Permutation patterns and permutation groups

Erkko Lehtonen and Reinhard Pöschel

Technische Universität Dresden
Institute of Algebra

AAA91
Arbeitstagung Allgemeine Algebra Workshop on General Algebra
Brno 7.2.2016

Outline

Permutation patterns

The "Galois" connection Pat ${ }^{(\ell)}-$ Comp $^{(n)}$

Questions and answers

Further problems

Outline

Permutation patterns

The "Galois" connection Pat ${ }^{(\ell)}-$ Comp $^{(n)}$ Questions and answers

Further problems

Some motivation

Which number sequences (permutations) can be sorted by a stack?

Some motivation

Which number sequences (permutations) can be sorted by a stack?

31524

Some motivation

Which number sequences (permutations) can be sorted by a stack?

1524

Some motivation

Which number sequences (permutations) can be sorted by a stack?
524

Some motivation

Which number sequences (permutations) can be sorted by a stack?

524

3

Some motivation

Which number sequences (permutations) can be sorted by a stack?

Some motivation

Which number sequences (permutations) can be sorted by a stack?

Some motivation

Which number sequences (permutations) can be sorted by a stack?

Some motivation

Which number sequences (permutations) can be sorted by a stack?

Some motivation

Which number sequences (permutations) can be sorted by a stack?

Some motivation

Which number sequences (permutations) can be sorted by a stack?

Some motivation

Which number sequences (permutations) can be sorted by a stack?

Proposition

A permutation π can be sorted by a stack if and only if it does not contain a subsequence ...a...b...c... with $c<a<b$.

Some motivation

Which number sequences (permutations) can be sorted by a stack?

Proposition

A permutation π can be sorted by a stack if and only if it does not contain a subsequence ...a...b...c... with $c<a<b$.
i.e., such "patterns" abc (like 352) must be avoided

Permutations

A permutation $\pi \in S_{n}$ (bijection $\pi \in[n]^{[n]},[n]:=\{1, \ldots, n\}$) will be considered as a word (n-tuple $\pi \in[n]^{n}$) of length n :

$$
\left(\pi_{1}, \ldots, \pi_{n}\right):=(\pi(1), \ldots, \pi(n)) .
$$

Permutations

A permutation $\pi \in S_{n}$ (bijection $\pi \in[n]^{[n]},[n]:=\{1, \ldots, n\}$) will be considered as a word (n-tuple $\pi \in[n]^{n}$) of length n :

$$
\left(\pi_{1}, \ldots, \pi_{n}\right):=(\pi(1), \ldots, \pi(n)) .
$$

e.g. $\pi=(31524) \in[5]^{5}$ is the permutation $1 \mapsto 3,2 \mapsto 1,3 \mapsto 5,4 \mapsto 2,5 \mapsto 4$

Permutations

A permutation $\pi \in S_{n}$ (bijection $\pi \in[n]^{[n]},[n]:=\{1, \ldots, n\}$) will be considered as a word (n-tuple $\pi \in[n]^{n}$) of length n :

$$
\left(\pi_{1}, \ldots, \pi_{n}\right):=(\pi(1), \ldots, \pi(n)) .
$$

e.g. $\pi=(31524) \in[5]^{5}$ is the permutation $1 \mapsto 3,2 \mapsto 1,3 \mapsto 5,4 \mapsto 2,5 \mapsto 4$
graphical representation:

Permutations

A permutation $\pi \in S_{n}$ (bijection $\pi \in[n]^{[n]},[n]:=\{1, \ldots, n\}$) will be considered as a word (n-tuple $\pi \in[n]^{n}$) of length n :

$$
\left(\pi_{1}, \ldots, \pi_{n}\right):=(\pi(1), \ldots, \pi(n)) .
$$

e.g. $\pi=(31524) \in[5]^{5}$ is the permutation
$1 \mapsto 3,2 \mapsto 1,3 \mapsto 5,4 \mapsto 2,5 \mapsto 4$
graphical representation:

Permutation patterns (Example)

Permutation patterns

$\ell \leq n, \sigma \in S_{\ell}, \pi \in S_{n}$
$\sigma \leq \pi: \Longleftrightarrow$ there exists a substring \mathbf{u} of π of length ℓ such that $\sigma=\operatorname{red}(\mathbf{u})$
(σ is ℓ-pattern of π, or π involves σ)

Permutation patterns

$\ell \leq n, \sigma \in S_{\ell}, \pi \in S_{n}$
$\sigma \leq \pi: \Longleftrightarrow$ there exists a substring \mathbf{u} of π of length ℓ such that $\sigma=\operatorname{red}(\mathbf{u})$
(σ is ℓ-pattern of π, or π involves σ) π avoids $\sigma: \Longleftrightarrow \sigma \not \equiv \pi$.

