
Algebraic Methods in

Quantum Logic

Michal Botur

Ivan Chajda
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Preface

This monograph gives an overview of main results obtained within the so-
lution of the project “Algebraic methods in quantum logic”, being realized
in the cooperation of the Faculty of Science of Masaryk University in Brno
and the Faculty of Science of Palacký University in Olomouc. An innovated
approach of the studied branch of mathematics consists of several chapters.
The first chapter comprises of summarization of the results. The further
chapters deal with more detailed and illustrated view of the studied topic.

The primary aim of this monograph is to provide a unified perspective
and readable commentary on the studied subject. The work presented here
is mainly based on the authors’ recent results in the studied field, and the
focus of our research has been on the following topics

• Applications of the methods of linear programming in the realm of
MV-algebras;

• Applications of the methods of universal algebra in the structural
theory of algebras of non-classical logics;

• Application of model theory to algebraic models of logics, theory of
partial embeddings and ultrapowers.

The main topic of this monograph is the study of algebraic structures
which model non-classical logics. Generally, the presented structures pos-
sess an operation ·, which is usually an alternative to a logical connective
“conjunction”, and an operation →, which models an implication. The
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classical concept of conjunction is expressed by the word “and” where the
proposition “x and y” is true is usually interpreted as x and y is true to-
gether in one place and at the same time. This fact is reflected in the
axioms of commutativity

x · y = y · x

and associativity
x · (y · z) = (x · y) · z

of the respective operation ·. Firstly, we give some examples of natural
conjunctions which are not commutative or associative.

The logical connective “and then” in the sequence of time is clearly non-
commutative, the proposition “x and then y” has another meaning than
“y and then x”. As an example of a non-associative conjunction we can
mention a connective “with”a.

Logical propositions can be naturally ordered by a relation ≤ where x ≤
y means that the proposition y has bigger truth value then the proposipition
x. In other words, x ≤ y if and only if x → y is a tautology. The least
element of this order is denoted by 0 and it says to be “absolute false”.
Dually, the greatest element is denoted by 1 and we call it “absolute truth”.

The above mentioned order is fundamental for defining and studying of
common properties of operations · and → . More precisely, the operations
· and → satisfy the adjointness property

x · y ≤ z if and only if x ≤ y → z.

Non-commutative logics possess two implicationsb → and  and adjoint-
ness property has the form

x · y ≤ z if and only if x ≤ y → z if and only if y ≤ x z.

aObviously, the following lunch menu “(chicken with potatoes) with ice-cream” is
not the same as “chicken with (potatoes with ice-cream)”. The theory of mathemat-
ical linguistics works usually with the Lambek calculus which models non-associative
conjunctions.

bOur example of non-commutative logic is a logic operating with time and conjunction
‘and then’. In this case the implications → and  represent an implication to the future
and an implication to the past.



3

This text is divided into five chapters. In Chapter 1 we recall basic
definitions and theorems which will be often used in the following parts.
We further study some constructions of ultraproducts.

Chapter 2 deals with MV-algebras. We present a direct proof of Di
Nola’s representation theorem for MV-algebras and extend his results to
the restriction of the standard MV-algebra to rational numbers. The results
are based on a direct proof of the theorem stating that any finite partial
subalgebra of a linearly ordered MV-algebra can be embedded into Q ∩
[0, 1]. In the next section, we introduce tense MV-algebras which are MV-
algebras expanded by new unary operators G and H expressing universal
time quantifiers. Analogously to classical works on Boolean algebras, we
prove that any tense semisimple MV-algebra is induced by a time frame.

In Chapter 3 we treat a few recent problems arising in the area of lattice
effect algebras that generalize both MV-algebras and orthomodular lattices.
First, we axiomatize finitely generated varieties of distributive lattice effect
algebras. Second, for any positive integer n, the free n-generator algebras
in these varieties are described. Third, we present a construction of tense
operators G and H in effect algebras to represent the dynamics of formally
desribed physical systems. We firstly derive a time frame which enables
these constructions and then apply a suitable set of states of the lattice
effect algebra E in question. To approximate physical reality in quantum
mechanics, we use only the so-called Jauch-Piron states on E.

Non-associative logics are studied in Chapter 4. In the first section we
focus on commutative basic algebras which are a non-associative general-
ization of MV-algebras. It was proved by P. Wojciechowski [145] that for
any infinite cardinal there exists a linearly ordered MV-algebra of this car-
dinality. This rises a natural question if this is true also for basic algebras
which are not MV-algebras. Using P. Wojciechowski’s construction and
the modified construction of M. Botur [17], we can set up certain defectors
which enable us to construct a subdirectly irreducible commutative basic
algebra of any infinite cardinality. In the second section we introduce states
on commutative basic algebras and present their basic properties. States
are defined in the same way as Mundici’s states on MV-algebras as normal-
ized finitely additive [0, 1]-valued functions, and some results analogous to
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the results that are known for MV-algebras are proved. The last goal of the
chapter is to present a non-associative generalization of Hájek’s BL-logic
which has the class naBL of non-associative BL-algebras as its algebraic
semantics. Moreover, it is shown that naBL forms a variety generated just
by non-associative t-norms. Consequently, the non-associative BL-logic is
the logic of non-associative t-norms and their residua.

In the last chapter we study the general concept of state-morphisms
on an algebra. We present a complete characterization of subdirectly
irreducible state BL-algebras as well as of subdirectly irreducible state-
morphism BL-algebras. In addition, we present a general theory of state-
morphism algebras, that is, algebras of general type with a state-morphism
which is an idempotent endomorphism. We define a diagonal state-morphism
algebra and show that every subdirectly irreducible state-morphism algebra
can be embedded into a diagonal one. We describe generators of varieties of
state-morphism algebras, in particular, state-morphism BL-algebras, state-
morphism MTL-algebras, state-morphism non-associative BL-algebras, and
state-morphism pseudo MV-algebras.

The reader is assumed to be familiar with the basics of universal alge-
bra [27], the theory of ordered sets and lattices in quantum structures [103]
and [73], the algebraization of logics [85] and, in particular, the model the-
ory [44]. This monograph is intented mostly for researchers and advanced
graduate students working in the theory of algebraic models of non-classical
logics and residuated algebras. Hopefully, the book will be useful for all
readers interested in the presented topic.

The book can be used for self-study, as a research seminar text (accom-
panied by selected readings from the referred literature), or as a supplement
of a comprehensive graduate-course on Ordered algebraic structures given
at Masaryk University in Brno.

The authors would like to thank the reviewers A. Dvurečenskij and J.
Rach̊unek for their careful and competent reading and for helpful sugges-
tions.

The support by ESF Project CZ.1.07/2.3.00/20.0051 Algebraic methods
in Quantum Logic of Masaryk University is gratefully acknowledged.

Finally, we are obliged to our families for their understanding during
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our work on this monograph and project.
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Chapter 1

Introduction

1.1 Basic definitions

By a partial order on a set A we mean a binary relation ≤ on A which is
reflexive (x ≤ x for all x ∈ A), antisymmetric (x ≤ y and y ≤ x imply
x = y, for all x, y ∈ A) and transitive (x ≤ y and y ≤ z imply x ≤ z for all
x, y, z ∈ A). We say that the couple A = (A;≤) is an ordered set (shortly
poset).

The elements a, b are said to be comparable with each other if either
a ≤ b or b ≥ a (or both). Otherwise we write a ‖ b and call a and b
incomparable with each other. The poset (A;≤) is called a chain if any
two of its elements are comparable with each other. If any two different
elements of A are not comparable with each other then (A;≤) is called an
antichain.

If a ≤ b and a 6= b, we will write a < b. In case a ≤ b we will also use
the notation b ≥ a. If b ≥ a and b 6= a we express this by the notation
b > a.

The element a is called maximal if there is no x ∈ A with a < x. The
element a is called the greatest element of (A;≤) if y ≤ a for all y ∈ A.
The notions minimal respectively least or smallest element of (A;≤) are
defined dually.

8
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From now on, if (A;≤) has a least or greatest element, respectively, this
element will be denoted by 0 respectively 1. If (A;≤) is a poset with 0 then
a is called an atom of (A;≤) if a 6= 0 and there does not exist a c ∈ A with
O < c < a. Dually, the notion of a coatom is defined.

If M ⊆ A then U(M) and L(M) denote the set of all upper and lower
bounds of M , respectively, i.e.

U(M) := {x ∈ A | m ≤ x for all m ∈M},
L(M) := {x ∈ A | x ≤ m for all m ∈M}.

The sets U(M) and L(M) are called the upper and lower cone of M , re-
spectively. In case M = {a1, . . . , an} we simply write U(a1, . . . , an) and
L(a1, . . . , an) instead of U(M) and L(M), respectively. For a ∈ A the cone
U(a) and L(a) is called the principal order filter and the principal order
ideal generated by a, respectively. An order ideal of (A;≤) is a non-void
subset I of A such that a ∈ A, b ∈ I and a ≤ b together imply a ∈ I.

The poset (A;≤) is called up-directed or down-directed if for all a, b ∈ A
we have U(a, b) 6= ∅ or L(a, b) 6= ∅, respectively. (A;≤) is called directed if
it is both up- and down-directed. Obviously, a poset with 1 is up-directed
and a poset with 0 down-directed. A poset is called bounded if it has 0 and
1. Hence every bounded poset is directed.

If for a subset M of A the subset U(M) has a smallest element then
this is called the supremum and it is denoted by sup(M) or

∨
M . Dually

the notion of the infimum inf(M) or
∧
M of M is defined. In case of

M = {a1, . . . , an} we simply write sup(a1, . . . , an) or a1 ∨ · · · ∨ an and
inf(a1, . . . , an) or a1 ∧ · · · ∧ an, respectively.

A mapping f : An −→ A is called an n-nary operation, the number
n is the arity of the operation. An algebra is a structure A = (A;F ),
where A is an arbitrary non-empty set and F is a system of operations.
A type of algebra is a mapping from F to N (natural numbers including
zero) which maps any f ∈ F to its arity. If the set F is finite, then
the algebra A = (A;F ) can be written also as A = (A; f1, . . . , fk) where
F = {f1, . . . , fk}. The type of the algebra A is the vector 〈n1 . . . , nk〉 ∈ Nk
where fi is just ni-nary operation.
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In what follows we will often work with partially ordered sets which
possess finite suprema and finite infima.

1.1.1 Semilattices, lattices and Boolean algebras.

Definition 1.1. An algebra S = (S; ·) of type 〈2〉 is called a groupoid.
An algebra S = (S; ·) of type 〈2〉 is called a semigroup if it satisfies for

any x, y, z ∈ S

(ASS) (x · y) · z = x · (y · z).

A monoid is an algebra S = (S; ·, e) of type 〈2, 1〉, where (S; ·) is a
semigroup and it satisfies for any x ∈ S

(IDEN) x · e = x and e · x = x.

A semigroup S = (S; ·) is called commutative if it satisfies for any x, y ∈
S

(COMM) x · y = y · x.

A commutative semigroup S = (S;∨) is called a (join) semilattice if it
satisfies for any x ∈ S

(IDEM) x ∨ x = x.

A lattice is an algebra L = (L;∨,∧) of type 〈2, 2〉, where (L;∨) and (L;∧)
are semilattices and

(LAT) x ∨ (x ∧ y) = x, x ∧ (x ∨ y) = x

holds for any x, y ∈ L.

If S = (S;∨) is a semilattice then there is an order ≤ induced by semi-
lattice S on the set S defined by x ≤ y if and only if x ∨ y = y. Moreover,
x∨ y is the supremum of x and y, more precisely, x, y ≤ x∨ y and x, y ≤ z
implies x ∨ y ≤ z.
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If L = (L;∨,∧) is a lattice, then the order ≤ induces by the semilattice
(L;∨) is same as the order induced by the semilattice (L;∧), thus

x ≤ y if and only if x ∨ y = y if and only if x ∧ y = x.

The operations ∨ and ∧ represent suprema and infima and we call them
join and meet.

Both semilattices and lattices can be considered as structures with a
“double face”, i.e. as posets on the one hand or as algebras with one or
two binary operations on the other hand. We usually prefer to work with
their representation as algebras since this enables us to apply the machinery
developed in universal algebra.

A bounded lattice is an algebra L = (L;∨,∧, 0, 1) of type 〈2, 2, 0, 0〉
where (L;∨,∧) is a lattice with least element 0 and greatest element 1 with
respect to the induced order.

A lattice L is distributive if it satisfies

(LD) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

or equivalently (see [27])

(LDop) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

A lattice L is called modular if it satisfies the quasi-identity

x ≤ z implies (x ∨ y) ∧ z = x ∨ (y ∧ z)

which is equivalent to the modular identity

(MOD) (x ∨ y) ∧ (x ∨ z) = x ∨ (y ∧ (x ∨ z)).

It can be shown that a lattice is modular if and only if it satisfies one of
the two distributive laws for all triples of elements where two of the three
elements are comparable with each other.

A mapping f from A to A is called isotone or monotone if x, y ∈ A and
x ≤ y together imply f(x) ≤ f(y), antitone if x, y ∈ A and x ≤ y together
imply f(y) ≤ f(x) and an involution if f(f(x)) = x for each x ∈ A.



CHAPTER 1. INTRODUCTION 12

Let L = (L;∨,∧, 0, 1) be a bounded lattice. Then we say that y ∈ L is
a complement of an element x ∈ L if it satisfies x ∨ y = 1 and x ∧ y = 0.
We remark that in a distributive lattice there is at most one complement
to any element.

We say that L = is a lattice with an antitone involution if there is a
mapping x 7→ x′ of L into itself such that x′′ = x and x ≤ y ⇒ y′ ≤ x′.

If L = is a lattice with an antitone involution then it satisfies the so-
called De Morgan Laws:

(x ∨ y)′ = x′ ∧ y′ and (x ∧ y)′ = x′ ∨ y′

If L = is a bounded lattice with complementation which is simultane-
ously an antitone involution then the system (L;∨,∧,′ , 0, 1) is called an
ortholattice.

An ortholattice (L;∨,∧,′ , 0, 1) is called an orthomodular (briefly OML)
if it satisfies the quasiidentity

(OMQ) x ≤ y ⇒ x ∨ (x′ ∧ y) = y

which is equivalent to the identity

(OMI) x ∨ (x′ ∧ (x ∨ y)) = x ∨ y.

Let us note that x′ need not be the unique complement of x.

Definition 1.2. An algebra L = (L;∨,∧,¬, 0, 1) of type 〈2, 2, 1, 0, 0〉 is
a complemented lattice if (L;∨,∧, 0, 1) is a bounded lattice and for every
x ∈ A ¬x is a complement of x. A distributive complemented lattice is
called a Boolean algebra.

We remark that if X is an arbitrary set and ℘(X) is the power set of X
then (℘(X);∪,∩, c, ∅, X), where Y c := X\Y for any Y ∈ ℘(X), is a Boolean
algebra. The class of Boolean algebras is just the algebraic counterpart of
classical propositional logic.

It is easy to see that every Boolean algebra is an orthomodular lattice
and hence an ortholattice. Conversely, an orthomodular lattice is a Boolean
algebra if and only if it is distributive. For the proofs and details, the reader
is referred to books [6] or [103], [8], [93].
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Definition 1.3. A structure S = (S; ·,→, ,≤) is called a residuated
groupoid if:

(RES1) (S; ·) is a groupoid and (S;≤) is an poset.

(RES2) (S; ·,→, ) is an algebra of type 〈2, 2, 2〉.
(RES3) The operations ·, → and  satisfy the adjointness property

x · y ≤ z if and only if x ≤ y → z if and only if y ≤ x z.

If (S; ·) is a commutative groupoid then →= and we say that S =
(S; ·,→,≤) is a commutative residuated groupoid.

If (S; ·) is a semigroup we say that S is a residuated poset.
An algebra S = (S;∨,∧, ·,→, 0, 1) of type 〈2, 2, 2, 2, 0, 0〉 is said to be a

non-associative residuated lattice if (S;∨,∧, 0, 1) is a bounded lattice and
(S; ·,→,≤) is a commutative residuated groupoid where ≤ is the induced
order with respect to lattice operations ∨ and ∧ and 1 is a neutral element
of the groupoid (S; ·).

1.1.2 Basic remarks on universal algebra

Let us have an algebra A = (A; F). Then an algebra B = (B; F) of the same
type such that B ⊆ A and the algebraic operations of A are restricted to B
is called a subalgebra of A and we write B ⊆ A. If K is a class of algebras
then S(K) denotes the class of all subalgebras of algebras from the class K.

Let us have a system of algebras {Ai = (Ai; F) | i ∈ I}. Then the direct
product of algebras Ai is the algebra

∏
i∈i Ai = (

∏
i∈I Ai; F) where

f(x1 . . . , xn)(i) := f(x1(i), . . . , xn(i))

for any n-nary operation f ∈ F and any x1, . . . , xn ∈
∏
i∈I Ai. The class of

all direct products of algebras from a class K is denoted by P(K).
Let us have algebras A = (A; F) and B = (B; F). Then a mapping

φ : A −→ B is called a homomorphism if for any n-nary operation f ∈ F
and any x1, . . . , xn ∈ A it satisfies

φ(f(x1, . . . , xn)) = f(φ(x1), . . . , φ(xn)).
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If the mapping φ is surjective, then we say that B is a homomorphic image
of A. The class of all homomorphic images of algebras from K is denoted
by H(K).

An equivalence θ on a set A is called a congruence of an algebra A =
(A; F) if for any n-nary operation f ∈ F and x1, y1, . . . , xn, yn ∈ A

whenever xiθyi for all i = 1, . . . , n, then f(x1, . . . , xn)θf(y1, . . . , yn).

Let us have a congruence θ on an algebra A = (A; F). Then we define the
factor algebra A/θ = (A/θ; F), where

x/θ := {y ∈ A | xθy},

A/θ := {x/θ | x ∈ A}

and
f(x1/θ, . . . , xn/θ) := f(x1, . . . , xn)/θ

for any n-nary operation f ∈ F and any x1, . . . , xn ∈ A. The set of all
congruences of the algebra A is denoted by Con A. Con A is a complete
lattice with respect to set-inclusion.

It can be easily checked that the mapping x 7→ x/θ is a surjective ho-
momorphism, thus A/θ ∈ H(A). Conversely, if f : A −→ B is a surjective
homomorphism, then

θf := {(x, y) ∈ A2 | f(x) = f(y)} ∈ Con A

and B ∼= A/θf holds.
A class K of algebras of the same type is a variety if S(K) ⊆ K, P(K) ⊆

K and H(K) ⊆ K hold. A class K is variety if and only if it satisfies
K = HSP(K) (see [27]). Moreover, HSP(K) is the smallest variety which
contains K. If V = HSP(K) then we say that the variety V is generated by
the class K.

