA91, Brno, Febr., 2016

The (Galois) closures $\operatorname{Comp}^{(n)} S$

For $S \subseteq S_{\ell}$ there is an "increasing" sequence of (Galois) closures $\operatorname{Comp}^{(n)} S \subseteq S_n$:

$$S$$
, Comp^(ℓ +1) S ,..., Comp^(n) S , Comp^(n +1) S ,...

Observation: For $\ell \leq m \leq n$ and $S \subseteq S_{\ell}$, $T \subseteq S_n$ we have $\operatorname{Comp}^{(n)} \operatorname{Comp}^{(m)} S = \operatorname{Comp}^{(n)} S$ (and $\operatorname{Pat}^{(\ell)} \operatorname{Pat}^{(m)} T = \operatorname{Pat}^{(\ell)} T$).

For a closed class of permutations $(A_1, \ldots, A_\ell, \ldots, A_n, \ldots)$ we have $\operatorname{Pat}^{(\ell)} A_n \subseteq A_\ell$ and thus $A_n \subseteq \operatorname{Comp}^{(n)} A_\ell$ for $\ell \leq n$. Example:

 $(\mathsf{Pat}^{(1)}S,\ldots,\mathsf{Pat}^{(k)}S,\ldots,\mathsf{Pat}^{(\ell-1)}S,S,\mathsf{Comp}^{(\ell+1)}S,\ldots,\mathsf{Comp}^{(n)}S,\ldots)$

M.D. ATKINSON AND R. BEALS [1999] consider the group case, where all the A_n are groups, in particular, what is the "asymptotic" behaviour of the above sequence (for more details ask Erkko)

The (Galois) closures $\operatorname{Comp}^{(n)} S$

For $S \subseteq S_{\ell}$ there is an "increasing" sequence of (Galois) closures $\operatorname{Comp}^{(n)} S \subseteq S_n$:

$$S$$
, Comp^(ℓ +1) S ,..., Comp^(n) S , Comp^(n +1) S ,...

Observation: For $\ell \leq m \leq n$ and $S \subseteq S_{\ell}$, $T \subseteq S_n$ we have $\operatorname{Comp}^{(n)} \operatorname{Comp}^{(m)} S = \operatorname{Comp}^{(n)} S$ (and $\operatorname{Pat}^{(\ell)} \operatorname{Pat}^{(m)} T = \operatorname{Pat}^{(\ell)} T$).

For a closed class of permutations $(A_1, \ldots, A_\ell, \ldots, A_n, \ldots)$ we have $\operatorname{Pat}^{(\ell)} A_n \subseteq A_\ell$ and thus $A_n \subseteq \operatorname{Comp}^{(n)} A_\ell$ for $\ell \leq n$. Example:

M.D. ATKINSON AND R. BEALS [1999] consider the group case, where all the A_n are groups, in particular, what is the "asymptotic" behaviour of the above sequence (for more details ask Erkko)

The (Galois) closures $\operatorname{Comp}^{(n)} S$

For $S \subseteq S_{\ell}$ there is an "increasing" sequence of (Galois) closures $\operatorname{Comp}^{(n)} S \subseteq S_n$:

$$S$$
, Comp^(ℓ +1) S ,..., Comp^(n) S , Comp^(n +1) S ,...

Observation: For $\ell \leq m \leq n$ and $S \subseteq S_{\ell}$, $T \subseteq S_n$ we have $\operatorname{Comp}^{(n)} \operatorname{Comp}^{(m)} S = \operatorname{Comp}^{(n)} S$ (and $\operatorname{Pat}^{(\ell)} \operatorname{Pat}^{(m)} T = \operatorname{Pat}^{(\ell)} T$).