Permutation patterns

$\ell \leq n, \sigma \in S_{\ell}, \pi \in S_{n}$
$\sigma \leq \pi: \Longleftrightarrow$ there exists a substring \mathbf{u} of π of length ℓ such that $\sigma=\operatorname{red}(\mathbf{u})$
(σ is ℓ-pattern of π, or π involves σ)
π avoids $\sigma: \Longleftrightarrow \sigma \not \equiv \pi$.
$\mathrm{Pat}^{(\ell)} \pi:=\left\{\sigma \in S_{\ell} \mid \sigma \leq \pi\right\}$

Permutation patterns

$\ell \leq n, \sigma \in S_{\ell}, \pi \in S_{n}$
$\sigma \leq \pi: \Longleftrightarrow$ there exists a substring \mathbf{u} of π of length ℓ such that $\sigma=\operatorname{red}(\mathbf{u})$
(σ is ℓ-pattern of π, or π involves σ)
π avoids $\sigma: \Longleftrightarrow \sigma \not \equiv \pi$.
$\mathrm{Pat}^{(\ell)} \pi:=\left\{\sigma \in S_{\ell} \mid \sigma \leq \pi\right\}$
The pattern involvement relation \leq is a partial order on the set $\mathbb{P}:=\bigcup_{n \geq 1} S_{n}$ of all finite permutations and we have:

Permutation patterns

$\ell \leq n, \sigma \in S_{\ell}, \pi \in S_{n}$
$\sigma \leq \pi: \Longleftrightarrow$ there exists a substring \mathbf{u} of π of length ℓ such that $\sigma=\operatorname{red}(\mathbf{u})$
(σ is ℓ-pattern of π, or π involves σ)
π avoids $\sigma: \Longleftrightarrow \sigma \not \equiv \pi$.
$\mathrm{Pat}^{(\ell)} \pi:=\left\{\sigma \in S_{\ell} \mid \sigma \leq \pi\right\}$
The pattern involvement relation \leq is a partial order on the set $\mathbb{P}:=\bigcup_{n \geq 1} S_{n}$ of all finite permutations and we have:
$\ell \leq m \leq n, \sigma \in S_{\ell}, \pi \in S_{m}, \tau \in S_{n}:$

- $\sigma \leq \pi$ and $\pi \leq \tau$ implies $\sigma \leq \tau$ (transitivity),

Permutation patterns

$\ell \leq n, \sigma \in S_{\ell}, \pi \in S_{n}$
$\sigma \leq \pi: \Longleftrightarrow$ there exists a substring \mathbf{u} of π of length ℓ such that $\sigma=\operatorname{red}(\mathbf{u})$
(σ is ℓ-pattern of π, or π involves σ)
π avoids $\sigma: \Longleftrightarrow \sigma \not \equiv \pi$.
$\mathrm{Pat}^{(\ell)} \pi:=\left\{\sigma \in S_{\ell} \mid \sigma \leq \pi\right\}$
The pattern involvement relation \leq is a partial order on the set $\mathbb{P}:=\bigcup_{n \geq 1} S_{n}$ of all finite permutations and we have:
$\ell \leq m \leq n, \sigma \in S_{\ell}, \pi \in S_{m}, \tau \in S_{n}:$

- $\sigma \leq \pi$ and $\pi \leq \tau$ implies $\sigma \leq \tau$ (transitivity),
- $\sigma \leq \tau$ implies $\exists \pi \in S_{m}: \sigma \leq \pi \leq \tau$.

Closed classes of permutations

M.D. Atkinson and R. Beals ([1999], Permuting mechanisms and closed classes of permutations) consider closed classes of permutations, i.e., subsets $A \subseteq \mathbb{P}=\bigcup_{n \geq 1} S_{n}$ which are closed under taking patterns (order ideal in ($\mathbb{P}, \leq)$):

$$
\pi \in A, \sigma \leq \pi \Longrightarrow \sigma \in A
$$

Closed classes of permutations

M.D. Atkinson and R. Beals ([1999], Permuting mechanisms and closed classes of permutations) consider closed classes of permutations, i.e., subsets $A \subseteq \mathbb{P}=\bigcup_{n \geq 1} S_{n}$ which are closed under taking patterns (order ideal in (\mathbb{P}, \leq)):