A class K of algebras of the same type is a quasivariety if is the class
of all models of a set of quasiidentities, that is, implications of the form
s1 ≈ t1∧. . .∧sn ≈ tn → s ≈ t, where s, s1, . . . , sn, t, t1, . . . , tn are terms built
up from variables using the operation symbols of the specified signature.
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1.1.3 Commutative and associative logics

Petr Hájek (see [97]) introduced the class of basic logic algebras (briefly
BL-algebras).

Definition 1.4. An algebra B = (B;∨,∧, ·,→, 0, 1) of type 〈2, 2, 2, 2, 0, 0〉
is called a BL-algebra if:

(BL1) (B; ·, 1) is a commutative monoid.

(BL2) (B;∨,∧, 0, 1) is a bounded lattice with an order ≤.

(BL3) (B; ·,→,≤) is a commutative residuated poset.

(BL4) The axiom of divisibility (x→ y) · x = x ∧ y holds.

(BL5) The axiom of prelinearity (x→ y) ∨ (y → x) = 1 holds.

The class of BL-algebras is a generalization of the class of Boolean
algebras.

Example 1.1. Let us have a Boolean algebra B = (B;∨,∧,¬, 0, 1). If we
define x ·y := x∧y and x→ y := ¬x∨y, then the algebra (B;∨,∧, ·,→, 0, 1)
is a BL-algebra.

Very important examples of BL-algebras are BL-algebras on the interval
[0, 1] of real numbers induced by t-norms.

Definition 1.5. A binary operation ∗ on the interval [0, 1] is a continuous
t-norm if:

(t1) ([0, 1]; ∗, 1) is a commutative monoid.

(t2) The operation ∗ is continuous as a function, in the usual interval
topology on [0, 1]2.

(t3) The operation ∗ is monotone, thus if x ≤ y then x ∗ z ≤ y ∗ z for
any x, y, z ∈ [0, 1].

There are three basic examples of t-norms:

x ∗ y := min{x, y}, (1.1)

x ∗ y := max{0, x+ y − 1}, (1.2)

x ∗ y := xy. (1.3)
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The t-norm (1.1) is called Gödel’s t-norm, (1.2) is  Lukasiewicz’s t-norm
and (1.3) is the product t-norm. It is proved in [97] how we can obtain any
t-norm by composing these three ones. The following theorem (see [47],
[97]) shows the relation between t-norms and BL-algebras.

Theorem 1.1. If ∗ is a t-norm then the algebra ([0, 1]; max,min, ∗,→∗,
0, 1), where

x→∗ y := max{z | x ∗ z ≤ y},

is a BL-algebra.

The class of BL-algebras form a variety. This variety is generated by
the set of BL-algebras induced by t-norms.

Congruences of a BL-algebra can be described by the kernels (class
which contains the element 1). Consequently, the lattice of congruences of
an arbitrary BL-algebra is isomorphic to the lattice of filters.

Definition 1.6. Let B = (B;∨,∧, ·,→, 0, 1) be a BL-algebra. Then a set
F ⊆ A is a filter if

(F1) 1 ∈ F,

(F2) if x ∈ F and x ≤ y then y ∈ F,

(F3) if x, y ∈ F then x · y ∈ F.

The correspondence between filters and congruences of BL-algebras is
described in the following theorem.

Theorem 1.2. Let us have a BL-algebra B = (B;∨,∧, ·,→, 0, 1).
i) If θ ∈ Con B then the set 1/θ is a filter.
ii) If F is a filter of B then

θF = {(x, y) | x→ y, y → y ∈ F}

is the only congruence of B such that F = 1/θF .
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For simplicity, we replace x/θF and B/θF by x/F and B/F, respectively.
This correspondence allows us to study properties of homomorphisms

and congruences by means of filters.
A filter F on a BL-algebra B = (B;∨,∧, ·,→, 0, 1) is called prime if it

satisfies one of the following pairwise equivalent conditions:

i) x ∨ y = 1 implies x ∈ F or y ∈ F, for all x, y ∈ F.

ii) x→ y ∈ F of y → x ∈ F, for all x, y ∈ F.

iii) x ∨ y ∈ F implies x ∈ F or y ∈ F, for all x, y ∈ F.

iv) B/F is linearly ordered.

For any x ∈ B and any filter F ⊆ B such that x 6∈ F, there is a prime
filter P such that F ⊆ P and x 6∈ P. Consequently, any BL-algebra B is
subdirect product

∏
{B/P | P is a prime filter} (see [97]).

Maximal proper filters of BL-algebra are called ultrafilters and they are
prime.

Let us have a Boolean algebra B = (B;∨,∧,¬, 0, 1). A filter F ⊆ B of
B is a non-empty subset closed with respect to meets and upper ends. A
maximal filter (which does not contain 0) is called an ultrafilter.

If V ⊆ B is a subset such that for any finite X ⊆ V we have
∧
X 6= 0

then there is an ultrafilter U such that V ⊆ U (so called finite intersection
property). Moreover, if x ∈ B and U is an ultrafilter then either x ∈ U or
¬x ∈ U .

If I is a set and ℘(I) its power set then the algebra (℘(I);∪,∩, c, ∅, I)
is a Boolean algebra. Thus an (ultra)filter of ℘(I) can be interpreted as an
(ultra)filter of this Boolean algebra. If F is an filter of ℘(I) we say that F
is a filter over I.

In case of Boolean algebras, ultrafiters are just prime filters. Moreover,
the only linearly ordered Boolean algebra is two element one. Thus any
Boolean algebra is a subdirect product of two element Boolean algebra.
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1.2 General finite embeddability theorem

Let {Ai | i ∈ I} be a system of algebras of the same type. We denote for
any x, y ∈

∏
i∈I Ai the sets

[[x = y]] = {j ∈ I | x(j) = y(j)},

[[x 6= y]] = {j ∈ I | x(j) 6= y(j)}.

If F is a filter of ℘(I) then the relation θF defined by

θF = {(x, y) ∈ (
∏
i∈I

Ai)
2 | [[x = y]] ∈ F}

is a congruence on
∏
i∈I Ai. Moreover, for an ultrafilter U of ℘(I), the alge-

bra (
∏
i∈I Ai)/U := (

∏
i∈I Ai)/θU is said to be an ultraproduct of algebras

{Ai | i ∈ I}. The class of all ultraproducts of algebras from K is denoted
by PU(K).

It can be easily checked that just one of the sets [[x = y]] and [[x 6= y]]
belongs to any ultrafilter U .

Recall that a class K is a quasivariety iff it contains a trivial algebra
and is closed under isomorphisms, subalgebras, direct products, and ultra-
products (see [27]).

Definition 1.7. Let A = (A,F) be an algebra, X ⊆ A and F ⊆ E. A
partial subalgebra is a pair X = (X,E), where for any f ∈ En and all
x1, . . . , xn ∈ X, fX(x1, . . . , xn) is defined if and only if fA(x1, . . . , xn) ∈ X.
We put then

fX(x1, . . . , xn) := fA(x1, . . . , xn).

If F = E we speak about a partial algebra A|X . Denote by SP(K) the
class of all partial subalgebras of algebras from the class K.

We write KF to indicate that K is a class of algebras of type F.
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Definition 1.8. A partial algebra A = (A; F) satisfies the general finite
embeddability (finite embeddability property) property for the class K of al-
gebras of the same type if for any finite subset X ⊆ A, there exist a (fi-
nite) algebra B ∈ KE and an embedding ρ : A|X ↪→ B, i.e., an injec-
tive mapping ρ : X → B satisfying the property ρ(fA|X (x1, . . . , xn)) =
fB(ρ(x1), . . . , ρ(xn)) if x1, . . . , xn ∈ X, f ∈ Fn and fA|X (x1, . . . , xn) is
defined.

Finite embeddability property is usually denoted (FEP). Note also that

(i) a quasivariety K has FEP (i.e., any element of K has FEP) if and
only if K = ISPPU(KFin) (see [9, Theorem 1.1] or [10]),

(ii) FEP yields the general finite embeddability property.

Theorem 1.3. Let A = (A; F) be a partial algebra and let KE be a class
such that F ⊆ E. If A satisfies the general finite embeddability property for
KE then A ∈ ISPPU(KF).

Proof. Let A satisfy the general finite embeddability property for KE. De-
note I = {X ⊆ A | X is finite}. Then for any X ∈ I there are AX ∈ KE

and an embedding ρX : A|X → AX . By axiom of choice we choose a fixed
aX ∈ AX for any X ∈ I. Now we define a mapping ϕ : A→

∏
X∈I AX by

ϕ(a)(X) =

{
ρX(a) if a ∈ X
aX otherwise.

Denote further U(X) = {Y ∈ I | X ⊆ Y } and V = {U(X) | X ∈ I}.
Then for any U(X), U(Y ) ∈ V the equality U(X) ∩ U(Y ) = U(X ∪ Y )
holds and thus U(X) ∩ U(Y ) 6= ∅, U(X ∪ Y ) ∈ V . Consequently there is
an ultrafilter U of ℘(I) such that V ⊆ U . Hence, we can define a mapping

ρ : A→ (
∏
X∈I

AX)/U

such that ρ(a) = ϕ(a)/U .
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(i) ρ is injective. Let x, y ∈ A be such that x 6= y. Then for any
X ∈ U({x, y}) we have ϕ(x)(X) = ρX(x) 6= ρX(y) = ϕ(y)(X). Hence
U({x, y}) ⊆ [[ϕ(x) 6= ϕ(y)]] ∈ U and finally ρ(x) = ϕ(x)/U 6= ϕ(y)/U =
ρ(y).

(ii) ρ is a homomorphism. Take f ∈ Fn and x1, . . . , xn ∈ A such that
fA(x1, . . . , xn) is defined. For any X ∈ U({x1, . . . , xn, f

A(x1, . . . , xn)}), we
have

ϕ(fA(x1, . . . , xn))(X) = ρX(fA(x1, . . . , xn))

= fAX (ρX(x1), . . . , ρX(xn))

= fAX (ϕ(x1)(X), . . . , ϕ(xn)(X))

= f
∏
Y ∈I AY (ϕ(x1), . . . , ϕ(xn))(X).

Hence,

U({x1, . . . , xn, f
A(x1, . . . , xn)}) ⊆

[[ϕ(fA(x1, . . . , xn)) = f
∏
Y ∈I AY (ϕ(x1), . . . , ϕ(xn))]] ∈ U

holds. Now we compute

ρ(fA(x1, . . . , xn)) = ϕ(fA(x1, . . . , xn))/U

= f
∏
Y ∈I AY (ϕ(x1), . . . , ϕ(xn))/U

= f (
∏
Y ∈I AY )/U (ϕ(x1)/U, . . . , ϕ(xn)/U)

= f (
∏
Y ∈I AY )/U (ρ(x1), . . . , ρ(xn)).

This shows that ρ is an embedding and A ∈ ISPPU(KF).

Theorem 1.4. Let A = (A; F) be a partial algebra such that F is finite
and let KE be a class such that F ⊆ E. If A ∈ ISPPU(KF) then A satisfies
the general finite embeddability property for KE.
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Proof. If A ∈ ISPPU(KF) holds then there are Ai ∈ KF for any i ∈ I, an
ultrafilter U of ℘(I) and a partial subalgebra A′ of the algebra (

∏
i∈I Ai)/U

such that A ∼= A′ holds. Take a finite set X ⊆ A′ ⊆ (
∏
i∈I(Ai)/U . Further,

for any x ∈ X, choose a fixed element x′ ∈
∏
i∈I Ai such that x = x′/U (in

other words, we choose a fixed x′ such that x′ ∈ x holds). Now define the
sets

V = {[[f
∏
i∈I Ai(x′1, . . . , x

′
n) = x′]] | x1, . . . , xn, x ∈ X, fA

′
(x1, . . . , xn) = x},

W = {[[x′ 6= y′]] | x, y ∈ X such that x 6= y}.
If x1, . . . , xn, x ∈ X are such that fA

′
(x1, . . . , xn) = x for f ∈ Fn then

we have

x′/U = x

= fA
′
(x1, . . . , xn)

= f (
∏
i∈I Ai)/U (x′1/U, . . . , x

′
n/U)

= f
∏
i∈I Ai(x′1, . . . , x

′
n)/U.

This shows [[f
∏
i∈I Ai(x′1, . . . , x

′
n) = x′]] ∈ U and thus V ⊆ U . Moreover,

one can easily check that the finiteness of both X and F yield the finiteness
of V .

Analogously, if any x, y ∈ X satisfy x 6= y then x′/U 6= y′/U holds,
which yields [[x′ 6= y′]] ∈ U . Hence, W ⊆ U and finiteness of X entail
finiteness of W .

Since V and W are finite and both are the subsets of the ultrafilter
U , also

⋂
V ∩

⋂
W ∈ U and thus

⋂
V ∩

⋂
W 6= ∅. Then there exists

j ∈
⋂
V ∩

⋂
W . Now define a mapping ρ : X → Aj such that ρ(x) = x′(j)

for any x ∈ X.

(i) ρ is injective. Let x, y ∈ X be such that x 6= y. The property
j ∈

⋂
V ∩

⋂
W ⊆

⋂
W ⊆ [[x′ 6= y′]] gives ρ(x) = x′(j) 6= y′(j) = ρ(y).
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(ii) ρ is a homomorphism. Choose f ∈ Fn and any x1, . . . , xn, x ∈ X
such that x = fA

′
(x1, . . . , xn) with

j ∈
⋂
V ∩

⋂
W ⊆

⋂
V ⊆ [[f

∏
i∈I(Ai)(x′1, . . . , x

′
n) = x′]].

This yields f
∏
i∈I(Ai)(x′1, . . . , x

′
n)(j) = x′(j) and

ρ(fA
′
(x1, . . . , xn)) = ρ(x)

= x′(j)

= f
∏
i∈I Ai(x′1, . . . , x

′
n)(j)

= fAj (x′1(j), . . . , x′n(j))

= fAj (ρ(x1), . . . , ρ(xn)).

Altogether, we have proved that the algebra A′ satisfies the general finite
embeddability property and A ∼= A′ that proves the theorem.

Corollary 1.1. Let A = (A; F) be a partial algebra and let KF be a class
of algebras such that F is a finite set. Then A satisfies the general finite
embeddability property in KF if and only if A ∈ ISPPU(KF).

Corollary 1.2. Let A = (A; F) be an algebra and let KF be a class of
algebras such that F is a finite set. Then A satisfies the general finite
embeddability property in KF if and only if A ∈ ISPU(KF).

Proof. Clearly, if A is an algebra then A ∈ S(KF) if and only if A ∈
SP(KF).

The remaining part is devoted to a general finite α-embeddability the-
orem which is necessary for proving the uniform variants of Di Nola’s rep-
resentation Theorem (see [56]). At first we recall some definitions.

Definition 1.9. [44] Let α be an infinite cardinal. A proper filter D of
℘(I) is said to be α-regular if there exists a set E ⊆ D such that |E| = α
and each i ∈ I belongs to only finitely many e ∈ E.
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Definition 1.10. Let α be an infinite cardinal, let A = (A,F) be an
algebra such that |A| ≤ α. Let iA : A→ α be the respective injective map-
ping. A satisfies the general finite α-embeddability (finite α-embeddability)
property for the class K of algebras of the same type if for any finite sub-
set X ⊆ α, there exist an (finite) algebra B ∈ K and an embedding
ρ : A|i−1

A (X) ↪→ B, i.e., an injective mapping ρ : i−1
A (X) → B satisfy-

ing the property ρ(f
A|
i−1
A

(X)(x1, . . . , xn)) = fB(ρ(x1), . . . , ρ(xn)) if f ∈ Fn,

x1, . . . , xn ∈ A, iA(x1), . . . , iA(xn) ∈ X, and f
A|
i−1
A

(X)(x1, . . . , xn) is de-
fined.

The following theorem is a modification of Theorem 1.3 for algebras of
a bounded cardinality.

Theorem 1.5. Let α be an infinite cardinal and let A = (A,F) be an
algebra such that |A| ≤ α. Let iA : A → α be the respective injective
mapping. Let K be a class of algebras of the same type. If A satisfies
the general finite α-embeddability property for K then there is an α-regular
ultrafilter U over the set I = {X ⊆ α | X is finite}, which does not depend
on A, and algebras AX ∈ K, X ⊆ α finite such that A can be embedded
into (

∏
X∈I AX)/U .

Proof. Let A satisfy the general finite α-embeddability property for K.
Then for any X ∈ I there exist AX ∈ K and an embedding ρX : A|i−1

A (X) ↪→
AX . By the axiom of choice we choose a fixed aX ∈ AX for any X ∈ I.
Now we define a mapping ϕ : A→

∏
X∈I AX by

ϕ(a)(X) =

{
ρX(a) if iA(a) ∈ X;

aX otherwise.

Denote further U(X) = {Y ;Y ∈ I and X ⊆ Y } and V = {U(X);X ∈
I}. Then for any U(X), U(Y ) ∈ V , the equality U(X)∩U(Y ) = U(X∪Y ) ∈
V holds and thus U(X) ∩ U(Y ) 6= ∅. Consequently, there is an ultrafilter
U of ℘(I) such that V ⊆ U .

Let us check that U is α-regular. Let us put E = {U({x}) | x ∈ α}.
Evidently, |E| = α and, for any X ∈ I we have that X ∈ U({x}) iff x ∈ X.
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Therefore any X ∈ I belongs to only finitely many elements of E because
X is a finite subset of α.

Hence, we can define a mapping

ρ : A→ (
∏
X∈I

AX)/U

such that ρ(a) = ϕ(a)/U . In Theorem 1.3 it was proved that defined
mapping ρ is an injective homomorphism.



Chapter 2

MV-algebras

MV-algebras were introduced by C.C. Chang [42] as an algebraization of
 Lukasiewicz many-valued propositional logic. The main idea of his defini-
tion is to present a logic with truth scale [0, 1] ⊆ R where disjunction is
represented by the cut addition

x⊕ y := min{x+ y, 1}

and negation is defined as an antitone involution by ¬x := 1 − x. This
model is called the standard MV-algebra. The  Lukasiewicz many-valued
logic (and thus also MV-algebras) became very useful in applications of
fuzzy logics for its simplicity and its naturality.