For a closed class of permutations $(A_1, \ldots, A_\ell, \ldots, A_n, \ldots)$ we have $\operatorname{Pat}^{(\ell)} A_n \subseteq A_\ell$ and thus $A_n \subseteq \operatorname{Comp}^{(n)} A_\ell$ for $\ell \leq n$. Example: $(\operatorname{Pat}^{(1)} S, \ldots, \operatorname{Pat}^{(k)} S, \ldots, \operatorname{Pat}^{(\ell-1)} S, S, \operatorname{Comp}^{(\ell+1)} S, \ldots, \operatorname{Comp}^{(n)} S, \ldots)$

M.D. ATKINSON AND R. BEALS [1999] consider the group case, where all the A_n are groups, in particular, what is the "asymptotic" behaviour of the above sequence (for more details ask Erkko)

The "Galois" connection $\operatorname{Pat}^{(\ell)} - \operatorname{Comp}^{(n)}$

Questions and answers

The (Galois) closures $\operatorname{Comp}^{(n)} S$

For $S \subseteq S_{\ell}$ there is an "increasing" sequence of (Galois) closures $\operatorname{Comp}^{(n)} S \subseteq S_n$:

$$S$$
, Comp^(ℓ +1) S ,..., Comp^(n) S , Comp^(n +1) S ,...

Observation: For $\ell < m < n$ and $S \subset S_{\ell}$, $T \subset S_n$ we have $\operatorname{Comp}^{(n)}\operatorname{Comp}^{(m)}S = \operatorname{Comp}^{(n)}S$ (and $\operatorname{Pat}^{(\ell)}\operatorname{Pat}^{(m)}T = \operatorname{Pat}^{(\ell)}T$). For a closed class of permutations $(A_1, \ldots, A_\ell, \ldots, A_n, \ldots)$ we have $\operatorname{Pat}^{(\ell)} A_n \subseteq A_\ell$ and thus $A_n \subseteq \operatorname{Comp}^{(n)} A_\ell$ for $\ell < n$.

The "Galois" connection $\operatorname{Pat}^{(\ell)} - \operatorname{Comp}^{(n)}$

Questions and answers

The (Galois) closures $\operatorname{Comp}^{(n)} S$

For $S \subseteq S_{\ell}$ there is an "increasing" sequence of (Galois) closures $\operatorname{Comp}^{(n)} S \subseteq S_n$:

$$S$$
, Comp^(ℓ +1) S ,..., Comp^(n) S , Comp^(n +1) S ,...

Observation: For $\ell < m < n$ and $S \subset S_{\ell}$, $T \subset S_n$ we have $\operatorname{Comp}^{(n)}\operatorname{Comp}^{(m)}S = \operatorname{Comp}^{(n)}S$ (and $\operatorname{Pat}^{(\ell)}\operatorname{Pat}^{(m)}T = \operatorname{Pat}^{(\ell)}T$). For a closed class of permutations $(A_1, \ldots, A_\ell, \ldots, A_n, \ldots)$ we have $\operatorname{Pat}^{(\ell)} A_n \subseteq A_\ell$ and thus $A_n \subseteq \operatorname{Comp}^{(n)} A_\ell$ for $\ell < n$. Example: $(Pat^{(1)}S, ..., Pat^{(k)}S, ..., Pat^{(\ell-1)}S, S, Comp^{(\ell+1)}S, ..., Comp^{(n)}S, ...)$

The "Galois" connection $\operatorname{Pat}^{(\ell)} - \operatorname{Comp}^{(n)}$

Questions and answers

The (Galois) closures $\operatorname{Comp}^{(n)} S$

For $S \subseteq S_{\ell}$ there is an "increasing" sequence of (Galois) closures $\operatorname{Comp}^{(n)} S \subseteq S_n$:

$$S$$
, Comp^(ℓ +1) S ,..., Comp^(n) S , Comp^(n +1) S ,...