$$
\pi \in A, \sigma \leq \pi \Longrightarrow \sigma \in A
$$

Then, for the sequence

$$
\left(A_{1}, A_{2}, \ldots, A_{\ell}, \ldots, A_{n}, \ldots\right)
$$

where $A_{\ell}:=A \cap S_{\ell}$, we get

Closed classes of permutations

M.D. Atkinson and R. Beals ([1999], Permuting mechanisms and closed classes of permutations) consider closed classes of permutations, i.e., subsets $A \subseteq \mathbb{P}=\bigcup_{n \geq 1} S_{n}$ which are closed under taking patterns (order ideal in (\mathbb{P}, \leq)):

$$
\pi \in A, \sigma \leq \pi \Longrightarrow \sigma \in A
$$

Then, for the sequence

$$
\left(A_{1}, A_{2}, \ldots, A_{\ell}, \ldots, A_{n}, \ldots\right)
$$

where $A_{\ell}:=A \cap S_{\ell}$, we get $\mathrm{Pat}^{(\ell)} A_{n} \subseteq A_{\ell}$ for $\ell \leq n$.

Outline

Permutation patterns

The "Galois" connection Pat ${ }^{(\ell)}-$ Comp $^{(n)}$ Questions and answers Further problems

A (monotone) Galois connection

The relation $\sigma \not \leq \pi(\pi$ avoids $\sigma)$ induces a Galois connection between subsets of S_{ℓ} and S_{n}. The corresponding "monotone Galois connection" (residuation) is given by the following operators (monotone w.r.t. \subseteq):

A (monotone) Galois connection

The relation $\sigma \not \leq \pi(\pi$ avoids $\sigma)$ induces a Galois connection between subsets of S_{ℓ} and S_{n}. The corresponding "monotone Galois connection" (residuation) is given by the following operators (monotone w.r.t. \subseteq):
For $S \subseteq S_{\ell}, T \subseteq S_{n}(\ell \leq n)$ let
Comp $^{(n)} S:=\left\{\tau \in S_{n} \mid \operatorname{Pat}^{(\ell)} \tau \subseteq S\right\}=\left\{\tau \in S_{n} \mid \forall \sigma^{\prime} \in S_{\ell} \backslash S: \sigma^{\prime} \not \leq \tau\right\}$,

$$
\operatorname{Pat}^{(\ell)} T:=\bigcup_{\tau \in T} \operatorname{Pat}^{(\ell)} \tau \quad=S_{\ell} \backslash\left\{\sigma^{\prime} \in S_{\ell} \mid \forall \tau \in T: \sigma^{\prime} \not \pm \tau\right\} .
$$

A (monotone) Galois connection

The relation $\sigma \not \leq \pi(\pi$ avoids $\sigma)$ induces a Galois connection between subsets of S_{ℓ} and S_{n}. The corresponding "monotone Galois connection" (residuation) is given by the following operators (monotone w.r.t. \subseteq):
For $S \subseteq S_{\ell}, T \subseteq S_{n}(\ell \leq n)$ let
Comp $^{(n)} S:=\left\{\tau \in S_{n} \mid \operatorname{Pat}^{(\ell)} \tau \subseteq S\right\}=\left\{\tau \in S_{n} \mid \forall \sigma^{\prime} \in S_{\ell} \backslash S: \sigma^{\prime} \not \leq \tau\right\}$,

$$
\operatorname{Pat}^{(\ell)} T:=\bigcup_{\tau \in T} \operatorname{Pat}^{(\ell)} \tau \quad=S_{\ell} \backslash\left\{\sigma^{\prime} \in S_{\ell} \mid \forall \tau \in T: \sigma^{\prime} \not \leq \tau\right\}
$$

Then we have:

$$
\begin{array}{rlrl}
\operatorname{Pat}^{(\ell)} \operatorname{Comp}^{(n)} & S & \subseteq S & \\
& \text { (kernel operator) } \\
T & \subseteq \operatorname{Comp}^{(n)} \mathrm{Pat}^{(\ell)} T & & \text { (closure operator) }
\end{array}
$$