Recall that by an MV-algebra is meant an algebra A = (A;⊕,¬, 0) of a
type 〈2, 1, 0〉 satisfying the axioms:

(MV1) x⊕ y = y ⊕ x,
(MV2) x⊕ (y ⊕ z) = (x⊕ y)⊕ z,
(MV3) x⊕ 0 = x,

(MV4) ¬¬x = x,

(MV5) x⊕ 1 = 1, where 1 := ¬0,

(MV6) ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x.

25
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It was proved by M. Kolař́ık (see [107]) that this axiom system is not
independent. The axiom (MV1) follows from (MV2)-(MV6).

The order relation ≤ can be introduced on any MV-algebra A by the
stipulation

x ≤ y if and only if ¬x⊕ y = 1.

Moreover, the ordered set (A;≤) can be organized into a bounded distribu-
tive latticea (A;∨,∧, 0, 1) where

x ∨ y = ¬(¬x⊕ y)⊕ y and x ∧ y = ¬(¬x ∨ ¬y).

In the theory of MV-algebras we use derived operations 	, � and →
defined by x	 y := ¬(¬x⊕ y), x� y := ¬(¬x⊕¬y) and x→ y := ¬x⊕ y.
The last two operations are connected by the adjointness property

x� y ≤ z if and only if x ≤ y → z.

An MV-algebra is said to be linearly ordered (or an MV-chain) if its
order is linear.

Given a positive integer n ∈ N, we let n×x = x⊕x⊕x · · ·⊕x, n times,
xn = x� x� x · · · � x, n times, 0x = 0 and x0 = 1.

In every MV-algebra the following equalities hold:

(D1) a⊕
∨
i∈I xi =

∨
i∈I(a⊕ xi), a⊕

∧
i∈I xi =

∧
i∈I(a⊕ xi),

(D2) a�
∨
i∈I xi =

∨
i∈I(a� xi), a�

∧
i∈I xi =

∧
i∈I(a� xi),

whenever the left sides are defined.
An element a of an MV-algebra A is said to be Boolean if a ⊕ a = a.

We say that an MV-algebra A is Boolean if every element of A is Boolean.
For an MV-algebra A, the set B(A) of all Boolean elements is a Boolean
algebra.

Morphisms of MV-algebras (shortly MV-morphisms) are defined as usual,
i.e., they are functions which preserve the binary operations ⊕ and �, the
unary operation ¬ and the constants 0 and 1.

aWe stress that the operation ¬ is not a complement in MV-algebras. More precisely,
¬ is a complement operation if and only if the MV-algebra is a Boolean algebra.
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Example 2.1. If B = (B;∨,∧,¬, 0, 1) is an Boolean algebra then the
reduct (B;∨,¬, 0) is an MV-algebra.

The following theorem describes the correspondence between MV-alge-
bras and BL-algebras with the double negation law.

Theorem 2.1. i) If A = (A;⊕,¬, 0) is an MV-algebra then the alge-
bra (A;∨,∧,�,→, 1, 0) is a BL-algebra satisfying the double negation law
¬¬x = x.

ii) If B = (B;∨,∧, ·,→, 1, 0) is a BL-algebra satisfying double negation
law, then (B;⊕,¬, 0), where x ⊕ y := ¬(¬x · ¬y) and ¬x := x → 0, is an
MV-algebra.

Thanks to this theorem we can apply Definition 1.6 of filters and The-
orem 1.2 for MV-algebras.

Chang’s famous results show the importance of the standard MV-algebra
for the theory of MV-algebras, see [46] for more details.

Theorem 2.2. The variety of MV-algebras MV is generated by the stan-
dard MV-algebra.

The theory of MV-algebras is well developed and there are many in-
teresting results and connections with other parts of mathematics. Firstly,
the category of MV-algebras is equivalent to the category of commuta-
tive `-groups (lattice ordered commutative groups) with strong order unit.
Secondly, the variety (or quasivariety) of MV-algebras is generated by the
standard MV-algebra. Consequently, the free algebras are subalgebras of
direct power [0, 1]X of the standard MV-algebra and thus MV-algebras are
related to some basic geometrical theories (see [119]). Most of the very
deep results, though, are dependent on some representation theorems.

2.1 Extensions of Di Nola’s Theorem

The representation theory of MV-algebras is based on Chang’s representa-
tion Theorem [42], McNaughton’s Theorem and Di Nola’s representation
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Theorem [56]. Chang’s representation Theorem yields a subdirect represen-
tation of all MV-algebras via linearly ordered MV-algebras. McNaughton’s
Theorem characterizes free MV-algebras as algebras of continuous, piece-
wise linear functions with integer coefficients on [0, 1]. Finally, Di Nola’s
representation Theorem describes MV-algebras as subalgebras of algebras
of functions with values into a non-standard ultrapower of the MV-algebra
[0, 1].

The main motivation for our research comes from the fact that although
the proofs of both Chang’s representation Theorem and McNaughton’s The-
orem are of algebraic nature, the proof of Di Nola’s representation Theo-
rem is based on model-theoretic considerations. We give a simple, purely
algebraic, proof of it and its variants based on Farkas’ lemma for ratio-
nals [78] and the general finite embedding theorem [19]. Similar results
for zero-cancellative pomonoids were obtained in [128]. As a surprising by-
product we obtain in Theorem 2.5 a new proof of the completeness of the
 Lukasiewicz axioms [43]. Farkas’ lemma or its alternatives were used in the
theory of MV-algebras also by Gispert and Mundici (see [91, 46]).

2.1.1 Farkas’ lemma

Let us recall the original formulation of Farkas’ lemma [78, 140] on rationals.

Theorem 2.3 (Farkas’ lemma). Given a matrix A in Qm×n and c a column
vector in Qm, there exists a column vector x ∈ Qn, x ≥ 0n such that
A · x = c if and only if for all row vectors y ∈ Qm, y · A ≥ 0m implies
y · c ≥ 0.

In what follows, we will use the following equivalent formulation:

Theorem 2.4 (Theorem of alternatives). Let A be a matrix in Qm×n and
let b be a column vector in Qm. The system A · x ≤ b has no solution if
and only if there exists a row vector λ ∈ Qm such that λ ≥ 0m, λ ·A = 0n
and λ · b < 0.

Remark 2.1. Since the row vector λ ∈ Qm from Theorem 2.4 has non-
negative rational components λi = pi

qi
, pi ∈ N0, qi ∈ N, we may assume (by
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taking the least common multiple q of the denominators qi and multiplying
by it the components of λ) that λ ∈ Zm.

2.1.2 The Embedding lemma

In this part, we use Farkas’ lemma on rationals to prove that any finite
partial subalgebra of a linearly ordered MV-algebra can be embedded into
Q∩[0, 1] and hence into the finite MV-chain Lk ⊆ [0, 1] for a suitable k ∈ N.

Lemma 2.1. Let M = (M ;⊕,¬, 0) be a linearly ordered MV-algebra and
let X ⊆ M \ {0} be a finite subset. Then there is a rational-valued map
s : X ∪ {0, 1} −→ [0, 1] ∩Q such that

1. s(0) = 0, s(1) = 1,

2. if x, y, x⊕ y ∈ X ∪{0, 1} such that x ≤ ¬y and x, y ∈ X ∪{0, 1} then
s(x⊕ y) = s(x) + s(y),

3. if x ∈ X then s(x) > 0.

Proof. We put
Y (X) := {x⊕ y | x, y ∈ X ∪ {0, 1}}.

Thus Y (X) ⊆ M is finite, X ⊆ Y (X), 0, 1 ∈ Y (X), X ⊕ X ⊆ Y (X).
Since M is a chain, we may assume that Y (X) = {y0 = 0 < y1 < · · · <
yn = 1} and put y = (y1, . . . , yn)T ∈ Y (X)n. For any x ∈ X, there is an
index 1 ≤ jx ≤ n such that x = yjx . If x ≤ ¬y, x 6= y and x, y ∈ X, we
denote by a1

x,y,a
2
x,y ∈ Zn non-negative row vectors such that

a1
x,y(j) =

{
1 if j = jx or j = jy;

0 otherwise
and a2

x,y(j) =

{
1 if j = jx⊕y;

0 otherwise.

If x ≤ ¬x and x ∈ X, we denote by a1
x,x,a

2
x,x ∈ Zn non-negative row

vectors such that

a1
x,x(j) =

{
2 if j = jx;

0 otherwise
and a2

x,x(j) =

{
1 if j = jx⊕x;

0 otherwise.
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Assume that i ∈ {1, 2}. Let Ai be a matrix consisting of the rows aix,y
such that x ≤ ¬y and x, y ∈ X. We put A = A1 − A2 and m = |{{x, y} |
x, y ∈ X,x ≤ ¬y}|.

Due to Mundici’s equivalence our linearly ordered MV-algebra M is an
interval [0, u] in a linearly ordered commutative `-group G with a strong
unit u (Chang’s `-group). If v, w ∈M are such that w ≤ ¬v then the sum
v ⊕ w coincides with the sum v + w computed in G.

It follows that

A1 ·

y1
...
yn

 = A2 ·

y1
...
yn

 ,

hence

A ·

y1
...
yn

 = 0m,

the result being computed in G.
Let En be the identity matrix of order n. Let us denote by (∗) the fol-

lowing system of linear inequalities with variables z1, . . . , zn over rationals:−EnA
−A

 ·
z1

...
zn

 ≤
c−1n

0m
0m

 . (∗)

Then by Farkas’ lemma (see Theorem 2.4) for rationals the systems of
inequalities (∗) does not have a solution in Qn if and only if there is a row
vector λ = (λ1, . . . , λn+2m) ∈ Zn+2m, λ ≥ 0n+2m such that

λ ·

−EnA
−A

 = 0, λ ·

−1n
0m
0m

 < 0. (∗∗)

Assume that there exists a vector λ ∈ Zn+2m satisfying (∗∗). Hence there
is an index 1 ≤ j0 ≤ n such λj0 > 0.
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We then have (again computing in G) that

0 = λ ·

−EnA
−A

 ·
y1

...
yn

 = λ ·

−y
0m
0m

 = −
n∑
j=1

λjyj (∗ ∗ ∗)

(here λ is a row vector of order n+2m over non-negative integers,

−EnA
−A


is a matrix of type (n+2m)×n over integers, y =

y1
...
yn

 is a column vector

of order n over elements from G, and

−y
0m
0m

 is a column vector of order

n+ 2m over elements from G).
Since λ1, . . . , λn+2m are non-negative, λj0 is positive, and y1, . . . , yn are

positive non-zero elements in G, we get that
∑n

i=1 λjyj is a positive non-
zero element from G, which contradicts (∗ ∗ ∗).

It follows that system (∗) has a rational-valued solution (q1, . . . , qn),
and from (∗) it clearly follows that the solution is positive (more precisely
q = (q1, . . . , qn) ≥ 1n). We define a map s : X ∪ {0, 1} −→ [0, 1] ∩Q by:

s(x) =


qjx
qn

if x ∈ X;

0 if x = 0;

1 if x = 1.

The map s evidently satisfies conditions (1)–(3) of this lemma.

Remark 2.2. Another possibility how to prove Lemma 2.1 is to use the
proof of [48, Theorem 1] with respective restrictions given by the conditions
(1)–(3) for a totally ordered abelian group G corresponding in the Mundici
duality to our linearly ordered MV-algebra M.
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Lemma 2.2 (Embedding lemma). Let M = (M ;⊕,¬, 0) be a linearly
ordered MV-algebra and let X ⊆ M be a finite set. Then there exists an
embedding f : X ↪→ Lk, where X is a partial MV-algebra obtained by the
restriction of M to the set X, and Lk ⊆ [0, 1] is the linearly ordered finite
MV-algebra on the set {0, 1

k ,
2
k , . . . , 1}.

Proof. Let us define a set Y as follows:

Y := {x	 y | x, y ∈ X ∪ {0, 1}} \ {0}.

Moreover, let s : Y ∪{0, 1} −→ [0, 1]∩Q be the respective mapping for the
set Y from Lemma 2.1.

Let f = s|X be the restriction of the mapping s to the set X. We
first prove that f is injective. Let x < y, x, y ∈ X. Then there is z ∈ Y ,
z 6= 0 such that x ≤ ¬z and x ⊕ z = y. It follows that 0 < s(z) and
s(y) = s(x⊕ z) = s(x) + s(z) > s(x), i.e., f(x) = s(x) < s(y) = f(y).

Let f(X) \ {0} = {p1q1 , . . . ,
pl
ql
} for some p1, q1, . . . , pl, ql ∈ N and let us

denote by k the least common multiple of the denominators q1, . . . , ql. Then
evidently f(X) ⊆ {0, 1

k ,
2
k , . . . , 1}.

If 0 ∈ X then by definition of s, we obtain f(0) = s(0) = 0. If x,¬x ∈ X
for some x ∈ M then clearly ¬x ≤ ¬x and using Lemma 2.1, we obtain
s(¬x) + s(x) = s(¬x⊕ x) = s(1) = 1. Hence, f(¬x) = s(¬x) = 1− s(x) =
¬s(x) = ¬f(x).

Finally, let x, y ∈ X be such that x⊕ y ∈ X. Then

1. If x ≤ ¬y then f(x⊕ y) = s(x⊕ y) = s(x) + s(y) = f(x)⊕ f(y).

2. If ¬y < x then f(x ⊕ y) = f(1) = s(1) = 1. Conversely, x 	 ¬y ∈ Y
and x 	 ¬y = y 	 ¬x ≤ y and thus s(x) = s((x 	 ¬y) ⊕ ¬y) =
s(x	¬y)+s(¬y) ≥ s(¬y) = 1−s(y). It follows that 1 ≥ f(x)⊕f(y) =
min(1, s(x) + s(y)) ≥ min(1, (1− s(y)) + s(y)) = 1.

Taking the above into consideration, f is an injective partial MV-
morphism, hence an embedding.
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2.1.3 An elementary proof of the completeness
of the  Lukasiewicz axioms

In what follows, for the notion of an MV-equation we refer to [46]. In-
formally, an MV-equation is any equation in the first-order language of
MV-algebras. We shall tacitly identify propositional formulas and MV-
terms.

A valuation e on an MV-algebra M is an MV-morphism from the free
MV-algebra FMV(ℵ0) over countably many generators x1, . . . , xn, . . . (the
so-called term MV-algebra) to the MV-algebra M. Note that e is uniquely
determined by the action on generators x1, . . . , xn, . . . .

The notion of satisfaction (validity) of an MV-equation in an MV-
algebra M is the usual model-theoretic notion of satisfaction (validity).

Chang’s Completeness Theorem is stated in the form of [48, Theo-
rem 2.5.3]. This formulation then guarantees the completeness of the
 Lukasiewicz axioms (see [48, Chapter 4]).

Theorem 2.5 (Completeness Theorem for [0, 1]). An equation holds in
[0, 1] if and only if it holds in every MV-algebra.

Proof. Suppose that an MV-equation τ = σ in the variables x1, . . . , xn fails
in an MV-algebra A. By Chang’s representation Theorem it fails in some
linearly ordered MV-algebra M. It follows that there is a valuation e on
M such that e(τ) 6= e(σ). Denote by T the set of all subterms of both τ
and σ. We put X = e(T ) ⊆ M . Clearly, X is finite. By Lemma 2.2, there
is an embedding f : X ↪→ [0, 1]. Let f ◦ e be a valuation on [0, 1] given by
the action

xi 7→

{
f(e(xi)) if i ≤ n;

0 otherwise.

This yields that f ◦ e is a valuation on [0, 1] such that (f ◦ e)(τ) 6= (f ◦
e)(σ).

Remark 2.3. Note that in the main monograph about MV-algebras ([48,
Theorem 2.5.3]), one can find a geometric proof of the completeness of
the  Lukasiewicz axioms relaying on elementary algebra, and also references
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to other its proofs based on syntactic methods and linear inequalities, on
the represention of free `-groups, as well as on techniques from algebraic
geometry.

Another way to obtain the completeness of the  Lukasiewicz deductive
system is via the arguments used in [76] in conjunction with the existence
of the algebra M(α), mentioned in Remark 2.5 on page 37, into which every
linearly ordered MV-algebra of bounded cardinality α embeds, or by the
use of the uniform form of Di Nola’s representation Theorem, also granting
such an embedding.

The difference between our proof and the already known ones is based
on the fact that we first show our Embedding Lemma (using only Chang’s
`-group and a variant of Farkas’ lemma). From this step on, the proofs
of several versions of the completeness theorem are straightforward. For
example, the proof of [48, Theorem 2.5.3] is based on the correspondence
between MV-terms and suitably chosen `-group terms, on the fundamental
theorem on torsion-free abelian groups and on a variant of Farkas’ lemma
as well.

By the same arguments as before we obtain the following two theorems.

Theorem 2.6 (Completeness Theorem for [0, 1] ∩Q). An equation holds
in [0, 1] ∩Q if and only if it holds in every MV-algebra.

Theorem 2.7 (Completeness Theorem for Lk). An equation holds in Lk
for all k ∈ N if and only if it holds in every MV-algebra.

2.1.4 Extensions of Di Nola’s Theorem

In this part, we are going to show Di Nola’s representation Theorem and
its several variants not only via the standard MV-algebra [0, 1] but also via
its rational part Q ∩ [0, 1] and finite MV-chains. To prove it, we use the
Embedding Lemma obtained in the previous section. First, we establish
FEP for linearly ordered MV-algebras.

Remark 2.4. Note that part (1) of the following theorem for subdirectly
irreducible MV-algebras can be easily deduced from the result that the class
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of subdirectly irreducible Wajsberg hoops has FEP (see [10, Theorem 3.9]).
The well-known part (2) then follows from [10, Lemma 3.7,Theorem 3.9] or
from [91, Corollary 9.6].

Theorem 2.8.

1. The class LMV of linearly ordered MV-algebras has FEP.

2. The class MV of MV-algebras has FEP.

Proof. 1) It follows immediately from Lemma 2.2.
2) Let M = (M ;⊕,¬, 0) be an MV-algebra and let X ⊆ M be a fi-

nite subset. For any x, y ∈ X,x 6= y, there is a prime filter P such that
x/P 6= y/P . Hence there exists a finite system of prime filters P1, . . . , Pl,
which separates elements from X, i.e., X ↪→

∏l
i=1(M/Pi) is an injective

mapping. For any i ∈ {1, . . . , l}, by Lemma 2.2, there exists an embedding
fi : X/Pi ↪→ Lki . Let k be the least common multiple of k1, . . . , kl. Thus,
for any i ∈ {1, . . . , l}, there is an embedding fi : X/Pi ↪→ Lk. Consequently,
there is an embedding f : X ↪→ (Lk)

l defined by f(x)(i) = fi(x/Pi).