Observation: For $\ell < m < n$ and $S \subset S_{\ell}$, $T \subset S_n$ we have $\operatorname{Comp}^{(n)}\operatorname{Comp}^{(m)}S = \operatorname{Comp}^{(n)}S$ (and $\operatorname{Pat}^{(\ell)}\operatorname{Pat}^{(m)}T = \operatorname{Pat}^{(\ell)}T$). For a closed class of permutations $(A_1, \ldots, A_\ell, \ldots, A_n, \ldots)$ we have $\operatorname{Pat}^{(\ell)} A_n \subseteq A_\ell$ and thus $A_n \subseteq \operatorname{Comp}^{(n)} A_\ell$ for $\ell < n$. Example: $(Pat^{(1)} S..., Pat^{(k)} S..., Pat^{(\ell-1)} S. S. Comp^{(\ell+1)} S..., Comp^{(n)} S...)$ M.D. ATKINSON AND R. BEALS [1999] consider the group case, where all the A_n are groups, in particular, what is the "asymptotic" behaviour of the above sequence

The "Galois" connection $\operatorname{Pat}^{(\ell)} - \operatorname{Comp}^{(n)}$

Questions and answers

The (Galois) closures $\operatorname{Comp}^{(n)} S$

For $S \subseteq S_{\ell}$ there is an "increasing" sequence of (Galois) closures $\operatorname{Comp}^{(n)} S \subseteq S_n$:

$$S$$
, Comp^(ℓ +1) S ,..., Comp^(n) S , Comp^(n +1) S ,...

Observation: For $\ell < m < n$ and $S \subset S_{\ell}$, $T \subset S_n$ we have $\operatorname{Comp}^{(n)}\operatorname{Comp}^{(m)}S = \operatorname{Comp}^{(n)}S$ (and $\operatorname{Pat}^{(\ell)}\operatorname{Pat}^{(m)}T = \operatorname{Pat}^{(\ell)}T$). For a closed class of permutations $(A_1, \ldots, A_\ell, \ldots, A_n, \ldots)$ we have $\operatorname{Pat}^{(\ell)} A_n \subseteq A_\ell$ and thus $A_n \subseteq \operatorname{Comp}^{(n)} A_\ell$ for $\ell < n$. Example: $(Pat^{(1)} S..., Pat^{(k)} S..., Pat^{(\ell-1)} S. S. Comp^{(\ell+1)} S..., Comp^{(n)} S...)$ M.D. ATKINSON AND R. BEALS [1999] consider the group case, where all the A_n are groups, in particular, what is the "asymptotic" behaviour of the above sequence (for more details ask Erkko)

The "Galois" connection $Pat^{(\ell)} - Comp^{(n)}$

Questions and answers

Further problems

Outline

Permutation patterns

The "Galois" connection $Pat^{(\ell)} - Comp^{(n)}$

Questions and answers

Further problems

AAA91, Brno, Febr., 2016

The "Galois" connection $Pat^{(\ell)} - Compton 0$

Questions and answers

Questions

We shall deal now with the following questions (naturally arising in this context):

- For which $S \subseteq S_{\ell}$ do we have $\operatorname{Comp}^{(n)} S \leq S_n$?
- Which T ≤ S_n are of the form Comp⁽ⁿ⁾ S for some S ⊆ S_ℓ? or for some S ≤ S_ℓ?

The "Galois" connection $Pat^{(\ell)} - Comp^{(n)}$

Questions and answers

Further problems

Questions

We shall deal now with the following questions (naturally arising in this context):

- For which $S \subseteq S_{\ell}$ do we have $\operatorname{Comp}^{(n)} S \leq S_n$?
- Which T ≤ S_n are of the form Comp⁽ⁿ⁾ S for some S ⊆ S_ℓ? or for some S ≤ S_ℓ?

The "Galois" connection $Pat^{(\ell)} - Comp$

Questions and answers

Further problems

The group case for the operator Comp⁽ⁿ⁾

Proposition If S is a subgroup of S_{ℓ} , then $\operatorname{Comp}^{(n)} S$ is a subgroup of S_n .

Sketch of the proof.