A (monotone) Galois connection

The relation $\sigma \not \leq \pi(\pi$ avoids $\sigma)$ induces a Galois connection between subsets of S_{ℓ} and S_{n}. The corresponding "monotone Galois connection" (residuation) is given by the following operators (monotone w.r.t. \subseteq):
For $S \subseteq S_{\ell}, T \subseteq S_{n}(\ell \leq n)$ let
Comp $^{(n)} S:=\left\{\tau \in S_{n} \mid \operatorname{Pat}^{(\ell)} \tau \subseteq S\right\}=\left\{\tau \in S_{n} \mid \forall \sigma^{\prime} \in S_{\ell} \backslash S: \sigma^{\prime} \not \leq \tau\right\}$,

$$
\operatorname{Pat}^{(\ell)} T:=\bigcup_{\tau \in T} \operatorname{Pat}^{(\ell)} \tau \quad=S_{\ell} \backslash\left\{\sigma^{\prime} \in S_{\ell} \mid \forall \tau \in T: \sigma^{\prime} \not \leq \tau\right\}
$$

Then we have:

$$
\begin{aligned}
\operatorname{Pat}^{(\ell)} \operatorname{Comp}^{(n)} S & \subseteq S & & \text { (kernel ope } \\
T & \subseteq \operatorname{Comp}^{(n)} \operatorname{Pat}^{(\ell)} T & & \text { (closure op } \\
\operatorname{Comp}^{(n)} S & =\operatorname{Comp}^{(n)} \operatorname{Pat}^{(\ell)} \operatorname{Comp}^{(n)} S & & \text { (closures), } \\
\operatorname{Pat}^{(\ell)} T & =\operatorname{Pat}^{(\ell)} \operatorname{Comp}^{(n)} \operatorname{Pat}^{(\ell)} T & & \text { (kernels). }
\end{aligned}
$$

The (Galois) closures Comp ${ }^{(n)} S$

For $S \subseteq S_{\ell}$ there is an "increasing" sequence of (Galois) closures Comp ${ }^{(\bar{n})} S \subseteq S_{n}$:

$$
S, \operatorname{Comp}^{(\ell+1)} S, \ldots, \text { Comp }^{(n)} S, \operatorname{Comp}^{(n+1)} S, \ldots
$$

The (Galois) closures Comp ${ }^{(n)} S$

For $S \subseteq S_{\ell}$ there is an "increasing" sequence of (Galois) closures Comp ${ }^{(\bar{n})} S \subseteq S_{n}$:

$$
S, \operatorname{Comp}^{(\ell+1)} S, \ldots, \text { Comp }^{(n)} S, \operatorname{Comp}^{(n+1)} S, \ldots
$$

Observation: For $\ell \leq m \leq n$ and $S \subseteq S_{\ell}, T \subseteq S_{n}$ we have $\operatorname{Comp}^{(n)} \operatorname{Comp}^{(m)} S=\operatorname{Comp}^{(n)} S$

The (Galois) closures Comp ${ }^{(n)} S$

For $S \subseteq S_{\ell}$ there is an "increasing" sequence of (Galois) closures Comp ${ }^{(\bar{n})} S \subseteq S_{n}$:

$$
S, \operatorname{Comp}^{(\ell+1)} S, \ldots, \text { Comp }^{(n)} S, \operatorname{Comp}^{(n+1)} S, \ldots
$$

Observation: For $\ell \leq m \leq n$ and $S \subseteq S_{\ell}, T \subseteq S_{n}$ we have $\mathrm{Comp}^{(n)} \mathrm{Comp}^{(m)} S=\mathrm{Comp}^{(n)} S\left(\right.$ and $\left.\mathrm{Pat}^{(\ell)} \mathrm{Pat}^{(m)} T=\mathrm{Pat}^{(\ell)} T\right)$.

The (Galois) closures Comp ${ }^{(n)} S$

For $S \subseteq S_{\ell}$ there is an "increasing" sequence of (Galois) closures Comp ${ }^{(\bar{n})} S \subseteq S_{n}$:

$$
S, \operatorname{Comp}^{(\ell+1)} S, \ldots, \text { Comp }^{(n)} S, \operatorname{Comp}^{(n+1)} S, \ldots
$$

Observation: For $\ell \leq m \leq n$ and $S \subseteq S_{\ell}, T \subseteq S_{n}$ we have $\operatorname{Comp}{ }^{(n)} \mathrm{Comp}^{(m)} S=\operatorname{Comp}^{(n)} S\left(\right.$ and $\left.\mathrm{Pat}^{(\ell)} \mathrm{Pat}^{(m)} T=\mathrm{Pat}^{(\ell)} T\right)$.
For a closed class of permutations $\left(A_{1}, \ldots, A_{\ell}, \ldots, A_{n}, \ldots\right)$ we have $\mathrm{Pat}^{(\ell)} A_{n} \subseteq A_{\ell}$ and thus $A_{n} \subseteq \operatorname{Comp}^{(n)} A_{\ell}$ for $\ell \leq n$.