We are now ready to establish the second most important result of our
paper - a variant of Di Nola’s representation Theorem for finite MV-chains
(finite MV-algebras). Our proof, which is based on Theorems 2.8 and 1.3,
is entirely algebraic without model-theoretic considerations.

Theorem 2.9.

1. Any linearly ordered MV-algebra can be embedded into an ultraproduct
of finite MV-chains.

2. Any MV-algebra can be embedded into a product of ultraproducts of
finite MV-chains.

3. Any MV-algebra can be embedded into an ultraproduct of finite MV-
algebras (which are embeddable into powers of finite MV-chains).
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Proof. (1) It is a direct consequence of Theorem 2.8, (1) and Theorem 1.3.
(2) Any MV-algebra is embeddable into a product of linearly ordered

ones. The rest follows by (1).
(3) It is a direct corollary of Theorem 2.8, (2) and Theorem (1).

The next two theorems cover Di Nola’s Representation Theorem and
its respective variants both for rationals and reals.

Theorem 2.10.

1. Any linearly ordered MV-algebra can be embedded into an ultrapower
of Q ∩ [0, 1].

2. Any MV-algebra can be embedded into a product of ultrapowers of
Q ∩ [0, 1].

3. Any MV-algebra can be embedded into an ultrapower of a countable
power of Q ∩ [0, 1].

4. Any MV-algebra can be embedded into an ultraproduct of finite powers
of Q ∩ [0, 1].

Proof. (1)–(4) are corollaries of Theorem 2.9.

Theorem 2.11.

1. Any linearly ordered MV-algebra can be embedded into an ultrapower
of [0, 1].

2. Any MV-algebra can be embedded into a product of ultrapowers of
[0, 1].

3. Any MV-algebra can be embedded into an ultrapower of a countable
power of [0, 1].

4. Any MV-algebra can be embedded into an ultraproduct of finite powers
of [0, 1].

Proof. (1)–(4) are corollaries of Theorem 2.9.
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2.1.5 Representation of MV-algebras by regular ultrapow-
ers

In this section we present a uniform version of Di Nola’s Theorem for ra-
tionals. This enables us to embed all MV-algebras of a cardinality at most
α in an algebra of functions from 2α into a single non-standard ultrapower
of the MV-algebra Q∩ [0, 1]. Our second goal is to embed all MV-algebras
of a cardinality at most α into a single non-standard ultrapower of the
MV-algebra (Q ∩ [0, 1])N.

Theorem 2.12. Let α be an infinite cardinal and let M = (M ;⊕,¬, 0) be
a linearly ordered MV-algebra such that |M | ≤ α. Let U be the α-regular
ultrafilter over the set I = {X ⊆ α | X is finite} from Theorem 1.5 which
does not depend on M. Then

1. M can be embedded into an ultraproduct of finite MV-chains via the
α-regular ultrafilter U .

2. M can be embedded into the ultrapower (
∏
X∈I Q ∩ [0, 1])/U .

3. M can be embedded into the ultrapower (
∏
X∈I [0, 1])/U .

Proof. (1)–(3) are corollaries of Theorem 2.8(1) and Theorem 1.5.

Remark 2.5. Recall that Wojciechowski has shown in [145, Theorem 2.4]
that given a cardinal number α, there exists a totally ordered MV-algebra
M(α) such that every totally ordered MV-algebra of cardinality at most
α embeds into M(α). In the proof he used the Hahn o-group V (Λ(α),Q)
(see [96]) on some suitable totally ordered set Λ(α). Our approach is based
entirely on Theorem 1.5 and on the consequences of the Embedding lemma.

Theorem 2.13. Let α be an infinite cardinal and let M = (M ;⊕,¬, 0) be
an MV-algebra such that |M | ≤ α. Let U be the α-regular ultrafilter over
the set I = {X ⊆ α | X is finite} from Theorem 1.5 which does not depend
on M. Then
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1. M can be embedded into an MV-algebra of functions from 2α to the
ultrapower (

∏
X∈I Q ∩ [0, 1])/U .

2. M can be embedded into an MV-algebra of functions from 2α to the
ultrapower (

∏
X∈I [0, 1])/U .

Proof. (1) Let iM : M → α be an injective mapping. Let PFilt(M) be the
set of all prime filters of M (which is evidently non-empty) and let F0 ∈
PFilt(M). By Chang’s representation Theorem, we have an embedding

f : M ↪→
∏

F∈PFilt(M)

M/F.

Moreover, we have an injective mapping eM : PFilt(M) → 2α given by
F 7→ {iM (x) | x ∈ F} ⊆ α. For any F ∈ PFilt(M), Theorem 2.12 provides
an embedding

gF : M/F ↪→ (
∏
X∈I

Q ∩ [0, 1])/U.

This yields an embedding

g :
∏

F∈PFilt(M)

M/F ↪→

(
(
∏
X∈I

Q ∩ [0, 1])/U

)2α

given as follows:

g((xF )F∈PFilt(M))(B) =

{
gF (xF ) if eM (F ) = B

gF0(xF0) otherwise.

The composition of g ◦ f gives us the required embedding.
(2) The proof follows the considerations of (1).

Going the other way around, we have the following.

Theorem 2.14. Let α be an infinite cardinal and let M = (M ;⊕,¬, 0) be
a MV-algebra such that |M | ≤ α. Let U be the α-regular ultrafilter over the
set I = {X ⊆ α | X is finite} from Theorem 1.5 which does not depend on
M. Then
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1. M can be embedded into the ultrapower
(∏

X∈I(Q ∩ [0, 1])N
)
/U .

2. M can be embedded into the ultrapower
(∏

X∈I [0, 1]N
)
/U .

Proof. (1) Let iM : M → α be an injective mapping and let X ⊆ M be
a finite subset. Using the same notation and reasonings as in the proof of
Theorem 2.8(2) we have an embedding

f : X ↪→ (Lk)
l.

Moreover, we have also an embedding

g : (Lk)
l ↪→ (Q ∩ [0, 1])N

given by:

g((xk)
l
k=1)(n) =

{
xk if k = n;

x1 otherwise.

The composition ρX = g ◦ f yields an embedding

ρX : X ↪→ (Q ∩ [0, 1])N.

The remaining part now follows from Theorem 1.5.
(2) The proof follows the considerations of (1).

Remark 2.6. In the paper [104] Keisler proved that given an infinite car-
dinal α, if U is regular and κ is an infinite cardinal such that I is taken as
in Theorem 2.13, then card((

∏
X∈I κ)/U) = card(κα).

Hence we immediately get that

card

((
∏
X∈I

Q ∩ [0, 1])/U

)2α
 = ℵ2α

0

and

card

((∏
X∈I

(Q ∩ [0, 1])N

)
/U

)
= 2α.
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It follows that given an infinite cardinal α, there exists a single MV-
algebra of the cardinality 2α, in which every MV-algebra of cardinality at
most α embeds.

Second, by the same arguments as in [59, Section 4], for every infinite
cardinal α, there is an iterated ultrapower (see [44, Section 6.5]) of (Q ∩
[0, 1])N, definable in α, in which every MV-algebra of cardinality at most α
embeds.
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2.2 Tense MV-algebras

Propositional logic usually does not incorporate the dimension of time. To
obtain to so-called tense logic, the propositional calculus is enriched by
adding new unary operators G and H (and new derived operators F :=
¬G¬ and P := ¬H¬, where ¬ denotes the classical negation connective)
which are called tense operators. The operator G usually expresses the
quantifier ‘it will still be the case that’ and H expresses ‘it has always been
the case that’. Hence, F and P are in fact tense existential quantifiers.

If T is a non-void set and R a binary relation on T, the couple (T,R)
is called a (time) frame. T means a time scale and R is the so-called time
preference, i.e., if tRs for s, t ∈ T then t is assumed to be ‘before s’ and
s is ‘after t’. Let us note that R need not be reflexive, nor antisymmet-
ric, nor transitive but, in well-founded applications in quantum mechanics,
reflexivity and transitivity is usually assumed.

For a given logical formula φ of our propositional logic and for t ∈ T we
say that G(φ)(t) is valid if φ(s) is valid for any s ∈ T with tRs. Analogously,
H(φ)(t) is valid if φ(s) is valid for any s ∈ T with sRt. Thus F (φ)(t) is valid
if there exists s ∈ T with tRs and φ(s) is valid and analogously P (φ)(t) is
valid if there exists s ∈ T with sRt and φ(s) is valid in the propositional
logic.

Study of tense operators was originated in 1980’s, see e.g. a com-
pendium [26]. Recall that for a classical propositional calculus represented
by means of a Boolean algebra B = (B;∨,∧,¬, 0, 1), tense operators were
axiomatized in [26] by the following axioms:

(B1) G(1) = 1, H(1) = 1,

(B2) G(x ∧ y) = G(x) ∧G(y), H(x ∧ y) = H(x) ∧H(y),

(B3) ¬G¬H(x) ≤ x, ¬H¬G(x) ≤ x.

For Boolean algebras, the axiom (B3) is equivalent to

(B3’) G(x) ∨ y = x ∨H(y).
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To introduce tense operators in non-classical logics, some more axioms
must be added on G and H to express connections with additional oper-
ations or logical connectives. For example, for intuitionistic logic (corre-
sponding to Heyting algebras) it was done in [30], for algebras of logic of
quantum mechanics see [37] and [40], for so called basic algebras it was
done in [23], for other interesting algebras the reader is referred to [79], [80]
and [110].

Among algebras connected with many-valued logic, let us mention MV-
algebras and  Lukasiewicz-Moisil algebras. Tense operators for the previous
cases were introduced and studied in [45] and [54]. Contrary to Boolean
algebras where the representation problem through a time frame is solved
completely, authors in [54] only mention that this problem for MV-algebras
was not treated. Hence, our main goal is to find a suitable time frame
for given tense operators on a semisimple MV-algebra, i.e., to solve the
representation problem for semisimple MV-algebras.

This problem was solved by Boturb for such tense MV-algebras that
the tense operators G and H preserve all finite powers of the operations ⊕
and �. Paseka generalized his results replacing original term tq (see [127])
constructed for any rational q by the Teheux’s term (see [127]). Here, we
present more general concept of used ideas for obtaining stronger results.
The main representation theorem for semisimple tense MV-algebras and
Paseka’s results are corollaries of this. The key and new notion is the
concept of a semi-state on an MV-algebra. The advantage is that these
semi-states reflect an important property of the logic of quantum mechan-
ics, namely the so-called Jauch-Piron property (see [130]) saying that if
the probability of propositions A and B being true is zero then there ex-
ists a proposition C covering both A and B. Therefore we may expect
applications of our method also in the realm of quantum logic.

Definition 2.1. Let be given an MV-algebra A = (A;⊕,¬, 0). We say
that (A, G,H) is a tense MV-algebra and G and H are tense operators if
G and H are a unary operations on A satisfying:

bIt is not published.
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(i) G(1) = H(1) = 1,

(ii) G(x)�G(y) ≤ G(x� y), H(x)�H(y) ≤ H(x� y),

(iii) G(x)⊕G(y) ≤ G(x⊕ y), H(x)⊕H(y) ≤ H(x⊕ y),

(iv) G(x)�G(x) = G(x� x), H(x)�H(x) = H(x� x),

(v) G(x)⊕G(x) = G(x⊕ x), H(x)⊕H(x) = H(x⊕ x),

(vi) ¬G¬H(x) ≤ x, ¬H¬G(x) ≤ x.

Applying the axioms (i) and (ii), we get immediately monotonicity of
the operators G and H. Thus, if x ≤ y for any x, y ∈ A then G(x) ≤ G(y)
and H(x) ≤ H(y).

We note that the original definition of tense MV-algebras [54, Proposi-
tion 5.1, Remark 5.1] uses alternative inequalities

(ii’) G(x→ y) ≤ G(x)→ G(y), H(x→ y) ≤ H(x)→ H(y),

(vi’) x ≤ G¬H¬x, x ≤ H¬G¬x.

Monotonicity of the operators G and H and adjointness property give
equivalence of (ii) and (ii’). Using double negation law and antitonicity of
the negation we obtain equivalence of (vi) and (vi’).

The following theorem describes the most important construction of
tense MV-algebras.

Theorem 2.15. [54] Let A be a linearly ordered complete MV-algebra and
let T be any set with a binary relation ρ ⊆ T 2. Then (AT , G∗, H∗) where
operations G∗ and H∗ are calculated point-wise

G∗(x)(i) :=
∧
iρj

x(j) and H∗(x)(i) :=
∧
jρi

x(j)

is a tense MV-algebra. In this case we say that the tense MV-algebra
(AT , G∗, H∗) is induced by the frame (T, ρ).
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We will prove that any couple of tense operators on any semisimple
MV-algebra can be embedded into ([0, 1]T , G∗, H∗) where G∗ and H∗ are
tense operators induced by some time frame (T, ρ). For related results on
more general operators on any semisimple MV-algebra see [127].

2.2.1 Dyadic numbers and MV-terms

The content of this part summarizes some folklore results of certain MV-
terms from [142] and [125]. The techniques described (in a new form) here
have been used already in [28] and later, e.g., in [46], [60], [99] and [141].

Since we could not find a proper reference (a journal or a book) on this
subject (except [99], [125] and [141] which do not fully cover our needs) and
our main result is based on them we review them as follows.

Definition 2.2. [142] The set D of dyadic numbers is the set of the rational
numbers that can be written as a finite sum of integer powers of 2. If a is
a number of [0, 1], a dyadic decomposition of a is a sequence a∗ = (ai)i∈N
of elements of {0, 1} such that a =

∑∞
i=1 ai2

−i. We denote by a∗i the ith

element of any sequence (of length greater than i) a∗. If a is a dyadic
number of [0, 1], then a admits a unique finite dyadic decomposition, called
the dyadic decomposition of a. If a∗ is a dyadic decomposition of a real a
and if k is a positive integer then we denote by pa∗qk the finite sequence
(a1, . . . , ak) defined by the first k elements of a∗ and by xa∗yk the dyadic
number

∑k
i=1 ai2

−i. We denote by f0(x) and f1(x) the terms x ⊕ x and
x�x respectively, and by TD the clone generated by f0(x) and f1(x). Here,
a clone is a set C of finitary operations on a set A such that

• C contains all the projections πnk : An → A, 1 ≤ k ≤ n, defined by:

πnk (x1, . . . , xn) = xk,

• C is closed under (finitary multiple) composition: if f, g1, . . . , gm are
members of C such that f is an m-ary operation, and gj is an n-
ary operation for every j, then the n-ary operation h(x1, . . . , xn) :=
f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) is in C.
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We also denote by g. the mapping between the set of finite sequences of
elements of {0, 1} (and thus of dyadic numbers in [0, 1]) and TD defined by:

g(a1,...,ak) = fak ◦ · · · ◦ fa1

for any finite sequence (a1, ..., ak) of elements of {0, 1}. If a =
∑k

i=1 ai2
−i,

we sometimes write ga instead of g(a1,...,ak).
We also denote, for a dyadic number a ∈ D∩ [0, 1] and a positive integer

k ∈ N such that 2−k ≤ 1 − a, by l(a, k) : [a, a + 2−k] → [0, 1] a linear
function defined as follows l(a, k)(x) = 2k(x− a) for all x ∈ [a, a+ 2−k].

Lemma 2.1. [142, Lemma 1.14] If a∗ = (ai)i∈N and x∗ = (xi)i∈N are dyadic
decompositions of two elements of a, x ∈ [0, 1], then, for any positive integer
k ∈ N,

gpa∗qk(x) =


1 if x >

∑k
i=1 ai2

−i + 2−k

0 if x <
∑k

i=1 ai2
−i

l(xa∗yk, k)(x) =
∑∞

i=1 xi+k2
−i otherwise.

Let us define, for any m ∈ N a term µm(x) ∈ TD. First, if m = 1 we
put µ1(x) = f1(x). Second, assume that µm(x) is defined. Then we put
µm+1(x) = µ1(µm(x)). It follows that, evaluating µm(x) for x =

∑∞
i=1 xi2

−i

in the standard MV-algebra [0, 1], we obtain by Lemma 2.1

µm(x) = g (0,...,0)︸ ︷︷ ︸
m−times

(x) =

{
1 if x > 2−m∑∞

i=1 xi+m2−i otherwise.

Note that for any finite sequence (a1, ..., ak) of elements of {0, 1} such
that ak = 0 we have that g(a1,...,ak) = g(a1,...,ak−1) ⊕ g(a1,...,ak−1) and clearly
any dyadic number a corresponds to such a sequence (a1, ..., ak).

As an immediate consequence, we get

Corollary 2.1. [142, Corollary 1.15 (1)] Let us have the standard MV-
algebra [0, 1], x ∈ [0, 1] and r ∈ (0, 1) ∩ D. Then there is a term tr in TD
such that

tr(x) = 1 if and only if r ≤ x.
Proof. Let r =

∑k
i=1 ri2

−i with rk = 1. Then we put tr = g(r1,...,rk−1,0).
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2.2.2 Filters, ultrafilters and the term tr

The aim of this part is to show that any filter F in an MV-algebra A which
does not contain the element tr(x) for some dyadic number r ∈ (0, 1) ∩ D
and an element x ∈ A can be extended to an ultrafilter U containing F
such that tr(x) 6∈ U .

A filter of an MV-algebra A is a subset F ⊆ A satisfying:
(F1) 1 ∈ F
(F2) x ∈ F, y ∈ A, x ≤ y ⇒ y ∈ F
(F3) x, y ∈ F ⇒ x� y ∈ F .

A filter is said to be proper if 0 /∈ F . Note that there is a one-to-one
correspondence between filters and congruences on MV-algebras. A filter
Q is prime if it satisfies the following conditions:

(P1) 0 /∈ Q.
(P2) For each x, y in A such that x ∨ y ∈ Q, either x ∈ Q or y ∈ Q.

In this case the corresponding factor MV-algebra A/Q is linear.

A filter U is maximal (and in this case it will be also called an ultrafilter)
if 0 /∈ U and for any other filter F of A such that U ⊆ F , then either F = A
or F = U . There is a one-to-one correspondence between ultrafilters and
MV-morphisms from A into [0, 1] (extremal states). For any ultrafilter U
of A we identify the class x/U with its image in the standard algebra and
thus with its image in interval [0, 1] of real numbers. Recall that a state on
A is a map s : A → [0, 1] satisfying s(x⊕ y) = s(x) + s(y) for all x, y ∈ A
such that x� y = 0 and s(1) = 1.

In what follows we work mostly with MV-morphisms into [0, 1] instead
of ultrafilters.

Lemma 2.2. Let A be a linearly ordered MV-algebra, s : A → [0, 1] an
MV-morphism, x ∈ A such that s(x) = 1. Then x⊕ x = 1.