Assume that $S \leq S_{\ell}$. Let $\pi, \tau \in \text{Comp}^{(n)} S$. Thus $\text{Pat}^{(\ell)} \pi, \text{Pat}^{(\ell)} \tau \subseteq S$. Crucial observation:

 $\mathsf{Pat}^{(\ell)} \pi^{-1} = (\mathsf{Pat}^{(\ell)} \pi)^{-1} := \{ \sigma^{-1} \mid \sigma \in \mathsf{Pat}^{(\ell)} \pi \},$ $\mathsf{Pat}^{(\ell)} \pi \tau \subseteq (\mathsf{Pat}^{(\ell)} \pi)(\mathsf{Pat}^{(\ell)} \tau) := \{ \sigma \sigma' \mid \sigma \in \mathsf{Pat}^{(\ell)} \pi, \, \sigma' \in \mathsf{Pat}^{(\ell)} \tau \}.$

Consequently, π^{-1} and $\pi\tau$ also belong to Comp⁽ⁿ⁾ S (since $S \leq S_{\ell}$). Thus Comp⁽ⁿ⁾ S is a group.

The "Galois" connection $Pat^{(\ell)} - Comp^{(n)}$

Questions and answers

Further problems

The group case for the operator Comp⁽ⁿ⁾

Proposition

If S is a subgroup of S_{ℓ} , then $\operatorname{Comp}^{(n)} S$ is a subgroup of S_n .

Sketch of the proof.

Assume that $S \leq S_{\ell}$. Let $\pi, \tau \in \text{Comp}^{(n)} S$. Thus $\text{Pat}^{(\ell)} \pi, \text{Pat}^{(\ell)} \tau \subseteq S$. Crucial observation:

 $\mathsf{Pat}^{(\ell)} \pi^{-1} = (\mathsf{Pat}^{(\ell)} \pi)^{-1} := \{ \sigma^{-1} \mid \sigma \in \mathsf{Pat}^{(\ell)} \pi \},$ $\mathsf{Pat}^{(\ell)} \pi \tau \subseteq (\mathsf{Pat}^{(\ell)} \pi)(\mathsf{Pat}^{(\ell)} \tau) := \{ \sigma \sigma' \mid \sigma \in \mathsf{Pat}^{(\ell)} \pi, \, \sigma' \in \mathsf{Pat}^{(\ell)} \tau \}.$

Consequently, π^{-1} and πau also belong to Comp⁽ⁿ⁾ S (since $S \leq S_\ell$). Thus Comp⁽ⁿ⁾ S is a group.

The "Galois" connection $Pat^{(\ell)} - Complexity of the complexity$

Questions and answers

Further problems

The group case for the operator Comp⁽ⁿ⁾

Proposition

If S is a subgroup of S_{ℓ} , then $\operatorname{Comp}^{(n)} S$ is a subgroup of S_n .

Sketch of the proof.

Assume that
$$S \leq S_{\ell}$$
. Let $\pi, \tau \in \text{Comp}^{(n)} S$.
Thus $\text{Pat}^{(\ell)} \pi, \text{Pat}^{(\ell)} \tau \subseteq S$.

 $\mathsf{Pat}^{(\ell)} \pi^{-1} = (\mathsf{Pat}^{(\ell)} \pi)^{-1} := \{ \sigma^{-1} \mid \sigma \in \mathsf{Pat}^{(\ell)} \pi \},$ $\mathsf{Pat}^{(\ell)} \pi \tau \subseteq (\mathsf{Pat}^{(\ell)} \pi)(\mathsf{Pat}^{(\ell)} \tau) := \{ \sigma \sigma' \mid \sigma \in \mathsf{Pat}^{(\ell)} \pi, \, \sigma' \in \mathsf{Pat}^{(\ell)} \tau \}.$

Consequently, π^{-1} and $\pi\tau$ also belong to Comp⁽ⁿ⁾ S (since $S \leq S_{\ell}$). Thus Comp⁽ⁿ⁾ S is a group.

