
Permutation patterns The “Galois” connection Pat(`) − Comp(n) Questions and answers Further problems

Permutation patterns and permutation groups

Erkko Lehtonen and Reinhard Pöschel
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Some motivation
Which number sequences (permutations) can be sorted by a stack?

Proposition

A permutation π can be sorted by a stack if and only if it does not
contain a subsequence . . . a . . . b . . . c . . . with c < a < b.

i.e., such “patterns” abc (like 352) must be avoided
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Permutations
A permutation π ∈ Sn (bijection π ∈ [n][n], [n] := {1, . . . , n}) will
be considered as a word (n-tuple π ∈ [n]n) of length n:

(π1, . . . , πn) := (π(1), . . . , π(n)).

e.g. π = (31524) ∈ [5]5 is the permutation
1 7→ 3, 2 7→ 1, 3 7→ 5, 4 7→ 2, 5 7→ 4

graphical representation:

π = 31524 ∈ S5

1 2 3 4 5

1

5

4

3

2
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Permutation patterns (Example)
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σ = 231 ∈ S3
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Permutation patterns (Example)

σ ≤ π
σ is pattern of π

π involves σ
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AAA91, Brno, Febr., 2016 R. Pöschel, Permutation Patterns (6/21)



Permutation patterns The “Galois” connection Pat(`) − Comp(n) Questions and answers Further problems

Permutation patterns (Example)

352
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231 = red(352)
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substring
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Permutation patterns

` ≤ n, σ ∈ S`, π ∈ Sn
σ ≤ π :⇐⇒ there exists a substring u of π of length `

such that σ = red(u)
(σ is `-pattern of π, or π involves σ)
π avoids σ :⇐⇒ σ � π.

Pat(`) π := {σ ∈ S` | σ ≤ π}

The pattern involvement relation ≤ is a partial order on the set
P :=

⋃
n≥1 Sn of all finite permutations and we have:

` ≤ m ≤ n, σ ∈ S`, π ∈ Sm, τ ∈ Sn:

• σ ≤ π and π ≤ τ implies σ ≤ τ (transitivity),

• σ ≤ τ implies ∃π ∈ Sm : σ ≤ π ≤ τ .
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Closed classes of permutations

M.D. Atkinson and R. Beals ([1999], Permuting mechanisms
and closed classes of permutations) consider closed classes of
permutations, i.e., subsets A ⊆ P =

⋃
n≥1 Sn which are closed

under taking patterns (order ideal in (P,≤)):

π ∈ A, σ ≤ π =⇒ σ ∈ A.

Then, for the sequence

(A1,A2, . . . ,A`, . . . ,An, . . . )

where A` := A ∩ S`, we get Pat(`) An ⊆ A` for ` ≤ n.
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A (monotone) Galois connection
The relation σ � π (π avoids σ) induces a Galois connection
between subsets of S` and Sn. The corresponding “monotone
Galois connection” (residuation) is given by the following operators
(monotone w.r.t. ⊆):
For S ⊆ S`, T ⊆ Sn (` ≤ n) let

Comp(n) S := {τ ∈ Sn | Pat(`) τ ⊆ S} = {τ ∈ Sn | ∀σ′ ∈ S` \ S : σ′ � τ},

Pat(`) T :=
⋃
τ∈T

Pat(`) τ = S` \ {σ′ ∈ S` | ∀τ ∈ T : σ′ � τ}.

Then we have:

Pat(`) Comp(n) S ⊆ S (kernel operator),

T ⊆ Comp(n) Pat(`) T (closure operator),

Comp(n) S = Comp(n) Pat(`) Comp(n) S (closures),

Pat(`) T = Pat(`) Comp(n) Pat(`) T (kernels).
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AAA91, Brno, Febr., 2016 R. Pöschel, Permutation Patterns (10/21)



Permutation patterns The “Galois” connection Pat(`) − Comp(n) Questions and answers Further problems

A (monotone) Galois connection
The relation σ � π (π avoids σ) induces a Galois connection
between subsets of S` and Sn. The corresponding “monotone
Galois connection” (residuation) is given by the following operators
(monotone w.r.t. ⊆):
For S ⊆ S`, T ⊆ Sn (` ≤ n) let

Comp(n) S := {τ ∈ Sn | Pat(`) τ ⊆ S} = {τ ∈ Sn | ∀σ′ ∈ S` \ S : σ′ � τ},

Pat(`) T :=
⋃
τ∈T

Pat(`) τ = S` \ {σ′ ∈ S` | ∀τ ∈ T : σ′ � τ}.

Then we have:

Pat(`) Comp(n) S ⊆ S (kernel operator),

T ⊆ Comp(n) Pat(`) T (closure operator),

Comp(n) S = Comp(n) Pat(`) Comp(n) S (closures),

Pat(`) T = Pat(`) Comp(n) Pat(`) T (kernels).
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The (Galois) closures Comp(n) S

For S ⊆ S` there is an “increasing” sequence of (Galois) closures
Comp(n) S ⊆ Sn:

S ,Comp(`+1) S , . . . ,Comp(n) S ,Comp(n+1) S , . . .

Observation: For ` ≤ m ≤ n and S ⊆ S`, T ⊆ Sn we have
Comp(n) Comp(m) S = Comp(n) S (and Pat(`) Pat(m) T = Pat(`) T ).