Proof. Assume that x ≤ ¬x. Then 1 = s(x) � s(x) = s(x � x) ≤ s(x �
¬x) = s(0) = 0 which is absurd. Therefore ¬x < x and we have that
x⊕ x ≥ x⊕ ¬x = 1.
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Proposition 2.1. Let A be a linearly ordered MV-algebra, s : A → [0, 1]
an MV-morphism, x ∈ A. Then s(x) = 1 iff tr(x) = 1 for all r ∈ (0, 1)∩D.

Equivalently, s(x) < 1 iff there is a dyadic number r ∈ (0, 1) ∩ D such
that tr(x) 6= 1. In this case, s(x) < r.

Proof. In what follows we may assume that x 6= 0 since s(0) = 0 and
tr(0) = 0 for all r ∈ (0, 1) ∩ D. Note first that s(tr(x)) = tr(s(x)) since s
is an MV-morphism. Then s(x) = 1 iff r ≤ s(x) for all r ∈ (0, 1) ∩ D iff
tr(s(x)) = 1 for all r ∈ (0, 1) ∩ D iff s(tr(x)) = 1 for all r ∈ (0, 1) ∩ D.

Assume now that tr(x) = 1 for all r ∈ (0, 1) ∩ D. Then evidently
s(tr(x)) = 1 for all r ∈ (0, 1) ∩ D and by the above considerations we have
that s(x) = 1.

Conversely, let s(x) = 1 and r ∈ (0, 1) ∩ D. Then tr(x) = t(x) ⊕ t(x)
such that t(x) is some term from the clone TD constructed entirely from
the operations (−)⊕ (−) and (−)� (−). Therefore s(t(x)) = 1. By Lemma
2.2 we get that tr(x) = t(x)⊕ t(x) = 1.

Proposition 2.2. Let A be an MV-algebra, x ∈ A and F be any filter of
A. Then there is an MV-morphism s : A → [0, 1] such that s(F ) ⊆ {1}
and s(x) < 1 if and only if there is a dyadic number r ∈ (0, 1)∩D such that
tr(x) /∈ F .

Proof. Let A be an MV-algebra and let F be any filter of A. Assume
first that there is an MV-morphism s : A → [0, 1] such that s(F ) ⊆ {1}
and s(x) < 1. Then there is a dyadic number r ∈ (0, 1) ∩ D such that
s(x) < r < 1. By Corollary 2.1 we get that s(tr(x)) = tr(s(x)) 6= 1. Hence
tr(x) /∈ F .

Now, let there be a dyadic number r ∈ (0, 1) ∩ D such that tr(x) /∈ F .
Then there is a filter K of A, F ⊆ K, tr(x) /∈ K such that K is maximal
with this property. Evidently, K is a prime filter of A. Hence the factor
algebra A/K is linearly ordered and we have a surjective MV-morphism
g : A → A/K, g(K) ⊆ {1}. Let us denote by UK the maximal filter of
A/K and by sK : A/K → [0, 1] the corresponding MV-morphism. Because
tr(x) /∈ K we get that tr(g(x)) = g(tr(x)) 6= 1.
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It follows from Proposition 2.1 that sK(tr(g(x))) < r < 1. This yields
that sK(g(tr(x))) < r < 1. Let us put s = sK ◦ g. Then s : A → [0, 1] is
an MV-morphism, s(tr(x)) < r < 1. Evidently s(x) < r < 1 otherwise we
would have also 1 = s(tr(x)) < 1, a contradiction. Clearly, s(F ) ⊆ s(K) =
sK(g(K)) ⊆ sK({1}) = {1}.

Remark 2.7. Recall that in [60] the authors introduced, for each k ∈ N,
j ∈ {0, . . . , k − 1}, the McNaughton function sj,k : [0, 1] → [0, 1] given as
follows

sj,k(x) =


0 if 0 ≤ x ≤ j

k ,

−j + kx if j
k < x ≤ j+1

k ,

1 if j+1
k < x ≤ 1.

In particular, for a dyadic number a =
∑k

i=1 ai2
−i ∈ [0, 1), we have that

ga = sj,2k ; here j = a · 2k < 2k.

Moreover, sj,k ◦ sl,m = skl+j,km and s0,k(x) = k × x and sk−1,k(x) = xk

for all x in the standard MV-algebra [0, 1]. Similarly as above, one can
show, as was first mentioned by Botur, that, for all r ∈ (0, 1] ∩Q, there is
a term t̂r obtained as a composition of terms of the form k× x and xl such
that

t̂r(x) = 1 if and only if r ≤ x.

More precisely, we put t̂1(x) = x and if r = p
q , p, q ∈ N then we put

t̂r(x) = t̂ q−d
q

(c× (x)a), where a, b, c, d ∈ N are such that

q = a(q − p) + b where 0 < b ≤ q − p
q = cb+ d where 0 ≤ d < b.

Evidently, q−d
q > q−b

q ≥
q−(q−p)

q = p
q , i.e., the procedure stops after finitely

many steps and t̂ q−1
q

= (q × (x)q−1) = sq(q−1),q2 .

Corollary 2.2. Let A be an MV-algebra, x ∈M and F be any filter of A
such that tr(x) /∈ F for some dyadic number r ∈ (0, 1) ∩ D. Then there is
an MV-morphism s : A→ [0, 1] such that s(F ) ⊆ {1} and s(x) < r < 1.
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2.2.3 Semi-states on MV-algebras

In this section we characterize arbitrary meets of MV-morphism into a unit
interval as so-called semi-states.

Definition 2.1. Let A be an MV-algebra. A map s : A→ [0, 1] is called

1. a semi-state on A if

(i) s(1) = 1,

(ii) x ≤ y implies s(x) ≤ s(y),

(iii) s(x) = 1 and s(y) = 1 implies s(x� y) = 1,

(iv) s(x)� s(x) = s(x� x),

(v) s(x)⊕ s(x) = s(x⊕ x).

2. a strong semi-state on A if it is a semi-state such that

(vi) s(x)� s(y) ≤ s(x� y),

(vii) s(x)⊕ s(y) ≤ s(x⊕ y),

(viii) s(x ∧ y) = s(x) ∧ s(y),

(ix) s(xn) = s(x)n for all n ∈ N,

(x) n× s(x) = s(n× x) for all n ∈ N,

Note that any MV-morphism into a unit interval is a strong semi-state.

Lemma 2.3. Let A be an MV-algebra, s : A → [0, 1] a semi-state on A.
Then s has the Jauch-Piron property, i.e., for all x, y ∈ A, s(x) = 1 and
s(y) = 1 implies there is z ∈ A, z ≤ x and z ≤ y such that s(z) = 1.

Proof. Let x, y ∈ A such that s(x) = 1 and s(y) = 1. From (iii) we get that
z = x� y ≤ x, y satisfies s(z) = 1.

The preceding Jauch-Piron property appears at many places in the ax-
iomatics of quantum systems (see, e.g., [101], [130]). It is well known that
any state on an MV-algebra has also the Jauch-Piron property.
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Lemma 2.4. Let A be an MV-algebra, S a non-empty set of semi-states
(strong semi-states) on A. Then the point-wise meet t =

∧
S : A → [0, 1]

is a semi-state (strong semi-state) on A.

Proof. Let us check the conditions (i)-(vi) from Definition 2.1.
(i): Clearly, t(1) =

∧
{s(1) | s ∈ S} =

∧
{1 | s ∈ S} = 1.

(ii): Assume x ≤ y. Then t(x) =
∧
{s(x) | s ∈ S} ≤

∧
{s(y) | s ∈ S} =

t(y).
(iii): Let t(x) =

∧
{s(x) | s ∈ S} = 1 and t(y) =

∧
{s(y) | s ∈ S} = 1.

It follows, that, for all s ∈ S, s(x) = 1 = s(y). Hence also s(x � y) = 1.
This yields that t(x� y) =

∧
{s(x� y) | s ∈ S} = 1.

(iv, v): Since [0, 1] is linearly ordered we have (by taking in the re-
spective part of the proof either the minimum of s1(x) and s2(x) or the
maximum of s1(x) and s2(x))

t(x)� t(x) =
∧
{s1(x) | s1 ∈ S} �

∧
{s2(x) | s2 ∈ S}

=
∧
{s1(x)� s2(x) | s1, s2 ∈ S}

≥
∧
{s(x)� s(x) | s ∈ S}

=
∧
{s(x� x) | s ∈ S} = t(x� x),

t(x)� t(x) =
∧
{s1(x)� s2(x) | s1, s2 ∈ S}

≤
∧
{s(x)� s(x) | s ∈ S}

=
∧
{s(x� x) | s ∈ S} = t(x� x),

t(x)⊕ t(x) =
∧
{s1(x) | s1 ∈ S} ⊕

∧
{s2(x) | s2 ∈ S}

=
∧
{s1(x)⊕ s2(x) | s1, s2 ∈ S}

≥
∧
{s(x)⊕ s(x) | s ∈ S}

=
∧
{s(x⊕ x) | s ∈ S} = t(x⊕ x),

and
t(x)⊕ t(x) =

∧
{s1(x)⊕ s2(x) | s1, s2 ∈ S}

≤
∧
{s(x)⊕ s(x) | s ∈ S}

=
∧
{s(x⊕ x) | s ∈ S} = t(x⊕ x).
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(vi): Let us compute the following

t(x)� t(y) =
∧
{s1(x) | s1 ∈ S} �

∧
{s2(y) | s2 ∈ S}

=
∧
{s1(x)� s2(y) | s1, s2 ∈ S}

≤
∧
{s(x)� s(y) | s ∈ S}

≤
∧
{s(x� y) | s ∈ S} = t(x� y).

(vii): Applying the same considerations as in (vi) we have

t(x)⊕ t(y) =
∧
{s1(x) | s1 ∈ S} ⊕

∧
{s2(y) | s2 ∈ S}

=
∧
{s1(x)⊕ s2(y) | s1, s2 ∈ S}

≤
∧
{s(x)⊕ s(y) | s ∈ S}

≤
∧
{s(x⊕ y) | s ∈ S} = t(x⊕ y).

(viii): Similarly,

t(x ∧ y) =
∧
{s(x ∧ y) | s ∈ S} =

∧
{s(x) ∧ s(y) | s ∈ S}

=
∧
{s(x) | s ∈ S} ∧

∧
{s(y) | s ∈ S} = t(x) ∧ t(y).

(ix): Assume that x ∈ A and n ∈ N. We have, repeatedly using the
equality (D2) from the Introduction, that

(
∧
{s(x); s ∈ S})n =

∧
{s1(x)� s2(x)� · · · � sn(x) | s1, . . . sn ∈ S}

≤
∧
{s(x)� s(x)� · · · � s(x) | s1, . . . sn ∈ S,
s ∈ {s1, . . . , sn}, s(x) = max{s1(x), . . . sn(x)}}

=
∧
{s(x)n | s ∈ S} =

∧
{s(xn) | s ∈ S}

and similarly

(
∧
{s(x); s ∈ S})n =

∧
{s1(x)� s2(x)� · · · � sn(x) | s1, . . . sn ∈ S}

≥
∧
{s(x)� s(x)� · · · � s(x) | s1, . . . sn ∈ S,
s ∈ {s1, . . . , sn}, s(x) = min{s1(x), . . . sn(x)}}

=
∧
{s(x)n | s ∈ S} =

∧
{s(xn) | s ∈ S}

Thus (
∧
{s(x); s ∈ S})n =

∧
{s(xn) | s ∈ S}.

(x): It follows by the same considerations as for (ix) applied to ⊕ and
repeatedly using the equality (D1) from the Introduction.
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Lemma 2.5. Let A be an MV-algebra, s, t semi-states on A. Then t ≤ s
iff t(x) = 1 implies s(x) = 1 for all x ∈ A.

Proof. Clearly, t ≤ s yields the condition t(x) = 1 implies s(x) = 1 for all
x ∈ A.

Assume now that t(x) = 1 implies s(x) = 1 for all x ∈ A is valid
and that there is y ∈ A such that s(y) < t(y). Thus, there is a dyadic
number r ∈ (0, 1) ∩ D such that s(y) < r < t(y). By Corollary 2.1 there
is a term tr in TD such that tr(s(y)) < 1 and tr(t(y)) = 1. It follows that
s(tr(y)) = tr(s(y)) < 1 and t(tr(y)) = tr(t(y)) = 1. The last condition
yields that s(tr(y)) = 1, a contradiction.

Proposition 2.3. Let A be an MV-algebra, t a semi-state on A and St =
{s : A→ [0, 1] | s is an MV-morphism, s ≥ t}. Then t =

∧
St.

Proof. Clearly, t ≤
∧
St. Assume that there is x ∈ A such that t(x) <∧

St(x). Thus, there is a dyadic number r ∈ (0, 1) ∩ D such that t(x) <
r <

∧
St(x). Again by Corollary 2.1 there is a term tr in TD such that

t(tr(x)) = tr(t(x)) < 1. Let us put F = {z ∈ A | t(z) = 1}. The set F is by
the condition (iii) a filter of A, tr(x) 6∈ F . Hence there is by Proposition 2.2
an MV-morphism s : A→ [0, 1] such that s(F ) ⊆ {1} and s(x) < r < 1. It
follows by Lemma 2.5 that t ≤ s, i.e., s ∈ St and s(x) < r <

∧
St(x) ≤ s(x),

a contradiction.

Corollary 2.3. Any semi-state on an MV-algebra A is a strong semi-state.

Corollary 2.4. The only semi-state s on an MV-algebra A with s(0) 6= 0
is the constant function s(x) = 1 for all x ∈ A.

Corollary 2.5. The only semi-state s on the standard MV-algebra [0, 1]
with s(0) = 0 is the identity function.

Remark 2.8.

1. It is transparent that all the preceding notions and results including
Proposition 2.2 can be dualized. In particular, any dual semi-state,
i.e., a map s : A→ [0, 1] satisfying conditions (i),(ii),(iv), (v) and the
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dual condition (iii)’ s(x) = 0 and s(y) = 0 implies s(x ⊕ y) = 0 is a
join of extremal states on A.

2. Let us denote by SA the set of all semi-states on an MV-algebra
A. Then SA is a

∧
-complete sub-semi-lattice of the complete lattice

[0, 1]A such that extremal states (morphism of MV-algebras into A)
are maximal elements of SA. Similarly, the set DSA of all dual semi-
states on an MV-algebra A is a

∨
-complete sub-semi-lattice of the

complete lattice [0, 1]A such that extremal states are minimal elements
of DSA.

3. Proposition 2.3 immediately yields that two points of an MV-algebra
A are separated by extremal states if and only if they are separated
by semi-states if and only if they are separated by states.

Proposition 2.4. Let A be an MV-algebra, s a state on A. Then the
following conditions are equivalent:

(a) s is a morphism of MV-algebras,

(b) s satisfies the condition s(x ∧ ¬x) = s(x) ∧ s(¬x) for all x ∈ A,

(c) s satisfies the condition (v) from Definition 2.1,

(d) s satisfies the condition (iv) from Definition 2.1,

(e) s satisfies the condition (viii) from Definition 2.1.

Proof. (a) ⇒ (b): It is evident.
(b) ⇒ (c): Let x ∈ A. Then by (D3) s(x ⊕ x) = s(x ⊕ (x ∧ ¬x))

and x � (x ∧ ¬x) = 0. Since s is a state and (b) is valid we get that
s(x⊕(x∧¬x)) = s(x)+s(x∧¬x) = s(x)+s(x)∧s(¬x) = s(x)+s(x)∧¬s(x) =
s(x)⊕ s(x).

(c) ⇒ (d): For any state the condition (v) is equivalent with (iv).
(d) ⇒ (e): Clearly, any state satisfies conditions (i) and (ii) from Defi-

nition 2.1. Let us check the condition (iii). Assume that s(x) = 1 = s(y).
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Then s(¬x) = 0 = s(¬y) and hence again by (D3) s(x�y) = ¬s(¬x⊕¬y) =
¬s(¬x⊕ (x ∧ ¬y)) = ¬(s(¬x) + s(x ∧ ¬y)) = ¬(0 + 0) = 1.

By the assumption (b) we have that the condition (iv) is satisfied and
for any state the condition (v) is equivalent with (iv). It follows that s is a
semi-state. By Corollary 2.3 s is a strong semi-state, i.e., (viii) is satisfied.

(e) ⇒ (a): It follows from [131, Lemma 3.1].

Remark 2.9. In particular, it follows from Proposition 2.4 that the only
states which are also semi-states are extremal ones.

Definition 2.2. Let P,Q be bounded posets and let S be a set of order-
preserving maps from P to Q. Then

(i) S is called order determining if

((∀s ∈ S) s(a) ≤ s(b)) =⇒ a ≤ b

for any elements a, b ∈ P ;

(ii) S is called strongly order determining if

((∀s ∈ S) s(a) = 1 =⇒ s(b) = 1) =⇒ a ≤ b

for any elements a, b ∈ P .

Note that Greechie in [94] proved that there is a finite orthomodular
lattice that has an order determining set of states but there is no strongly
order determining set of states on it. We will show that in the setting of
MV-algebras the situation is completely different.

Proposition 2.5. Let A be an MV-algebra, S a set of semi-states on A,
SD = {s ◦ tr | s ∈ S, r ∈ (0, 1) ∩ D}. Then the following conditions are
equivalent:

(a) SD is strongly order determining,

(b) ((∀s ∈ S, r ∈ (0, 1) ∩ D) s(a) ≥ r =⇒ s(b) ≥ r) =⇒ a ≤ b for any
elements a, b ∈ A.
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(c) S is order determining.

Proof. (a) ⇐⇒ (b): A fortiori by Corollary 2.1.
(b)⇒ (c): Assume that (b) holds. Choose x, y ∈ A such that, for all s ∈ S,
s(x) ≤ s(y). Let r ∈ (0, 1)∩D, s(x) ≥ r. Then s(y) ≥ r. This yields by (b)
that x ≤ y.
(c)⇒ (a): Assume that S is order determining and that there are x, y ∈ A,
x 6≤ y such that, for all s ∈ S, r ∈ (0, 1)∩D s(tr(x)) = 1 =⇒ s(tr(y)) = 1.
It follows that there is t ∈ S such that t(x) > t(y). Thus, there is a dyadic
number r ∈ (0, 1) ∩ D such that t(y) < r < t(x). This yields that, by
Corollary 2.1, there is a term tr in TD such that tr(t(y)) < 1 and t(tr(x)) =
tr(t(x)) = 1. Therefore 1 = t(tr(y)) = tr(t(y)) < 1, a contradiction.