The "Galois" connection $Pat^{(\ell)} - Comp^{(n)}$

Questions and answers

Further problems

The group case for the operator Comp⁽ⁿ⁾

Proposition

If S is a subgroup of S_{ℓ} , then $\operatorname{Comp}^{(n)} S$ is a subgroup of S_n .

Sketch of the proof.

Assume that $S \leq S_{\ell}$. Let $\pi, \tau \in \text{Comp}^{(n)} S$. Thus $\text{Pat}^{(\ell)} \pi, \text{Pat}^{(\ell)} \tau \subseteq S$. Crucial observation:

$$\mathsf{Pat}^{(\ell)} \pi^{-1} = (\mathsf{Pat}^{(\ell)} \pi)^{-1} := \{ \sigma^{-1} \mid \sigma \in \mathsf{Pat}^{(\ell)} \pi \},$$
$$\mathsf{Pat}^{(\ell)} \pi \tau \subseteq (\mathsf{Pat}^{(\ell)} \pi)(\mathsf{Pat}^{(\ell)} \tau) := \{ \sigma \sigma' \mid \sigma \in \mathsf{Pat}^{(\ell)} \pi, \, \sigma' \in \mathsf{Pat}^{(\ell)} \tau \}.$$

Consequently, π^{-1} and $\pi\tau$ also belong to Comp⁽ⁿ⁾ S (since $S \leq S_{\ell}$). Thus Comp⁽ⁿ⁾ S is a group.

The "Galois" connection $\operatorname{Pat}^{(\ell)} - \operatorname{Comp}^{(n)}$

Questions and answers

Further problems

The group case for the operator Comp⁽ⁿ⁾

Proposition

If S is a subgroup of S_{ℓ} , then $\operatorname{Comp}^{(n)} S$ is a subgroup of S_n .

Sketch of the proof.

Assume that
$$S \leq S_{\ell}$$
. Let $\pi, \tau \in \text{Comp}^{(n)} S$.
Thus $\text{Pat}^{(\ell)} \pi, \text{Pat}^{(\ell)} \tau \subseteq S$.
Crucial observation:

$$\mathsf{Pat}^{(\ell)} \pi^{-1} = (\mathsf{Pat}^{(\ell)} \pi)^{-1} := \{ \sigma^{-1} \mid \sigma \in \mathsf{Pat}^{(\ell)} \pi \},$$
$$\mathsf{Pat}^{(\ell)} \pi \tau \subseteq (\mathsf{Pat}^{(\ell)} \pi)(\mathsf{Pat}^{(\ell)} \tau) := \{ \sigma \sigma' \mid \sigma \in \mathsf{Pat}^{(\ell)} \pi, \, \sigma' \in \mathsf{Pat}^{(\ell)} \tau \}.$$

Consequently,
$$\pi^{-1}$$
 and $\pi\tau$ also belong to Comp⁽ⁿ⁾ S (since $S \leq S_{\ell}$). Thus Comp⁽ⁿ⁾ S is a group.

AAA91, Brno, Febr., 2016

The "Galois" connection $\mathsf{Pat}^{(\ell)} - \mathsf{Comp}$

Questions and answers

Further problems

The group case, continued

The converse of the Proposition does not hold.

There even exist subgroups $H \leq S_n$ which are of the form $\operatorname{Comp}^{(n)} S$ $(S \subseteq S_\ell)$ but there is no group $G \leq S_\ell$ such that $H = \operatorname{Comp}^{(n)} G$.

However: Let $\ell \leq n$ and $\ell \leq 3$. Then we have for $S \subseteq S_{\ell}$: Comp⁽ⁿ⁾ S is a subgroup of S_n if and only if S is a subgroup of S_{ℓ} .