The (Galois) closures Comp ${ }^{(n)} S$

For $S \subseteq S_{\ell}$ there is an "increasing" sequence of (Galois) closures Comp ${ }^{(n)} S \subseteq S_{n}$:

$$
S, \operatorname{Comp}^{(\ell+1)} S, \ldots, \text { Comp }^{(n)} S, \text { Comp }^{(n+1)} S, \ldots
$$

Observation: For $\ell \leq m \leq n$ and $S \subseteq S_{\ell,} T \subseteq S_{n}$ we have $\operatorname{Comp}^{(n)} \mathrm{Comp}^{(m)} S=\mathrm{Comp}^{(n)} S\left(\right.$ and Pat $\left.^{(\ell)} \mathrm{Pat}^{(m)} T=\mathrm{Pat}^{(\ell)} T\right)$.
For a closed class of permutations ($A_{1}, \ldots, A_{\ell}, \ldots, A_{n}, \ldots$) we have $\mathrm{Pat}^{(\ell)} A_{n} \subseteq A_{\ell}$ and thus $A_{n} \subseteq \operatorname{Comp}^{(n)} A_{\ell}$ for $\ell \leq n$.
Example:
$\left(\right.$ Pat $^{(1)} S, \ldots$, Pat $^{(k)} S, \ldots$, Pat $^{(\ell-1)} S, S$, Comp $^{(\ell+1)} S, \ldots$, Comp $^{(n)} S, \ldots$)

The (Galois) closures Comp ${ }^{(n)} S$

For $S \subseteq S_{\ell}$ there is an "increasing" sequence of (Galois) closures Comp ${ }^{(n)} S \subseteq S_{n}$:

$$
S, \operatorname{Comp}^{(\ell+1)} S, \ldots, \text { Comp }^{(n)} S, \operatorname{Comp}^{(n+1)} S, \ldots
$$

Observation: For $\ell \leq m \leq n$ and $S \subseteq S_{\ell, T} T \subseteq S_{n}$ we have $\operatorname{Comp}^{(n)} \mathrm{Comp}^{(m)} S=\operatorname{Comp}^{(n)} S\left(\right.$ and Pat $\left.^{(\ell)} \mathrm{Pat}^{(m)} T=\mathrm{Pat}^{(\ell)} T\right)$.
For a closed class of permutations ($A_{1}, \ldots, A_{\ell}, \ldots, A_{n}, \ldots$) we have $\mathrm{Pat}^{(\ell)} A_{n} \subseteq A_{\ell}$ and thus $A_{n} \subseteq \operatorname{Comp}^{(n)} A_{\ell}$ for $\ell \leq n$.
Example:
$\left(\operatorname{Pat}^{(1)} S, \ldots\right.$, Pat $^{(k)} S, \ldots, \operatorname{Pat}^{(\ell-1)} S, S$, Comp $^{(\ell+1)} S, \ldots$, Comp $^{(n)} S, \ldots$)
M.D. Atkinson and R. Beals [1999] consider the group case, where all the A_{n} are groups, in particular, what is the "asymptotic" behaviour of the above sequence

The (Galois) closures Comp ${ }^{(n)} S$

For $S \subseteq S_{\ell}$ there is an "increasing" sequence of (Galois) closures Comp ${ }^{(n)} S \subseteq S_{n}$:

$$
S, \operatorname{Comp}^{(\ell+1)} S, \ldots, \text { Comp }^{(n)} S, \operatorname{Comp}^{(n+1)} S, \ldots
$$

Observation: For $\ell \leq m \leq n$ and $S \subseteq S_{\ell, T} T \subseteq S_{n}$ we have $\operatorname{Comp}^{(n)} \mathrm{Comp}^{(m)} S=\mathrm{Comp}^{(n)} S\left(\right.$ and Pat $^{(\ell)} \mathrm{Pat}^{(m)} T=\mathrm{Pat}^{(\ell)} T$).
For a closed class of permutations ($A_{1}, \ldots, A_{\ell}, \ldots, A_{n}, \ldots$) we have $\mathrm{Pat}^{(\ell)} A_{n} \subseteq A_{\ell}$ and thus $A_{n} \subseteq \operatorname{Comp}^{(n)} A_{\ell}$ for $\ell \leq n$.
Example:
$\left(\right.$ Pat $^{(1)} S, \ldots$, Pat $^{(k)} S, \ldots$, Pat $^{(\ell-1)} S, S$, Comp $^{(\ell+1)} S, \ldots$, Comp $^{(n)} S, \ldots$)
M.D. Atkinson and R. Beals [1999] consider the group case, where all the A_{n} are groups, in particular, what is the "asymptotic" behaviour of the above sequence (for more details ask Erkko)