Corollary 2.6. Let A be an MV-algebra, S a set of MV-morphism from
A to [0, 1]. Then the following conditions are equivalent:

(a) SD is strongly order determining,

(b) S is order determining.

Note that

1. In the case of orthomodular lattices we have, for any set S of order-
preserving maps, that S = SD.

2. In the case of MV-algebras, an MV-algebra possesses an order deter-
mining set of semi-states iff it possesses an order determining set of
extremal states.

2.2.4 Functions between MV-algebras and their construc-
tion

This section studies the notion of an fm-function between MV-algebras
(strong fm-function between MV-algebras). The main purpose of this sec-
tion is to establish in some sense a canonical construction of strong fm-
function between MV-algebras. This construction is an ultimate source of
numerous examples.
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Definition 2.3. By an fm-function between MV-algebras G is meant a func-
tionG : A1 → A2 such that A1 = (A1;⊕1,¬1, 01) and A2 = (A2;⊕2,¬2, 02)
are MV-algebras and

(FM1) G(11) = 12,

(FM2) x ≤1 y implies G(x) ≤2 G(y),

(FM3) G(x) = 12 = G(y) implies G(x�1 y) = 12,

(FM4) G(x)�2 G(x) = G(x�1 x),

(FM5) G(x)⊕2 G(x) = G(x⊕1 x).

If moreover G satisfies conditions

(FM6) G(x)�2 G(y) ≤ G(x�1 y),

(FM7) G(x)⊕2 G(y) ≤ G(x⊕1 y),

(FM8) G(x) ∧2 G(y) = G(x ∧1 y),

(FM9) G(xn) = G(x)n for all n ∈ N,

(FM10) n×2 G(x) = G(n×1 x) for all n ∈ N,

we say that G is a strong fm-function between MV-algebras.
If G : A1 → A2 and H : B1 → B2 are fm-functions between MV-

algebras, then a morphism between G and H is a pair (ϕ,ψ) of morphisms of
MV-algebras ϕ : A1 → B1 and ψ : A2 → B2 such that ψ(G(x)) = H(ϕ(x)),
for any x ∈ A1.

Note that (FM8) yields (FM2), (FM9) yields (FM4) and (FM10) yields
(FM5). Also, a composition of fm-functions (strong fm-functions) is an fm-
function (a strong fm-function) again and any morphism of MV-algebras is
an fm-function (a strong fm-function).

The notion of an fm-function generalizes both the notions of a semi-state
and of a (strong) �-operator from [127] which is a (strong) fm-function G
from A1 to itself such that (FM6) is satisfied.
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We say that an �-operator G is contractive (extensive, transitive) if
G(x) ≤ x (x ≤ G(x), G(x) ≤ G(G(x))) for all x ∈ A1. An �-operator G
that is both contractive and transitive is called a conucleus.

Example 2.2. Here are some simple examples of MV-algebras with an
�-operator.

(1) The identity map on any MV-algebra A is a strong operator that is
contractive, extensive and transitive.

(2) The constant map 1 : A → A defined by 1(x) = 1 for all x ∈ A is
a strong operator that is both extensive and transitive but it is not
contractive.

(3) The map � : [0, 1]3 → [0, 1]3 given by (x, y, z) 7→ (y∧ z, x∧ z, x∧y) is
a strong operator on the MV-algebra [0, 1]3 that is neither contractive
nor extensive nor transitive.

(4) If C denotes Chang’s MV-algebra and if k is a positive integer then
the map �k : C → C given by �k(x) = k × x is a strong operator on
C that is both extensive and transitive but it is not contractive.

According to both (FM4) and (FM5), G|B(A1) : B(A1)→ B(A2) is an
fm-function (a strong fm-function) whenever G has the respective property.

Lemma 2.6. Let G : A1 → A2 be an fm-function between MV-algebras,
r ∈ (0, 1) ∩ D. Then tr(G(x)) = G(tr(x)) for all x ∈ A1.

Proof. Note that G(x)⊕2G(x) = G(x⊕1 x) by (FM5) and G(x)�2G(x) =
G(x�1 x) by (FM4). Then, since tr ∈ TD is defined inductively using only
the operations (−)⊕ (−) and (−)� (−), we get tr(G(x)) = G(tr(x)).

By a frame is meant a triple (S, T,R) where S, T are non-void sets and
R ⊆ S×T . If S = T we say that the pair (T,R) is a time frame. Having an
MV-algebra M = (M ;⊕,�,¬, 0, 1) and a non-void set T , we can produce
the direct power MT = (MT ;⊕,�,¬, o, j) where the operations ⊕, � and
¬ are defined and evaluated on p, q ∈ MT componentwise. Moreover, o, j
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are such elements of MT that o(t) = 0 and j(t) = 1 for all t ∈ T . The
direct power MT is again an MV-algebra.

The notion of frame allows us to construct new examples of MV-algebras
with a strong operator.

Theorem 2.16. Let M be a linearly ordered complete MV-algebra, (S, T,R)
be a frame and G∗ be a map from MT into MS defined by

G∗(p)(s) =
∧
{p(t) | t ∈ T, sRt},

for all p ∈ MT and s ∈ S. Then G∗ is a strong fm-function between MV-
algebras which has a left adjoint P ∗. In this case, for all q ∈ MS and
t ∈ T ,

P ∗(q)(t) =
∨
{q(s) | s ∈ T, sRt}

and P ∗ : (MS)op → (MT )op is a strong fm-function between MV-algebras.

Proof. Trivially we can verifyG∗(jMT ) = jMS due to the fact that jMT (t) =
1 for each t ∈ T thus (FM1) holds.

Moreover, for any p ∈MT and q ∈MS , we can compute:

q(s) ≤ G∗(p)(s) for all s ∈ T ⇐⇒ q(s) ≤
∧
{p(t)|t ∈ T, sRt} for all s ∈ T

⇐⇒ q(s) ≤ p(t) for all s, t ∈ T, sRt
⇐⇒

∨
i∈I{q(s)|s ∈ T, sRt} ≤ p(t) for all t ∈ T

⇐⇒P ∗(q)(t) ≤ p(t) for all t ∈ T.

This yields that q ≤ G∗(p) iff P ∗(q) ≤ p. Then P ∗ is a left adjoint of
G∗. Hence G∗ preserves arbitrary meets and hence the conditions (FM2)
and (FM8) are satisfied.

The conditions (FM3)-(FM7) and (FM9)-(FM10) can be easily shown
by the same considerations as in Lemma 2.4.

We say that G∗ : MT →MS is the canonical strong fm-function between
MV-algebras induced by the frame (S, T,R) and the MV-algebra M.
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Theorem 2.17. Let M be a linearly ordered complete MV-algebra, (T,R)
be a time frame and G∗ be a map from MT into itself defined by

G∗(p)(s) =
∧
{p(t) | t ∈ T, sRt},

for all p ∈MT and s ∈ T . Then (MT ;G∗) is an MV-algebra with a strong
operator G∗ which has a left adjoint P ∗. In this case, for all p ∈ MT and
t ∈ T ,

P ∗(p)(t) =
∨
{p(s) | s ∈ T, sRt}

and ((Mop)T ;P ∗) is an MV-algebra with a strong operator P ∗. Moreover,
the following holds:

(a) If R is reflexive then G∗ is contractive.

(b) If R is transitive then G∗ is transitive.

(c) If R is both reflexive and transitive then G∗ is a conucleus.

Proof. The first part follows from Theorem 2.16. Let us check (a). Since R
is reflexive then from tRt we obtain that G∗(p)(t) =

∧
{p(t) | t ∈ T, sRt} ≤

p(t) for any p ∈ MT . Let us proceed similarly for (b). We have, for all
s ∈ T ,

G∗(p)(s) =
∧
{p(u) | u ∈ T, sRu} ≤

∧
{p(u) | t, u ∈ T, sRt, tRu}

=
∧
{
∧
{p(u) | u ∈ T, tRu} | t ∈ T, sRt}

=
∧
{G∗(p)(t) | t ∈ T, sRt} = G∗(G∗(p))(s)

since {u ∈ T | t ∈ T, sRt, tRu} ⊆ {u ∈ T | sRu} by transitivity. The
validity of (c) follows immediately from (a) and (b).

From the preceding immediately follows Theorem 2.15 that any time
frame induces its own couple of tense operators. As the next step we will
prove that any couple of tense operators on any semisimple MV-algebra can
be embedded into ([0, 1]T , G∗, H∗) where G∗ and H∗ are a tense operators
induced by some time frame (T, ρ).
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2.2.5 The main theorem and its applications

Before proving our main theorem, we remark that semisimple MV-algebras
[46] are just subdirect products of the simple MV-algebras. Any simple
MV-algebra is uniquely embeddable into the standard MV-algebra on the
interval [0, 1] of reals. It is known that an MV-algebra is semisimple if and
only if the intersection of the set of its maximal (prime) filters is equal to
the set {1}. Note also that any complete MV-algebra is semisimple.

Hence a semisimple MV-algebra A can be embedded into [0, 1]T (see
[4]) where T is the set of all ultrafilters (morphisms into the standard MV-
algebra ) and πF (x) = x(F ) = x/F ∈ [0, 1] for any x ∈ A ⊆ [0, 1]T and any
F ∈ T ; here πF : [0, 1]T → [0, 1] is the respective projection onto [0, 1].

Theorem 2.18. Let G : A1 → A2 be an fm-function between semisimple
MV-algebras, T a set of all MV-morphism from A1 to the standard MV-
algebra [0, 1] and S a set of all MV-morphism from A2 to [0, 1].

Further, let (S, T, ρG) be a frame such that the relation ρG ⊆ S × T is
defined by

sρGt if and only if s(G(x)) ≤ t(x) for any x ∈ A1.

Then the fm- function G is representable via the canonical strong fm-
function G∗ : [0, 1]T → [0, 1]S between MV-algebras induced by the frame
(S, T, ρG) and the standard MV-algebra [0, 1], i.e., the following diagram of
fm-functions commutes:

A1
G

- A2

[0, 1]T

iTA1

?

G∗
- [0, 1]S

iSA2

?

.

Proof. Assume that x ∈ A1 and s ∈ S. Then iSA2
(G(x))(s) = s(G(x)) ≤

t(x) for all t ∈ T , (s, t) ∈ ρG. It follows that iSA2
(G(x)) ≤ G∗(iTA1

(x)).
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Note that s ◦ G is a semi-state on A1 and by Proposition 2.3 we get
that

s ◦G =
∧
{t : A1 → [0, 1] | t is an MV-morphism, t ≥ s ◦G}

=
∧
{t ∈ T | (s, t) ∈ ρG}.

This yields that actually iSA2
(G(x)) = G∗(iTA1

(x)).

Proposition 2.6. For any MV-algebra A1, any semisimple MV-algebra
A2 with a set S of all MV-morphism from A2 to [0, 1] and any map G :
A1 → A2 the following conditions are equivalent:

(i) G is an fm-function between MV-algebras.

(ii) G is a strong fm-function between MV-algebras.

Proof. (i) =⇒ (ii): Note that the composition πs ◦ iSA2
◦G is a strong semi-

state for any s ∈ T . It follows that iSA2
◦G is a strong fm-function between

MV-algebras. Since the embedding iSA2
: A2 → [0, 1]S reflects order we

obtain that conditions (FM6)-(FM10) are satisfied.
(ii) =⇒ (i): It is evident.

The above proposition leads to a natural question whether there is a
difference between fm-functions and strong fm-functions. The following
proposition shows that the classes of fm-functions and strong fm-functions
are different.

Proposition 2.7. There is an MV-algebra A with an fm-function G on A
such that G is not a strong fm-function and G is not an �-operator on A.

Proof. Let A be the Chang MV-algebra C = {0, c, c⊕c, c⊕c⊕c, . . . , . . . , 1	
(c⊕ c⊕ c), 1	 (c⊕ c), 1	 c, 1} (for more details see e.g. [73, p. 141]. Note
only that we define 0 × c = 0, n × c = c ⊕ · · · ⊕ c, 1 	 0 × c = 1 and
1	 n× c = ((. . . (1	 c)	 . . . )	 c). Also

x� y =


0 if x = n× c, y = m× c
max(0, (n−m))× c if x = n× c, y = 1	m× c
max(0, (m− n))× c if x = 1	 n× c, y = m× c
1	 (m+ n)× c if x = 1	 n× c, y = 1	m× c
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and

x⊕ y =


(m+ n)× c if x = n× c, y = m× c
1	max(0, (m− n))× c if x = n× c, y = 1	m× c
1	max(0, (n−m))× c if x = 1	 n× c, y = m× c
1 if x = 1	 n× c, y = 1	m× c.

It follows that (n × c) � (n × c) = 1 and (1 	 n × c) ⊕ (1 	 n × c) = 1
for all nonnegative integers n.

Let r be any positive integer. Any positive integer n can be uniquely
written as follows: n = 2km such that 2 6 |m, k ≥ 0 is a suitable integer.

Let us define a function Gr : C→ C by the following prescription

Gr(0) = 0, Gr(c) = r × c,

Gr(n× c) =

{
2kGr(m× c) if n = 2km
Gr((n− 1)× c)⊕ c otherwise,

Gr(1	 n× c) = 1	Gr(n× c).

It is easy to check that Gr is an fm-function for all positive integers r
and, e.g. for r = 2, G2 does not satisfy (FM6) and (FM10). Namely, we
have

G2(0) = 0, G2(c) = 2× c,G2(2× c) = 4× c,G(3× c) = 5× c,
G(4× c) = 8× c,G(5× c) = 9× c, . . . .

It follows that G2(4× c)�G2(1	 3× c) = 8.c� (1	 5× c) = 3× c 6≤
G2(4 × c � (1 	 3 × c)) = G2(c) = 2 × c and G2(3 × c) = 5 × c 6= 6 × c).
Therefore G2 is not a strong fm-function and G2 is not an �-operator on
C.

Now, let us check that Gr is an fm-function for all positive integers r.

(FM1) Gr(1) = 1	Gr(0) = 1	 0 = 1.

(FM2) Let x, y ∈ C. It is enough to check that x < y yields Gr(x) <
Gr(y).
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(a) Let y = n2 × c, n2 = 2k2m2 be a nonnegative integer such
that 2 6 |m2, k2 ≥ 0 is a suitable integer.
We will proceed by induction with respect to n2. Let x < y.
Then x = n1 × c, n1 = 2k1m1 such that 2 6 |m1, k1 ≥ 0 is a
suitable integer.
If n2 = 1 then n1 = 0 , i.e., x = 0 and y = c. It follows that
Gr(x) = 0 < r × c = Gr(y).
Now, assume that n2 > 1 and the statement holds for all
n3 < n2, i.e., n1 × c < n3 × c < n2 × c implies Gr(n1 × c) <
Gr(n3 × c).
We put d = |k1− k2| and we will proceed by induction with
respect to d. If d = 0 then k1 = k2. If x = 0 we are finished.
Let x > 0. Then also 0 < m1 < m2 and Gr((m1 − 1)× c) <
Gr((m2 − 1) × c) since (m2 − 1) × c < n2. This yields
Gr(x) = 2k1 ×Gr(m1 × c) = 2k1 × (Gr((m1 − 1)× c)⊕ c) <
2k1 × (Gr((m2 − 1)× c)⊕ c) = 2k2 ×Gr(m2 × c) = Gr(y).
Assume now that d > 1. If x = 0 we are finished. Let x > 0.
If k2 = k1+d then we obtain that 0 < m1 < 2dm2. Then also
2m3 = m1−1 < 2dm2, i.e., m3 < 2d−1m2. By the induction
hypothesis we get that Gr(m3 × c) < 2d−1 ×Gr(m2 × c). It
follows that 2Gr(m3 × c) = Gr((2m3) × c) < Gr((2m3) ×
c)⊕ c = Gr((2m1)× c) < 2d ×Gr(m2 × c).
If k1 = k2 + d then we have that 0 < 2dm1 < m2. By
the induction hypothesis with respect to n2 we have that
Gr(2

d ×m1) ≤ Gr((m2 − 1)× c) < Gr(m2 × c)
(b) Let y = 1	n2×c, n2 be a nonnegative integer and let x < y,

x ∈ C.
If x = n1 × c then Gr(x) = m1 × c and Gr(y) = 1	m2 × c
for suitable nonnegative integers m1,m2. It follows that
Gr(x) < Gr(y).
If x = 1 	 n1 × c then n2 < n1. From (a) we get that
Gr(n2×c) < Gr(n1×c). Therefore Gr(x) = 1	Gr(n1×c) <
1	Gr(n2 × c) = Gr(y) and we are done.
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(FM3) Let x, y ∈ C, Gr(x) = 1 = Gr(y). Then, from the definition
of Gr, we get that x = 1 = y. It follows that x � y = 1, i.e.,
Gr(x� y) = 1.

(FM4) Let x ∈ C. If x = 1	 n× c for some nonnegative integer n then
Gr(x) = 1	m×c for some nonnegative integer m. It follows that
Gr(x)�Gr(x) = 1	 (2m)× c and Gr(x�x) = Gr(1	 (2n)× c).
But Gr((2n)× c) = 2×Gr(n× c) = 2(m× c), i.e., Gr(x� x) =
Gr(x)�Gr(x).

If x = n×c for some nonnegative integer n thenGr(x) = m×c for
some nonnegative integer m. This yields that Gr(x)�Gr(x) = 0
and that Gr(x� x) = Gr(0) = 0.

(FM5) Let x ∈ C. If x = n × c for some nonnegative integer n then
Gr(x) = m×c for some nonnegative integer m. We have Gr(x)⊕
Gr(x) = (2m)×c and Gr(x⊕x) = Gr((2n)×c) = 2×Gr(n×c) =
(2m)× c.
Now, let x = 1 	 n.c for some nonnegative integer n. Then
Gr(x) = 1 	m × c for some nonnegative integer m. We obtain
Gr(x)⊕Gr(x) = 1 and Gr(x⊕ x) = Gr(1) = 1.

Note that our approach of using semi-states in the above proof of The-
orem 2.18 also covers the main result of the paper [127] which is Theorem
4.5 from [127].

Theorem 2.19. [127, Theorem 4.5] (Representation theorem for MV-
algebras with an �-operator) For any semisimple MV-algebra M with
an �-operator G, M is embeddable via MV-operator morphism iTM into
the canonical MV-algebra LG = ([0, 1]T ;G∗) with a strong fm-operator G∗

induced by the canonical frame (T, ρG) and the standard MV-algebra [0, 1].
Further, for all x ∈M and for all s ∈ T , s(G(x)) = G∗((t(x))t∈T )(s).