AAA91, Brno, Febr., 2016

The "Galois" connection $\mathsf{Pat}^{(\ell)} - \mathsf{Comp}$

Questions and answers

Further problems

The group case, continued

The converse of the Proposition does not hold.

There even exist subgroups $H \leq S_n$ which are of the form $\operatorname{Comp}^{(n)} S$ $(S \subseteq S_\ell)$ but there is no group $G \leq S_\ell$ such that $H = \operatorname{Comp}^{(n)} G$.

However: Let $\ell \leq n$ and $\ell \leq 3$. Then we have for $S \subseteq S_{\ell}$: Comp⁽ⁿ⁾ S is a subgroup of S_n if and only if S is a subgroup of S_{ℓ} .

AAA91, Brno, Febr., 2016

The "Galois" connection $Pat^{(\ell)} - Comp^{(n)}$ 00 Questions and answers

The groups $\operatorname{Comp}^{(n)} S$ are ℓ -closed Recall the (usual) Galois connection

Inv
$$T := \{ \varrho \in \operatorname{Rel}_n \mid \forall \pi \in T : \pi \triangleright \varrho \}$$
 for $T \subseteq S_n$,
Aut $R := \{ \pi \in S_n \mid \forall \varrho \in R : \pi \triangleright \varrho \}$ for $R \subseteq \operatorname{Rel}_n$.

Proposition

Assume that $T = \text{Comp}^{(n)} S$ is a subgroup of S_n for some subset $S \subseteq S_\ell$ (not necessarily a subgroup). Then T is ℓ -closed, i.e., T = Aut Inv T is determined by its ℓ -ary invariant relations:

 $T = \operatorname{Aut} \operatorname{Inv}^{(\ell)} T.$

In particular, the ℓ -orbits $(h_L)^T$ already characterize the group:

 $T = \operatorname{Aut}\{(h_L)^T \mid L \in \binom{[n]}{\ell}\}.$

where $h_{\ell} := (i_1, \dots, i_{\ell})$ for $L = \{i_1, \dots, i_{\ell}\} \subseteq [n]$ with $i_1 < \dots < i_{\ell}$. AAA91, Brno, Febr., 2016 R. Pöschel, Permutation Patterns (16/21)

The "Galois" connection $Pat^{(\ell)} - Comp^{(n)}$ 00 Questions and answers

The groups $\operatorname{Comp}^{(n)} S$ are ℓ -closed Recall the (usual) Galois connection

Inv
$$T := \{ \varrho \in \operatorname{Rel}_n \mid \forall \pi \in T : \pi \triangleright \varrho \}$$
 for $T \subseteq S_n$,
Aut $R := \{ \pi \in S_n \mid \forall \varrho \in R : \pi \triangleright \varrho \}$ for $R \subseteq \operatorname{Rel}_n$.

Proposition

Assume that $T = \text{Comp}^{(n)} S$ is a subgroup of S_n for some subset $S \subseteq S_{\ell}$ (not necessarily a subgroup). Then T is ℓ -closed, i.e., T = Aut Inv T is determined by its ℓ -ary invariant relations:

 $T = \operatorname{Aut} \operatorname{Inv}^{(\ell)} T.$

In particular, the ℓ -orbits $(h_L)^T$ already characterize the group:

 $T = \operatorname{Aut}\{(h_L)^T \mid L \in {[n] \choose \ell}\}.$

where $h_L := (i_1, \dots, i_\ell)$ for $L = \{i_1, \dots, i_\ell\} \subseteq [n]$ with $i_1 < \dots < i_\ell$. AAA91, Brno, Febr., 2016 R. Pöschel, Permutation Patterns (16/21)

The "Galois" connection $\operatorname{Pat}^{(\ell)} - \operatorname{Comp}^{(n)}$ 00 Questions and answers

The groups $\operatorname{Comp}^{(n)} S$ are ℓ -closed Recall the (usual) Galois connection

Inv
$$T := \{ \varrho \in \operatorname{Rel}_n \mid \forall \pi \in T : \pi \triangleright \varrho \}$$
 for $T \subseteq S_n$,
Aut $R := \{ \pi \in S_n \mid \forall \rho \in R : \pi \triangleright \rho \}$ for $R \subseteq \operatorname{Rel}_n$.