Outline

Permutation patterns
 The "Galois" connection Pat ${ }^{(\ell)}-$ Comp $^{(n)}$

Questions and answers

Further problems

Questions

We shall deal now with the following questions (naturally arising in this context):

- For which $S \subseteq S_{\ell}$ do we have $\operatorname{Comp}^{(n)} S \leq S_{n}$?

Questions

We shall deal now with the following questions (naturally arising in this context):

- For which $S \subseteq S_{\ell}$ do we have $\operatorname{Comp}^{(n)} S \leq S_{n}$?
- Which $T \leq S_{n}$ are of the form Comp ${ }^{(n)} S$ for some $S \subseteq S_{\ell}$? or for some $S \leq S_{\ell}$?

The group case for the operator Comp ${ }^{(n)}$

Proposition
If S is a subgroup of S_{ℓ}, then Comp $^{(n)} S$ is a subgroup of S_{n}.

The group case for the operator Comp ${ }^{(n)}$

Proposition
If S is a subgroup of S_{ℓ}, then $\operatorname{Comp}^{(n)} S$ is a subgroup of S_{n}.

Sketch of the proof.
Assume that $S \leq S_{\ell}$. Let $\pi, \tau \in \operatorname{Comp}^{(n)} S$.

The group case for the operator Comp ${ }^{(n)}$

Proposition
If S is a subgroup of S_{ℓ}, then $\operatorname{Comp}^{(n)} S$ is a subgroup of S_{n}.

Sketch of the proof.
Assume that $S \leq S_{\ell}$. Let $\pi, \tau \in \operatorname{Comp}^{(n)} S$.
Thus $\mathrm{Pat}^{(\ell)} \pi, \mathrm{Pat}^{(\ell)} \tau \subseteq S$.

The group case for the operator Comp ${ }^{(n)}$

Proposition
If S is a subgroup of S_{ℓ}, then $\operatorname{Comp}^{(n)} S$ is a subgroup of S_{n}.

Sketch of the proof.
Assume that $S \leq S_{\ell}$. Let $\pi, \tau \in \operatorname{Comp}^{(n)} S$.
Thus Pat ${ }^{(\ell)} \pi$, Pat $^{(\ell)} \tau \subseteq S$.
Crucial observation:

$$
\begin{aligned}
& \operatorname{Pat}^{(\ell)} \pi^{-1}=\left(\operatorname{Pat}^{(\ell)} \pi\right)^{-1}:=\left\{\sigma^{-1} \mid \sigma \in \operatorname{Pat}^{(\ell)} \pi\right\} \\
& \operatorname{Pat}^{(\ell)} \pi \tau \subseteq\left(\operatorname{Pat}^{(\ell)} \pi\right)\left(\operatorname{Pat}^{(\ell)} \tau\right):=\left\{\sigma \sigma^{\prime} \mid \sigma \in \operatorname{Pat}^{(\ell)} \pi, \sigma^{\prime} \in \operatorname{Pat}^{(\ell)} \tau\right\} .
\end{aligned}
$$

The group case for the operator Comp ${ }^{(n)}$

Proposition

If S is a subgroup of S_{ℓ}, then Comp $^{(n)} S$ is a subgroup of S_{n}.

Sketch of the proof.
Assume that $S \leq S_{\ell}$. Let $\pi, \tau \in \operatorname{Comp}^{(n)} S$.
Thus Pat ${ }^{(\ell)} \pi, \mathrm{Pat}^{(\ell)} \tau \subseteq S$.
Crucial observation:

$$
\begin{aligned}
& \operatorname{Pat}^{(\ell)} \pi^{-1}=\left(\operatorname{Pat}^{(\ell)} \pi\right)^{-1}:=\left\{\sigma^{-1} \mid \sigma \in \operatorname{Pat}^{(\ell)} \pi\right\}, \\
& \operatorname{Pat}^{(\ell)} \pi \tau \subseteq\left(\operatorname{Pat}^{(\ell)} \pi\right)\left(\operatorname{Pat}^{(\ell)} \tau\right):=\left\{\sigma \sigma^{\prime} \mid \sigma \in \operatorname{Pat}^{(\ell)} \pi, \sigma^{\prime} \in \operatorname{Pat}^{(\ell)} \tau\right\} .
\end{aligned}
$$

Consequently, π^{-1} and $\pi \tau$ also belong to Comp ${ }^{(n)} S$ (since $S \leq S_{\ell}$). Thus Comp ${ }^{(n)} S$ is a group.