The next theorem, which is a solution of a half of the Open problem 5.1
in [54], was first proved by the first author of the paper for tense operators
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satisfying (FM9) and (FM10) and then, based on the idea of the first author,
proved in the full generality by the second author as Theorem 5.5 from [127],
can be written as follows.

Theorem 2.20. Let M be a semisimple MV-algebra with tense operators
G and H. Then (M, G,H) can be embedded into the tense MV-algebra
([0, 1]T , G∗, H∗) induced by the frame (T, ρG), where T is the set of all
maximal proper filters and the relation ρG is defined by

AρGB if and only if G(x)/A ≤ x/B for any x ∈M.

Proof. First, let us define a second relation ρH ⊆ T 2 by the stipulation:

BρHA if and only if H(x)/B ≤ x/A for any x ∈M.

Claim 1. The equality ρG = ρ−1
H holds.

Proof. Let us suppose that AρGB for some A,B ∈ T. Due to Definition
2.1 vi) we have ¬G¬H(x) ≤ x and ¬x/A ≤ G¬H(x)/A. AρGB yields
G¬H(x)/A ≤ ¬H(x)/B and together ¬x/A ≤ ¬H(x)/B yields H(x)/B ≤
x/A for any x ∈M.

Due to the definition of ρH we have BρHA and ρG ⊆ ρ−1
H . Analogously

we can prove the second inclusion.

The remaining part follows from Theorem 2.18. Basically, the obtained
equations G∗(x) = G(x) and H∗(x) = H(x) finish the proof.

Theorem 2.21. a) If ([0, 1]T , G∗, H∗) is a tense MV-algebra induced by a
time frame (T, ρ), then

(i) if ρ is reflexive then G∗(x) ≤ x and H∗(x) ≤ x hold for any x ∈
[0, 1]T ,

(ii) if ρ is symmetric then G∗(x) = H∗(x) holds for any x ∈ [0, 1]T ,

(iii) if ρ is transitive then G∗G∗(x) ≥ G∗(x) and H∗H∗(x) ≥ H∗(x) hold
for any x ∈ [0, 1]T .
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b) Let (M, G,H) be a semisimple tense MV-algebra and (T, ρG) the
time frame which induces the tense MV-algebra ([0, 1]T , G∗, H∗) by Theorem
2.20. Then

(i) if G(x) ≤ x and H(x) ≤ x hold for any x ∈M then ρG is reflexive,

(ii) if G(x) = H(x) holds for any x ∈M then ρG is symmetric,

(iii) if GG(x) ≥ G(x) and HH(x) ≥ H(x) hold for any x ∈M then ρG is
transitive.

Proof. ai) If the relation ρ is reflexive, then iρi yieldsG∗(x)(i) =
∧
iρj x(j) ≤

x(i) for any i ∈ T. The part for H∗ we can prove analogously.
aii) If ρ is symmetric then G∗(x)(i) =

∧
iρj x(j) =

∧
jρi x(j) = H∗(x)(i)

for any i ∈ T which clearly yields G∗ = H∗.
aiii) If ρ is transitive then {x(k) | iρj and jρk} ⊆ {x(k) | iρk} and then

G∗G∗(x)(i) =
∧
iρj

G∗(x)(j) =
∧
iρj

∧
jρk

x(k)

=
∧
{x(k) | iρj and jρk} ≥

∧
iρk

x(k) = G∗x(i)

holds for any i ∈ T.
b) We remark that relation ρG in Theorem 2.20 is defined by

AρGB if and only if G(x)/A ≤ x/B for any x ∈M.

bi) If G(x) ≤ x for any x ∈M then G(x)/A ≤ x/A holds for any x ∈M
and thus AρGA. Together ρG is reflexive.

bii) The Claim 1 in the proof of Theorem 2.20 shows thatG(x)/A ≤ x/B
for any x ∈M if and only if H(x)/B ≤ x/A for any x ∈M. If G = H holds
then G(x)/A ≤ x/B for any x ∈ M if and only if G(x)/B ≤ x/A for any
x ∈M and consequently AρGB holds if and only if BρGA holds. Thus the
relation ρG is symmetric.

biii) Let us suppose that G(x) ≤ GG(x) for any x ∈ M. If AρGB and
BρGC hold then any x ∈M satisfiesG(x)/A ≤ GG(x)/A ≤ G(x)/B ≤ x/C
which yields AρGC. Thus the relation ρG is transitive.
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Remark 2.10. Note that one can extend the number of fm-functions be-
tween MV-algebras arbitrarily and our results remain valid. Similarly as for
semi-states in Remark 2.8 we could introduce the notion of a dual (strong)
fm-function and all the preceding results would also remain valid in this
dual setting.

Remark 2.11. We have settled a half of the Open problem 5.1 in [54]
using a more general approach of fm-functions. The remaining part asks
about the existence of a representation theorem for any tense MV-algebra
via Di Nola representation theorem for MV-algebras. Note that in general
an ultraproduct of a complete linearly ordered MV-algebra need not be a
complete lattice hence the formulation of the remaining part [54] has to be
changed accordingly to this fact. We hope that our results will be a next
step in obtaining a general representation theorem for tense MV-algebras.

We expect that our method can be easily applied to modal or similar
operators that may be treated as universal quantifiers on various types
of MV-algebras. Also we expect some applications towards the field of
quantum logic.



Chapter 3

Lattice effect algebras

3.1 Introduction and preliminaries

Effect algebras belong among the so-called ‘quantum structures’, i.e. al-
gebraic structures that are related to the logical foundations of quantum
mechanics. Some well-established structures, such as MV-algebras and or-
thomodular lattices, can be regarded as subclasses of effect algebras. We
dare not explain the physical background, and so we borrow the words
of Foulis and Bennett, who introduced effect algebras in their paper [84]:
‘The effects in a quantum-mechanical system form a partial algebra and
a partially ordered set which is the prototypical example of the effect al-
gebras . . . ’ In [109], independently of [84], Kôpka and Chovanec defined
D-posets that are in fact equivalent to effect algebras, albeit the motiva-
tion behind D-posets was different. Both effect algebras and D-posets are
partial algebras, but we proved in [36] that it is possible to make them into
total algebras, and the class of algebras thus obtained is even equation-
ally definable (it is a finitely based variety). However, this approach has
a drawback: many non-isomorphic algebras in the variety determine the
same effect algebra. The situation is much better in case of lattice-ordered
effect algebras because if the underlying poset is a lattice, then there is a
‘canonical totalization’ giving a natural one-one correspondence between

68
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lattice effect algebras and the algebras derived from them. Thus we can
identify the class of lattice-ordered effect algebras with a certain variety,
say E , which contains the variety of MV-algebras as well as the variety
(term equivalent to the variety) of orthomodular lattices, and is contained
in the variety of our ‘basic algebras’ that we defined in [35]. In what follows,
we study subvarieties of the variety DE that is defined—relative to E—by
lattice distributivity. We axiomatize all finitely generated subvarieties of
DE (Section 3.2.1) and then describe the free algebras in these varieties
(Section 3.2.2).

Though we assume familiarity with the basics of effect algebras and
MV-algebras, we briefly explain all necessary concepts that are used here;
our standard reference is [73] for effect algebras, and [46] for MV-algebras.

First, the definition.
By an effect algebra is meant a structure E = (E; +, 0, 1) where 0 and 1

are distinguished elements of E, 0 6= 1, and + is a partial binary operation
on E satisfying the following axioms for p, q, r ∈ E:

(E1) if p+ q is defined then q + p is defined and p+ q = q + p

(E2) if q+ r is defined and p+ (q+ r) is defined then p+ q and (p+ q) + r
are defined and p+ (q + r) = (p+ q) + r

(E3) for each p ∈ E there exists a unique p′ ∈ E such that p+ p′ = 1; p′ is
called a supplement of p

(E4) if p+ 1 is defined then p = 0.

In every effect algebra E we can introduce the induced order ≤ on E and
the partial operation − as follows

x ≤ y if for some z ∈ E x+ z = y, z = y − x

(see e.g. [73] for details). Then (E;≤) is an ordered set and 0 ≤ x ≤ 1 for
each x ∈ E.

A lattice effect algebra, or a lattice-ordered effect algebra, is one which is
a lattice with respect to its natural ordering. If the lattice is distributive,
we speak of distributive lattice effect algebras.
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It is worth noticing that a+ b exists in an effect algebra E if and only if
a ≤ b′ (or equivalently, b ≤ a′). This condition is usually expressed by the
notation a⊥b (we say that a, b are orthogonal). Dually, we have a partial
operation · on E such that a · b exists in an effect algebra E if and only if
a′ ≤ b in which case a · b = (a′ + b′)′. This allows us to equip E with a
dual effect algebraic operation such that Eop = (E; ·, 1, 0) is again an effect
algebra, ′E

op
=′E=′ and ≤Eop=≤op.

A morphism of effect algebras is a map between them such that it
preserves the partial operation +, the bottom and the top elements. A
map s : E → [0, 1] is called a state on E if s(0) = 0, s(1) = 1 and
s(x + y) = s(x) + s(y) whenever x + y exists in E. Note that the real
unit interval [0, 1] is an effect algebra such that x+ y exists in [0, 1] if and
only if the usual sum of x and y is less or equal to 1.

A morphism f : P1 → P2 of bounded posets is an order, top element
and bottom element preserving map. Any morphism of effect algebras is a
morphism of corresponding bounded posets. A morphism f : P1 → P2 of
bounded posets is order reflecting if, for all a, b ∈ P1,

f(a) ≤ f(b) if and only if a ≤ b.

An isomorphism of effect algebras is a surjective order reflecting mor-
phism of effect algebras. In particular, ′ : E → Eop is an isomorphism of
effect algebras.

On any lattice effect algebra E we may introduce total operations ⊕
and � as follows: x⊕ y = (x ∧ y′) + y and x� y = (x′ ⊕ y′)′.

An E-morphism between lattice effect algebras is a morphism f : E1 →
E2 of effect algebras such that

(i) f(x⊕ x) = f(x)⊕ f(x).

Note that from the condition (i) we automatically have the following con-
dition:

(ii) f(x� x) = f(x)� f(x).

Any isomorphism of lattice effect algebras is an E-morphism which pre-
serves lattice operations as well.
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Prominent examples of lattice effect algebras include orthomodular lat-
tices and MV-algebras:

Orthomodular lattices can be identified with lattice effect algebras sat-
isfying the condition that x + x is defined only if x = 0, because when
(E;∨,∧, ′, 0, 1) is an orthomodular lattice, then (E; +, 0, 1) (here + is the
restriction of ∨ to the pairs x, y with x ≤ y′) is a lattice effect algebra that
satisfies the condition.

MV-algebras are equivalent to the so-called MV-effect algebras, i.e. lat-
tice effect algebras where (x∨y)′+y = x′+(x∧y) for all x, y. Specifically, if
(E;⊕,¬, 0) is an MV-algebra, then (E; +, 0, 1) (here + is the restriction of
⊕ to the pairs x, y with x ≤ ¬y) is an MV-effect algebra in which x′ = ¬x,
and the total addition ⊕ can be recovered from the partial addition + by
x⊕y = (x∧y′)+y. On the other hand, given an MV-effect algebra, letting

x⊕ y = (x ∧ y′) + y and ¬x = x′ (3.1)

we obtain an MV-algebra in which x + y = x ⊕ y for x ≤ ¬y. It follows
that any linearly ordered effect algebra is an MV-algebra.

It is known that the variety of MV-algebras is generated by the stan-
dard MV-algebra ([0, 1];⊕,¬, 0). In the corresponding MV-effect algebra
([0, 1]; +, 0, 1), the partial + is just the restriction to [0, 1] of the usual ad-
dition of reals. Finite subalgebras of ([0, 1];⊕,¬, 0) are important, too. The
standard n-element MV-chain is the subalgebra of ([0, 1];⊕,¬, 0) with the
universe Cn =

{
0, 1

n−1 , . . . ,
n−2
n−1 , 1

}
.

Another crucial example is the so-called (distributive) diamond :
Let D = {0, a, b, 1} be equipped with + as follows:

+ 0 a b 1

0 0 a b 1
a a 1 . .
b b . 1 .
1 1 . . .

Then (D; +, 0, 1) is a distributive lattice effect algebra where a′ = a and
b′ = b; the induced lattice is distributive (a and b are atoms). We should
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note that (D; +, 0, 1) is not an MV-effect algebra since (a∨b)′+b = b while
a′ + (a ∧ b) = a.

The significance of the diamond follows from the following result (see
[95, Theorem 7.9]):

All finite distributive lattice effect algebras are direct products
of finite chains and diamonds.

Here, ‘finite chains’ are the MV-effect algebras (Cn; +, 0, 1) corresponding
to finite subalgebras of the standard MV-algebra, and direct products of ef-
fect algebras are defined in a natural manner, i.e. (x1, . . . , xs)+(y1, . . . , ys)
is defined and equals (x1+y1, . . . , xs+ys) provided that xi+yi is defined for
every i ∈ {1, . . . , s}. Therefore, since the focus is on distributive lattice ef-
fect algebras, it is clear that the effect algebras (Cn; +, 0, 1) and (D; +, 0, 1)
will play a central role in our exposition.

Let us return to (3.1). Using this rule, all lattice effect algebras, not only
MV-effect algebras, can be made total algebras; that is, with an arbitrary
lattice effect algebra (E; +, 0, 1) we can associate the algebra (E;⊕,¬, 0)
where the total operations ⊕ and ¬ are defined by (3.1). For example, for
the diamond (D; +, 0, 1) we have:

⊕ 0 a b 1

0 0 a b 1
a a 1 b 1
b b a 1 1
1 1 1 1 1

¬ 0 a b 1

1 a b 0

We have proved in [35] that the class of algebras that arise in this way
is axiomatized by the identities

x⊕ 0 = x, (B1)

¬¬x = x, (B2)

¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x, (B3)

¬
(
¬(¬(x⊕ y)⊕ y)⊕ z

)
⊕ (x⊕ z) = 1, (B4)

together with the quasi-identity
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(E) x ≤ ¬y & x⊕ y ≤ ¬z ⇒ (x⊕ y)⊕ z = x⊕ (z ⊕ y),

where we put 1 = ¬0 and for any pair of terms we write s ≤ t as a shorthand
for ¬s⊕ t = 1. The quasi-identity (E) can be equivalently rewritten as an
identity, e.g. as

(E’) (x⊕ y)⊕ (¬(x⊕ y) ∧ z) = x⊕
(
(¬(x⊕ y) ∧ z)⊕ y

)
.

In fact, there is a one-one correspondence between lattice effect algebras
and these total algebras, just as in the case of MV-effect algebras and MV-
algebras. To be more concrete, if (E; +, 0, 1) is a lattice effect algebra, then
(E;⊕,¬, 0) satisfies (B1)–(B4) and (E), and the initial partial + is obtained
by restricting ⊕ to the pairs x, y with x ≤ ¬y. Conversely, if (E;⊕,¬, 0) is
an algebra satisfying (B1)–(B4) and (E), then (E; +, 0, 1) is a lattice effect
algebra once we put x + y = x ⊕ y for x ≤ ¬y; the orthosupplement of
x is just ¬x. The quasi-identity (E) ensures that + is commutative and
associative in the sense of the axioms (i) and (ii).

According to [35], algebras (E;⊕,¬, 0) of type (2, 1, 0) that fulfill the
above identities (B1)–(B4) are called basic algebras. The name ‘basic alge-
bra’ was used just as a makeshift. The original motivation for the introduc-
tion of these structures was to mimic the relationship between MV-algebras
and boolean algebras by replacing the latter ones with orthomodular lat-
tices. In fact, basic algebras as such are too general from this point of view,
but they are a common ‘base’ for other structures that could be regarded
as standing to orthomodular lattices as MV-algebras stand to boolean al-
gebras, and hence ‘basic algebras’. A basic algebra is commutative if the
operation ⊕ is commutative.

Basic algebras are to some extent similar to MV-algebras; especially,
the stipulation

x ≤ y iff ¬x⊕ y = 1 (3.2)

defines a bounded lattice in which the join x ∨ y and the meet x ∧ y are
given by

x ∨ y = ¬(¬x⊕ y)⊕ y and x ∧ y = ¬(¬x ∨ ¬y). (3.3)
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Moreover, for each a ∈ E, the map βa : x 7→ ¬x⊕a is an antitone involution
on the interval [a, 1] = {x ∈ E | a ≤ x}, and the algebra (E;⊕,¬, 0)
is completely determined by the lattice and the βa’s (a ∈ E), because
¬x = β0(x) and x⊕ y = βy(¬x∨ y) for all x, y ∈ E. On the other hand, let
(B;∨,∧, 0, 1) be a bounded lattice where every interval [a, 1] is equipped
with a fixed antitone involution, say γa. Then we can define ¬x = γ0(x) and
x⊕ y = γy(¬x ∨ y), and it is easy to verify that the algebra (B;⊕,¬, 0) is
a basic algebra; its underlying lattice is just (B;∨,∧, 0, 1) and the antitone
involutions are the γa’s (i.e. βa = γa for every a ∈ B). In other words,
(E;⊕,¬, 0) is a basic algebra if and only if

• (E;∨,∧, 0, 1) with ∨ and ∧ defined by (3.3) is a bounded lattice whose
induced ordering is given by (3.2),

• the maps βa : x 7→ ¬x ⊕ a are antitone involutions on the intervals
[a, 1],

• ¬x = β0(x) and x⊕ y = βy(¬x ∨ y) for all x, y ∈ E.

This approach to basic algebras as lattices with antitone involutions
clarifies their arithmetical properties that we will use without explicit ref-
erence. Besides trivialities such as y ≤ x ⊕ y, x ≤ y iff ¬y ≤ ¬x,
x ⊕ 0 = x = 0 ⊕ x, x ⊕ 1 = 1 = 1 ⊕ x or ¬x ⊕ x = 1 = x ⊕ ¬x, it is
easy to see that the addition ⊕ is monotone in the first argument, i.e.

x ≤ y ⇒ x⊕ z ≤ y ⊕ z. (3.4)

Indeed, x ≤ y yields ¬x ∨ z ≥ ¬y ∨ z ≥ z whence βz(¬x ∨ z) ≤ βz(¬y ∨ z)
because βz is an antitone involution on [z, 1]. On the other hand, ⊕ is not
monotone in the second argument, i.e. x ≤ y need not imply z⊕x ≤ z⊕ y,
which can be seen e.g. in the algebra (D;⊕,¬, 0) corresponding to the
diamond effect algebra (D; +, 0, 1).