Proposition

Assume that $T = \text{Comp}^{(n)} S$ is a subgroup of S_n for some subset $S \subseteq S_{\ell}$ (not necessarily a subgroup). Then T is ℓ -closed, i.e., T = Aut Inv T is determined by its ℓ -ary invariant relations:

$$T = \operatorname{Aut} \operatorname{Inv}^{(\ell)} T.$$

In particular, the ℓ -orbits $(h_L)^T$ already characterize the group:

$$T = \operatorname{Aut}\{(h_L)^T \mid L \in \binom{[n]}{\ell}\}.$$

where $h_L := (i_1, \ldots, i_\ell)$ for $L = \{i_1, \ldots, i_\ell\} \subseteq [n]$ with $i_1 < \cdots < i_\ell$. AAA91, Brno, Febr., 2016

Questions and answers

Characterization theorems

Theorem

Let T be a subgroup of S_n . Then $T = \text{Comp}^{(n)} G$ for some group $G \leq S_{\ell}$ if and only if $T = \text{Aut } \varrho$ for some ℓ -ary irreflexive relation ϱ on [n] that satisfies the condition

$$\forall \mathbf{r}, \mathbf{s} \in [n]_{\neq}^{\ell} \colon \mathbf{r} \in \varrho \land \operatorname{red}(\mathbf{r}) = \operatorname{red}(\mathbf{s}) \implies \mathbf{s} \in \varrho.$$

Theorem

Let $T \leq S_n$, consider the ℓ -orbits $\varrho_L := (h_L)^T$ for all $L \in {[n] \choose \ell}$. Then $T = \text{Comp}^{(n)} S$ for some $S \subseteq S_\ell$ if and only if

(a)
$$T = \operatorname{Aut}\{\varrho_L \mid L \in {[n] \choose \ell}\},\$$

(b) for every $x \in [n]^n_{\neq}$ we have $(\forall L \in {[n] \choose \ell} \exists J \in {[n] \choose \ell}: \operatorname{red}(x_L) \in \operatorname{red}(\varrho_J)) \implies \forall L \in {[n] \choose \ell}: x_L \in \varrho_L.$

where $x_L := (x_{i_1}, \ldots, x_{i_\ell})$ for $L = \{i_1, \ldots, i_\ell\}$ with $i_1 < \cdots < i_\ell$.

AAA91, Brno, Febr., 2016

The "Galois" connection Pat^(ℓ) — Comp⁽ 00 Questions and answers

Characterization theorems

Theorem

Let T be a subgroup of S_n . Then $T = \text{Comp}^{(n)} G$ for some group $G \leq S_{\ell}$ if and only if $T = \text{Aut } \varrho$ for some ℓ -ary irreflexive relation ϱ on [n] that satisfies the condition

$$\forall \mathbf{r}, \mathbf{s} \in [n]_{\neq}^{\ell} \colon \mathbf{r} \in \varrho \ \land \ \mathsf{red}(\mathbf{r}) = \mathsf{red}(\mathbf{s}) \implies \mathbf{s} \in \varrho$$

Theorem

Let $T \leq S_n$, consider the ℓ -orbits $\varrho_L := (h_L)^T$ for all $L \in {[n] \choose \ell}$. Then $T = \text{Comp}^{(n)} S$ for some $S \subseteq S_\ell$ if and only if

(a)
$$T = \operatorname{Aut}\{\varrho_L \mid L \in {[n] \choose \ell}\},\$$

(b) for every
$$x \in [n]_{\neq}^{n}$$
 we have
 $(\forall L \in {[n] \choose \ell} \exists J \in {[n] \choose \ell}: \operatorname{red}(x_L) \in \operatorname{red}(\varrho_J)) \implies \forall L \in {[n] \choose \ell}: x_L \in \varrho_L.$

where
$$x_L := (x_{i_1}, \ldots, x_{i_\ell})$$
 for $L = \{i_1, \ldots, i_\ell\}$ with $i_1 < \cdots < i_\ell$.