For a closed class of permutations (A1, . . . ,A`, . . . ,An, . . . ) we
have Pat(`) An ⊆ A` and thus An ⊆ Comp(n) A` for ` ≤ n.
Example:
(Pat(1) S , . . . ,Pat(k) S , . . . ,Pat(`−1) S ,S ,Comp(`+1) S , . . . ,Comp(n) S , . . . )

M.D. Atkinson and R. Beals [1999] consider the group case,
where all the An are groups, in particular, what is the “asymptotic”
behaviour of the above sequence
(for more details ask Erkko)
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S ,Comp(`+1) S , . . . ,Comp(n) S ,Comp(n+1) S , . . .

Observation: For ` ≤ m ≤ n and S ⊆ S`, T ⊆ Sn we have
Comp(n) Comp(m) S = Comp(n) S (and Pat(`) Pat(m) T = Pat(`) T ).

For a closed class of permutations (A1, . . . ,A`, . . . ,An, . . . ) we
have Pat(`) An ⊆ A` and thus An ⊆ Comp(n) A` for ` ≤ n.
Example:
(Pat(1) S , . . . ,Pat(k) S , . . . ,Pat(`−1) S ,S ,Comp(`+1) S , . . . ,Comp(n) S , . . . )

M.D. Atkinson and R. Beals [1999] consider the group case,
where all the An are groups, in particular, what is the “asymptotic”
behaviour of the above sequence
(for more details ask Erkko)
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AAA91, Brno, Febr., 2016 R. Pöschel, Permutation Patterns (11/21)



Permutation patterns The “Galois” connection Pat(`) − Comp(n) Questions and answers Further problems

Outline

Permutation patterns

The “Galois” connection Pat(`)−Comp(n)

Questions and answers

Further problems

AAA91, Brno, Febr., 2016 R. Pöschel, Permutation Patterns (12/21)



Permutation patterns The “Galois” connection Pat(`) − Comp(n) Questions and answers Further problems

Questions

We shall deal now with the following questions (naturally arising in
this context):

• For which S ⊆ S` do we have Comp(n) S ≤ Sn?

• Which T ≤ Sn are of the form Comp(n) S for some S ⊆ S`?
or for some S ≤ S`?
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The group case for the operator Comp(n)

Proposition

If S is a subgroup of S`, then Comp(n) S is a subgroup of Sn.

Sketch of the proof.

Assume that S ≤ S`. Let π, τ ∈ Comp(n) S .
Thus Pat(`) π,Pat(`) τ ⊆ S .
Crucial observation:

Pat(`) π−1 = (Pat(`) π)−1 := {σ−1 | σ ∈ Pat(`) π},
Pat(`) πτ ⊆ (Pat(`) π)(Pat(`) τ) := {σσ′ | σ ∈ Pat(`) π, σ′ ∈ Pat(`) τ}.

Consequently, π−1 and πτ also belong to Comp(n) S (since
S ≤ S`). Thus Comp(n) S is a group.
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AAA91, Brno, Febr., 2016 R. Pöschel, Permutation Patterns (14/21)



Permutation patterns The “Galois” connection Pat(`) − Comp(n) Questions and answers Further problems

The group case, continued

The converse of the Proposition does not hold.

There even exist subgroups H ≤ Sn which are of the form
Comp(n) S (S ⊆ S`) but there is no group G ≤ S` such that
H = Comp(n) G .

However: Let ` ≤ n and ` ≤ 3. Then we have for S ⊆ S`:

Comp(n) S is a subgroup of Sn if and only if S is a subgroup of S`.
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The groups Comp(n) S are `-closed
Recall the (usual) Galois connection

InvT := {% ∈ Reln | ∀π ∈ T : π . %} for T ⊆ Sn,

AutR := {π ∈ Sn | ∀% ∈ R : π . %} for R ⊆ Reln .

Proposition

Assume that T = Comp(n) S is a subgroup of Sn for some subset
S ⊆ S` (not necessarily a subgroup). Then T is `-closed, i.e.,
T = Aut InvT is determined by its `-ary invariant relations:

T = Aut Inv(`) T .

In particular, the `-orbits (hL)T already characterize the group:

T = Aut{(hL)T | L ∈
([n]
`

)
}.

where hL := (i1, . . . , i`) for L = {i1, . . . , i`} ⊆ [n] with i1 < · · · < i`.
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AAA91, Brno, Febr., 2016 R. Pöschel, Permutation Patterns (16/21)



Permutation patterns The “Galois” connection Pat(`) − Comp(n) Questions and answers Further problems

Characterization theorems

Theorem
Let T be a subgroup of Sn. Then T = Comp(n) G for some group
G ≤ S` if and only if T = Aut % for some `-ary irreflexive relation %
on [n] that satisfies the condition

∀r, s ∈ [n]`6= : r ∈ % ∧ red(r) = red(s) =⇒ s ∈ %.

Theorem
Let T ≤ Sn, consider the `-orbits %L := (hL)T for all L ∈

([n]
`

)
.

Then T = Comp(n) S for some S ⊆ S` if and only if

(a) T = Aut{%L | L ∈
([n]
`

)
},

(b) for every x ∈ [n]n6= we have(
∀L ∈

(
[n]
`

)
∃J ∈

(
[n]
`

)
: red(xL) ∈ red(%J)

)
=⇒ ∀L ∈

(
[n]
`

)
: xL ∈ %L.

where xL := (xi1 , . . . , xi`) for L = {i1, . . . , i`} with i1 < · · · < i`.
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Further problems

• What about the (Galois) kernels Pat(`) T for T ⊆ Sn or
T ≤ Sn?

• For a given group G ≤ S`, what can be said about the
sequence G ,Comp(`+1) G , . . . ,Comp(n) G , . . . ?
Many results are already known (in particular for special
groups G , transitive [Atkinson/Beals], intransitive,
primitive [E. Lehtonen] ... (ask Erkko))
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