The group case, continued

The converse of the Proposition does not hold.

There even exist subgroups $H \leq S_{n}$ which are of the form Comp ${ }^{(n)} S\left(S \subseteq S_{\ell}\right)$ but there is no group $G \leq S_{\ell}$ such that $H=\operatorname{Comp}^{(n)} G$.

The group case, continued

The converse of the Proposition does not hold.

There even exist subgroups $H \leq S_{n}$ which are of the form Comp ${ }^{(n)} S\left(S \subseteq S_{\ell}\right)$ but there is no group $G \leq S_{\ell}$ such that $H=\operatorname{Comp}^{(n)} G$.

However: Let $\ell \leq n$ and $\ell \leq 3$. Then we have for $S \subseteq S_{\ell}$:
Comp ${ }^{(n)} S$ is a subgroup of S_{n} if and only if S is a subgroup of S_{ℓ}.

The groups Comp ${ }^{(n)} S$ are ℓ-closed Recall the (usual) Galois connection

$$
\begin{aligned}
& \operatorname{Inv} T:=\left\{\varrho \in \operatorname{Rel}_{n} \mid \forall \pi \in T: \pi \triangleright \varrho\right\} \text { for } T \subseteq S_{n}, \\
& \text { Aut } R:=\left\{\pi \in S_{n} \mid \forall \varrho \in R: \pi \triangleright \varrho\right\} \text { for } R \subseteq \operatorname{Rel}_{n} .
\end{aligned}
$$

The groups Comp ${ }^{(n)} S$ are ℓ-closed

Recall the (usual) Galois connection

$$
\begin{aligned}
& \operatorname{Inv} T:=\left\{\varrho \in \operatorname{Rel}_{n} \mid \forall \pi \in T: \pi \triangleright \varrho\right\} \text { for } T \subseteq S_{n} \\
& \text { Aut } R:=\left\{\pi \in S_{n} \mid \forall \varrho \in R: \pi \triangleright \varrho\right\} \text { for } R \subseteq \operatorname{Rel}_{n}
\end{aligned}
$$

Proposition

Assume that $T=$ Comp $^{(n)} S$ is a subgroup of S_{n} for some subset $S \subseteq S_{\ell}$ (not necessarily a subgroup). Then T is ℓ-closed, i.e.,
$T=$ Aut $\operatorname{lnv} T$ is determined by its ℓ-ary invariant relations:

$$
T=\text { Aut }^{\ln }{ }^{(\ell)} T
$$

The groups Comp ${ }^{(n)} S$ are ℓ-closed

Recall the (usual) Galois connection

$$
\begin{aligned}
& \operatorname{Inv} T:=\left\{\varrho \in \operatorname{Rel}_{n} \mid \forall \pi \in T: \pi \triangleright \varrho\right\} \text { for } T \subseteq S_{n} \\
& \text { Aut } R:=\left\{\pi \in S_{n} \mid \forall \varrho \in R: \pi \triangleright \varrho\right\} \text { for } R \subseteq \operatorname{Rel}_{n}
\end{aligned}
$$

Proposition

Assume that $T=$ Comp $^{(n)} S$ is a subgroup of S_{n} for some subset $S \subseteq S_{\ell}$ (not necessarily a subgroup). Then T is ℓ-closed, i.e.,
$T=$ Aut $\operatorname{lnv} T$ is determined by its ℓ-ary invariant relations:

$$
T=A u t \ln v^{(\ell)} T .
$$

In particular, the ℓ-orbits $\left(h_{L}\right)^{T}$ already characterize the group:

$$
T=\operatorname{Aut}\left\{\left(h_{L}\right)^{T} \left\lvert\, L \in\binom{[n]}{\ell}\right.\right\} .
$$

where $h_{L}:=\left(i_{1}, \ldots, i_{\ell}\right)$ for $L=\left\{i_{1}, \ldots, i_{\ell}\right\} \subseteq[n]$ with $i_{1}<\cdots<i_{\ell}$.