AAA91, Brno, Febr., 2016

The "Galois" connection $Pat^{(\ell)} - Comp^{(n)}$

Questions and answers

Further problems

Outline

Permutation patterns

The "Galois" connection $Pat^{(\ell)} - Comp^{(n)}$

Questions and answers

Further problems

AAA91, Brno, Febr., 2016

The "Galois" connection $\mathsf{Pat}^{(\ell)} - \mathsf{Com}$

Questions and answers

Further problems

Further problems

- What about the (Galois) kernels $Pat^{(\ell)} T$ for $T \subseteq S_n$ or $T \leq S_n$?
- For a given group G ≤ S_ℓ, what can be said about the sequence G, Comp^(ℓ+1) G,..., Comp⁽ⁿ⁾ G,... ?
 Many results are already known (in particular for special groups G, transitive [ATKINSON/BEALS], intransitive, primitive [E. LEHTONEN] ... (ask Erkko))

AAA91, Brno, Febr., 2016

The "Galois" connection $Pat^{(\ell)} - Comp^{(n)}$

Questions and answers

Further problems

Further problems

- What about the (Galois) kernels $Pat^{(\ell)} T$ for $T \subseteq S_n$ or $T \leq S_n$?
- For a given group G ≤ S_ℓ, what can be said about the sequence G, Comp^(ℓ+1) G,..., Comp⁽ⁿ⁾ G,... ?
 Many results are already known (in particular for special)

groups *G*, transitive [ATKINSON/BEALS], intransitive, primitive [E. LEHTONEN] ... (ask Erkko))

The "Galois" connection $\mathsf{Pat}^{(\ell)} - \mathsf{Cond}$

Questions and answers

Further problems

Further problems

- What about the (Galois) kernels $Pat^{(\ell)} T$ for $T \subseteq S_n$ or $T \leq S_n$?
- For a given group G ≤ S_ℓ, what can be said about the sequence G, Comp^(ℓ+1) G,..., Comp⁽ⁿ⁾ G,... ?
 Many results are already known (in particular for special groups G, transitive [ATKINSON/BEALS], intransitive, primitive [E. LEHTONEN] ... (ask Erkko))

The "Galois" connection $\mathsf{Pat}^{(\ell)} - \mathsf{Com}$

Questions and answers

Further problems

Further problems

- What about the (Galois) kernels $Pat^{(\ell)} T$ for $T \subseteq S_n$ or $T \leq S_n$?
- For a given group G ≤ S_ℓ, what can be said about the sequence G, Comp^(ℓ+1) G,..., Comp⁽ⁿ⁾ G,... ?
 Many results are already known (in particular for special groups G, transitive [ATKINSON/BEALS], intransitive, primitive [E. LEHTONEN] ... (ask Erkko))

AAA91, Brno, Febr., 2016

The "Galois" connection $\mathsf{Pat}^{(\ell)} - \mathsf{Comp}$

Questions and answers

Further problems

References

M.D. ATKINSON AND R. BEALS, Permuting mechanisms and closed classes of permutations. In: Combinatorics, computation & logic '99 (Auckland), vol. 21 of Aust. Comput. Sci. Commun., Springer, Singapore, 1999, pp. 117–127.

Acknowledgement:

NIK RUŠKUC, Classes of permutations avoiding 231 or 321. Lecture given at TU Dresden (Dresdner Mathematisches Seminar), Nov. 25, 2015.

AAA91, Brno, Febr., 2016

The "Galois" connection $Pat^{(\ell)} - Comp^{(n)}$

Questions and answers

Further problems