Characterization theorems

Theorem
Let T be a subgroup of S_{n}. Then $T=\operatorname{Comp}^{(n)} G$ for some group $G \leq S_{\ell}$ if and only if $T=$ Aut ϱ for some ℓ-ary irreflexive relation ϱ on [n] that satisfies the condition

$$
\forall \mathbf{r}, \mathbf{s} \in[n]_{\neq}^{\ell}: \mathbf{r} \in \varrho \wedge \operatorname{red}(\mathbf{r})=\operatorname{red}(\mathbf{s}) \Longrightarrow \mathbf{s} \in \varrho
$$

Characterization theorems

Theorem
Let T be a subgroup of S_{n}. Then $T=\operatorname{Comp}^{(n)} G$ for some group
$G \leq S_{\ell}$ if and only if $T=$ Aut ϱ for some ℓ-ary irreflexive relation ϱ on [n] that satisfies the condition

$$
\forall \mathbf{r}, \mathbf{s} \in[n]_{\neq}^{\ell}: \mathbf{r} \in \varrho \wedge \operatorname{red}(\mathbf{r})=\operatorname{red}(\mathbf{s}) \Longrightarrow \mathbf{s} \in \varrho
$$

Theorem
Let $T \leq S_{n}$, consider the ℓ-orbits $\varrho_{L}:=\left(h_{L}\right)^{T}$ for all $L \in\binom{[n]}{\ell}$. Then $T=$ Comp $^{(n)} S$ for some $S \subseteq S_{\ell}$ if and only if
(a) $T=\operatorname{Aut}\left\{\varrho_{L} \left\lvert\, L \in\binom{[n]}{\ell}\right.\right\}$,
(b) for every $x \in[n]_{\neq}^{n}$ we have

$$
\left(\forall L \in\binom{[n]}{\ell} \exists J \in\binom{[n]}{\ell}: \operatorname{red}\left(x_{L}\right) \in \operatorname{red}\left(\varrho_{J}\right)\right) \Longrightarrow \forall L \in\binom{[n]}{\ell}: x_{L} \in \varrho_{L} .
$$

where $x_{L}:=\left(x_{i_{1}}, \ldots, x_{i_{\ell}}\right)$ for $L=\left\{i_{1}, \ldots, i_{\ell}\right\}$ with $i_{1}<\cdots<i_{\ell}$.

Outline

Permutation patterns

The "Galois" connection Pat ${ }^{(\ell)}-$ Comp $^{(n)}$

Questions and answers

Further problems

Further problems

- What about the (Galois) kernels Pat ${ }^{(\ell)} T$ for $T \subseteq S_{n}$ or $T \leq S_{n}$?

Further problems

- What about the (Galois) kernels Pat ${ }^{(\ell)} T$ for $T \subseteq S_{n}$ or $T \leq S_{n}$?
- For a given group $G \leq S_{\ell}$, what can be said about the sequence $G, \operatorname{Comp}^{(\ell+\overline{1})} G, \ldots, \operatorname{Comp}^{(n)} G, \ldots$?

Further problems

- What about the (Galois) kernels Pat ${ }^{(\ell)} T$ for $T \subseteq S_{n}$ or $T \leq S_{n}$?
- For a given group $G \leq S_{\ell}$, what can be said about the sequence $G, \operatorname{Comp}^{(\ell+\overline{1})} G, \ldots, \operatorname{Comp}^{(n)} G, \ldots$? Many results are already known (in particular for special groups G, transitive [ATKINSON/BEALS], intransitive, primitive [E. Lehtonen] ...

Further problems

- What about the (Galois) kernels Pat ${ }^{(\ell)} T$ for $T \subseteq S_{n}$ or $T \leq S_{n}$?
- For a given group $G \leq S_{\ell}$, what can be said about the sequence $G, \operatorname{Comp}^{(\ell+\overline{1})} G, \ldots, \operatorname{Comp}^{(n)} G, \ldots$? Many results are already known (in particular for special groups G, transitive [ATKINSON/BEALS], intransitive, primitive [E. LEHTONEN] ... (ask Erkko))

References

围 M.D. Atkinson and R. Beals, Permuting mechanisms and closed classes of permutations. In: Combinatorics, computation \& logic '99 (Auckland), vol. 21 of Aust. Comput. Sci. Commun., Springer, Singapore, 1999, pp. 117-127.

Acknowledgement:
嗇 Nik Ruškuc, Classes of permutations avoiding 231 or 321. Lecture given at TU Dresden (Dresdner Mathematisches Seminar), Nov. 25, 2015.

Thank you your for ATTENTION!