Having the above correspondence in mind, let (E; +, 0, 1) be a lattice
effect algebra. It is not hard to show that the map γa : x 7→ x′ + a is an
antitone involution on [a, 1], for every a ∈ E. The basic algebra (E;⊕,¬, 0)
assigned to the lattice (E;∨,∧, 0, 1) and the antitone involutions γa (a ∈
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E) is defined as follows: ¬x = γ0(x) = x′ and x ⊕ y = γy(¬x ∨ y) =
(x′ ∨ y)′ + y = (x ∧ y′) + y, i.e. exactly by (3.1), and therefore, as we
have already mentioned, lattice effect algebras can be identified with basic
algebras satisfying (E).

Following [32], we call a basic algebra which fulfills (E’) an effect basic
algebra. Hence the class of effect basic algebras is a variety.

Orthomodular lattices as well as MV-algebras are subvarieties of effect
basic algebras: MV-algebras coincide with associative basic algebras and
orthomodular lattices are term equivalent to basic algebras satisfying the
identity x ⊕ (x ∧ y) = x. It is worth observing that although the partial
addition + in orthomodular lattices is the restriction of ∨, the total addi-
tion ⊕ defined by (3.1), i.e. x ⊕ y = (x ∧ y′) ∨ y, agrees with ∨ only in
boolean lattices. The identity x⊕ (x ∧ y) = x is a direct translation of the
orthomodular law.

In effect algebras, there is an important concept of compatibility: Two
elements a, b in an effect algebra (E; +, 0, 1) are said to be compatible if
there exist a1, b1, c ∈ E such that a = c + a1, b = c + b1 and a1 + b1 + c
is defined. This is equivalent to saying that (a ∨ b)′ + b = a′ + (a ∧ b)
provided that (E; +, 0, 1) is a lattice effect algebra. A block is a maximal
set of mutually compatible elements. It was proved in [35] that a, b are
compatible in a lattice effect algebra if and only if a ⊕ b = b ⊕ a in the
assigned effect basic algebra, thus a block is a maximal subset B with the
property that x⊕ y = y ⊕ x for all x, y ∈ B.

It has been known (see [137]) that any lattice effect algebra is covered by
its blocks and that the blocks are MV-effect algebras, i.e., roughly speaking,
lattice effect algebras are unions of MV-algebras. This can be used in order
to characterize effect basic algebras within basic algebras:

A basic algebra is an effect basic algebra if and only if all its
blocks are subalgebras that are MV-algebras.

(More correctly, we should say that the blocks are subuniverses and the
corresponding subalgebras are MV-algebras.) In the finite case one can
even prove that a basic algebra is an effect basic algebra if and only if the
blocks are subalgebras (cf. [35, Theorem 7.9 and Corollary 7.10]).
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Consequently, in effect basic algebras, though ⊕ is not associative, for
every integer k ≥ 1 we can unambiguously write

k · x = x⊕ x⊕ · · · ⊕ x

(with k occurrences of x) because each element together with all its ‘multi-
ples’ belongs to a block, which is an MV-algebra. If we want to define k · x
for basic algebras in general, we have to be more precise: by induction,

1 · x = x and k · x = ((k − 1) · x)⊕ x for k > 1.

Once the meaning of ‘k times x’ is clear, we further define ‘x to the k’ by

xk = ¬(k · ¬x).

Since in the standard MV-algebra ([0, 1];⊕,¬, 0) we have

k · x = min{kx, 1}

and
xk = max{1− k(1− x), 0},

the next observation is straightforward: Given a positive integer k, in all
MV-chains Cn with n− 1 ≤ k, since Cn =

{
0, 1

n−1 , . . . ,
n−2
n−1 , 1

}
, we have

k · x =

{
0 if x = 0,

1 otherwise,
xk =

{
1 if x = 1,

0 otherwise.
(3.5)

The same holds true in the diamond D provided that k ≥ 2.
We shall write kx instead of k ·x except for the cases where the absence

of the dot could make the expressions a bit confusing.
We close this preliminary section with a few more fact about basic

algebras. Like in MV-algebras, we want to define ‘x minus y’. But ⊕ is
not commutative, and so in basic algebras, there are two distinct natural
subtractions defined by

x	 y = ¬(¬x⊕ y) and x ∗ y = ¬(y ⊕ ¬x).
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The addition ⊕ is then recovered by

x⊕ y = ¬(¬x	 y) = ¬(¬y ∗ x).

It is obvious that x	y = ¬y∗¬x and x∗y = ¬y	¬x, and the operations 	
and ∗ coincide only in commutative basic algebras. Recalling the properties
of ¬ and ⊕ we easily obtain:

• ¬x = 1	 x = 1 ∗ x,

• x	 0 = x ∗ 0 = x,

• x ≤ y iff x	 y = 0 iff x ∗ y = 0,

• x ∨ y = (x	 y)⊕ y and x ∧ y = x ∗ (x ∗ y),

• x ≤ y ⇒ x	 z ≤ y 	 z and z ∗ y ≤ z ∗ x,

where the last item follows from the one-sided monotonicity (3.4). Depend-
ing on the context, we alternate 	 and ∗, but we might prefer ∗ since for
every a, the map x 7→ a ∗ x is an antitone involution on the interval [0, a].
Hence, for x, y ∈ [0, a] we have a∗ (x∨ y) = (a∗x)∧ (a∗ y) and dually. The
subtraction 	 is useful, too; for instance, for any a ≤ b, the map x 7→ b	x
is a lattice isomorphism between the intervals [a, b] and [0, b	a]. Moreover,
	 is tied up with ⊕ via the dual residuation law x⊕y ≥ z iff x ≥ z	y, thus
basic algebras could be viewed as certain (dually) residuated structures.

Finally, we say that an element x in a basic algebra A is sharp if x∧¬x =
0 (or equivalently, if x ∨ ¬x = 1), i.e. if ¬x is a complement of x in the
underlying lattice. It can easily be shown that x is sharp if and only if
x⊕x = x (because ¬x∨x = ¬(x⊕x)⊕x and ¬x⊕x = 1, see [35]). In case
of effect basic algebras, the sharp elements form a subalgebra (which is an
orthomodular lattice in its own right), while in general, the sharp elements
of a basic algebra do not even form a sublattice of the underlying lattice.
Let us denote by S(A) the set of all sharp elements of A.
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3.2 Finitely generated varieties of distributive ef-
fect algebras

3.2.1 Finitely generated subvarieties: Axiomatization

We identify lattice effect algebras and effect basic algebras, hence the ambi-
ent variety is the variety E of effect basic algebras, which is axiomatized by
the identities (B1)–(B4) and (E’). DE is the subvariety of distributive effect
basic algebras. We refer to basic algebras by boldface letters indicating the
universe of the algebra, i.e. E is the basic algebra (E;⊕,¬, 0). In particu-
lar, for every integer n ≥ 2, Cn is the standard n-element MV-chain with
the universe Cn =

{
0, 1

n−1 , . . . ,
n−2
n−1 , 1

}
, and D is the effect basic algebra

corresponding to the diamond effect algebra (D; +, 0, 1). Let us notice that
all Cn’s as well as D are simple algebras.

Proposition 3.1. Up to isomorphism, every finite algebra in DE is of the
form Cm1

k1
× · · · ×Cms

ks
×Dp for some integers ki ≥ 2, mi ≥ 0 and p ≥ 0.

Proof. This is just a reformulation of Theorem 7.9 from [95] that we have
quoted in Section 3.1 because finite distributive lattice effect algebras are di-
rect products of finite chains and diamonds, and as can easily be seen, direct
products of lattice effect algebras naturally correspond to direct products
of algebras in the variety E .

The variety of basic algebras, and hence E and DE , has some nice con-
gruence properties: besides being congruence-distributive (which follows
from the fact that basic algebras are lattices), basic algebras are congruence-
permutable and regular (see [35, Theorem 3.12]).

Corollary 3.1. Every finitely generated subvariety of DE is generated by
a finite set K consisting of finite MV-chains and/or D. The subdirectly
irreducible algebras in the variety V (K) generated by K are again finite
MV-chains and/or D (the subalgebras of the members of K).

Proof. The first statement follows from Proposition 3.1. Owing to congrue-
nce-distributivity, and since the algebras in K are finite and simple, the
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subdirectly irreducible members of V (K) are just the subalgebras of the
algebras from K (cf. [27, Corollary IV.6.10]).

The main goal for this section is to axiomatize all finitely generated
subvarieties of DE , i.e. the varieties V (K) where K is a finite set consisting
of finite MV-chains, say Ck1 , . . . ,Cks , and the diamond D. If K does not
contain D, then V (K) is a variety of MV-algebras, and the axiomatiza-
tion of finitely generated varieties of MV-algebras is well-known (see [46]).
The case K = {D} was solved in [32] (see below), hence we are primarily
interested in the case when K contains MV-chains and D.

It was proved in [32] that the variety V (D) can be axiomatized—relative
to the variety DE—by the identity

(x ∗ y) ∗ 2z = (x ∗ 2z) ∗ (y ∗ 2z).

(Actually, this is not the identity from [32] but its translation into the
language of ⊕ and ∗ obtained by eventually replacing each variable v with
¬v.) The question naturally arises what happens if 2z in the identity is
replaced with kz, for some integer k > 2? We shall prove that the identity

(x ∗ y) ∗ kz = (x ∗ kz) ∗ (y ∗ kz) (Ek)

axiomatizes the variety generated by the MV-chains C2, . . . ,Ck+1 and by
the diamond D, which is the join of V (D) with the variety V (C2, . . . ,Ck+1)
of k-potent MV-algebras (i.e. MV-algebras satisfying the identity kx =
(k + 1)x, see [46]).

We let Ek and DEk denote the variety of effect basic algebras satisfying
(Ek) and the variety of distributive effect basic algebras satisfying (Ek),
respectively. We emphasize that in what follows k can be any positive
integer, i.e. we admit that k = 1 or k = 2. It should be clear by the
observation (3.5) and the properties of the subtraction ∗ that the MV-
chains C2, . . . ,Ck+1 all belong to DEk, and so does D if k ≥ 2.

Lemma 3.1. Let A be a basic algebra (not necessarily an effect basic al-
gebra) satisfying the identity (Ek). Then for all x, y, z ∈ A:
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(i) if y ≤ kx, then kx⊕ y = kx;

(ii) kx⊕ kx = kx and kx⊕ x = kx = x⊕ kx;

(iii) if x, y ≤ kz, then x⊕ y ≤ kz;

(iv) x ∗ y ≤ kz iff x	 y ≤ kz.

Proof. (i) By (Ek), for any y ≤ kx we have ¬y ∗ kx = (1 ∗ y) ∗ kx =
(1∗kx)∗(y∗kx) = ¬kx∗0 = ¬kx whence kx⊕y = ¬(¬y∗kx) = ¬¬kx = kx.

(ii) The equations kx⊕ kx = kx and kx ⊕ x = kx follow directly from
(i) as x ≤ kx. From the inequalities kx ≤ x ⊕ kx ≤ kx ⊕ kx = kx, which
follow from (3.4), we get x⊕ kx = kx.

(iii) By (i) and (3.4), if x, y ≤ kz, then x⊕ y ≤ kz ⊕ y = kz.
(iv) Let x ∗ y ≤ kz. Then 0 = (x ∗ y) ∗ kz = (x ∗ kz) ∗ (y ∗ kz), and so

x∗kz ≤ y∗kz. This yields ¬y∗kz = (1∗y)∗kz = (1∗kz)∗(y∗kz) ≤ (1∗kz)∗
(x∗kz) = (1∗x)∗kz = ¬x∗kz whence 0 = (¬y∗kz)∗(¬x∗kz) = (¬y∗¬x)∗kz.
Thus x	 y = ¬y ∗ ¬x ≤ kz.

Since x	 y = ¬y ∗ ¬x and x ∗ y = ¬y 	 ¬x, the same argument proves
the reverse implication: if x 	 y ≤ kz, then by what we have just shown
¬y ∗ ¬x ≤ kz implies ¬y 	 ¬x ≤ kz, i.e. x ∗ y ≤ kz.

Corollary 3.2. The variety of basic algebras satisfying the identity (E1) is
term equivalent to the variety of boolean algebras.

Proof. Let A be a basic algebra that fulfills (E1). In view of Lemma 3.1
(iv), A satisfies the identity x ∗ y = x	 y, which is obviously equivalent to
commutativity of ⊕. Then x∨y ≤ x⊕y for all x, y ∈ A, and Lemma 3.1 (iii)
actually entails that x ∨ y = x⊕ y. Recalling the identity ¬x⊕ x = 1, and
since the underlying lattice of a commutative basic algebra is distributive
(cf. [35]), we conclude that (A;∨,∧,¬, 0) is a boolean algebra.

On the other hand, if (B;∨,∧, ′, 0) is a boolean algebra, then the corre-
sponding basic algebra (B;⊕,¬, 0) satisfies (E1) because x⊕ y = (x∧ y′)∨
y = x ∨ y and x ∗ y = ¬(y ⊕ ¬x) = (y ∨ x′)′ = x ∧ y′, so it is evident that
(E1) is satisfied.
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By an ideal of a basic algebra we mean the 0-class of a congruence. We
know that basic algebras are congruence-regular, i.e. every congruence is
completely determined by its arbitrary class (see [35]). Hence, for any basic
algebra A, the map θ 7→ [0]θ = {a ∈ A | (a, 0) ∈ θ} is an isomorphism be-
tween the congruence lattice of A and the lattice of ideals of A. Unlike the
general case, the description of ideals of effect basic algebras is surprisingly
simple. Indeed, by [132], a non-empty subset I ⊆ E is an ideal of an effect
basic algebra E if and only if it satisfies the conditions:

(I1) x⊕ y ∈ I for all x, y ∈ I,

(I2) if x ∈ I, then x	 y ∈ I for every y ∈ E.

For any a ∈ A, the ideal generated by a is denoted by Ig(a).

Lemma 3.2. Let E ∈ Ek. Then Ig(a) = Ig(ka) = [0, ka] for every a ∈ E.

Proof. By Lemma 3.1 (iii), the interval [0, ka] satisfies (I1). It also satisfies
(I2) because if x ≤ ka, then for any y ∈ E we have x ∗ y ≤ x ≤ ka, which
implies x 	 y ≤ ka by 3.1 (iv). Thus [0, ka] is an ideal of E, whence it
follows that Ig(a) = Ig(ka) = [0, ka].

Lemma 3.3. A non-trivial algebra in Ek is simple if and only if it has no
idempotent (= sharp) elements other than 0, 1. Hence simple algebras in
Ek are hereditarily simple.

Proof. Let E ∈ Ek. If a ∈ E \ {0, 1} is idempotent, then a = ka yields
Ig(a) = [0, a], and so {0} 6= Ig(a) 6= E. Thus E is not simple. Conversely, if
E is not simple, then there exists an ideal J such that {0} 6= J 6= E. Then
for any a ∈ J \ {0}, the element ka is idempotent (by Lemma 3.1 (ii)) and
0 6= ka 6= 1 since ka ∈ J .

Now, if E is simple, then so is every a subalgebra of E.

Lemma 3.4. Let E ∈ Ek. If E is subdirectly irreducible, then it is simple.
Consequently, ka = 1 for all a ∈ E \ {0}.
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Proof. Let M be the monolith of the ideal lattice of E. Then M = Ig(a)
for some a ∈ E \ {0}; by replacing a with ka we may assume that a is
idempotent, and in this case M = [0, a] by Lemma 3.2. We want to show
that M = E, i.e. a = 1. Suppose to the contrary that a 6= 1. Then
¬a 6= 0 and so M ⊆ Ig(¬a). Recalling that an element x is idempotent if
and only if ¬x is a complement of x in the underlying lattice, we get that
¬a is idempotent, and hence [0, a] = M ⊆ Ig(¬a) = [0,¬a], which entails
a ≤ ¬a. But then a = a ∧ ¬a = 0, this being the required contradiction.

The last statement now follows from the fact that each non-zero element
generates a non-zero ideal, i.e. the whole E.

Lemma 3.5. For every positive integer k, the variety Ek is a discriminator
variety.

Proof. By Lemma 3.4, in subdirectly irreducible members of the variety
we have ka = 0 for a = 0, and ka = 1 otherwise. Let us define d(x, y) =
(x	 y) ∨ (y 	 x). Then d(x, y) = 0 iff x = y, and the term

t(x, y, z) =
(
x	 ¬(k · d(x, y))

)
∨
(
z 	 (k · d(x, y))

)
is a discriminator term for Ek. Indeed, for any subdirectly irreducible al-
gebra E ∈ Ek and x, y, z ∈ E, we have (i) k · d(x, x) = 0 and t(x, x, z) =
(x 	 ¬0) ∨ (z 	 0) = 0 ∨ z = z, and (ii) if x 6= y, then d(x, y) 6= 0, thus
k · d(x, y) = 1 and t(x, y, z) = (x 	 ¬1) ∨ (z 	 1) = x ∨ 0 = x. (We
could have alternatively used the operations ∗ and ⊕ instead of 	 and ∨,
respectively.)

Lemma 3.6. Let E be a non-trivial effect basic algebra such that all its
blocks are chains. If B1, B2 are distinct blocks of E, then B1 ∩B2 = {0, 1}.
Therefore E is the horizontal sum of its blocks.

This needs an explanation. Suppose that {Bi | i ∈ I} is a family of
non-trivial basic algebras such that Bi ∩ Bj = {0, 1} whenever i 6= j. Let
E =

⋃
i∈I Bi. Then by the horizontal sum of the Bi’s we mean the basic

algebra E = (E;⊕h,¬h, 0) where x ⊕h y = x ⊕ y if there is i ∈ I such
that x, y ∈ Bi, and x ⊕h y = y otherwise, and ¬hx = ¬x. Thus, we glue
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the algebras Bi together at 0 and 1, the addition is extended by letting
x⊕h y = y if x, y /∈ {0, 1} are not found in one algebra, and the negation is
left as it is. See [35] for the details.

An example of a horizontal sum is the diamond D. Indeed, D is the
horizontal of two copies of C3: if ({0, a, 1};⊕,¬, 0) and ({0, b, 1};⊕,¬, 0)
are isomorphic to C3, then the operations ⊕h and ¬h on D = {0, a, b, 1}
are given as follows:

⊕h 0 a b 1

0 0 a b 1
a a 1 b 1
b b a 1 1
1 1 1 1 1

¬h 0 a b 1

1 a b 0

Thus the horizontal sum is just D.

Proof of the lemma. We first note that x, y ∈ E are compatible (i.e. x⊕y =
y⊕x) if and only if x ≤ y or y ≤ x. Indeed, if x, y are compatible, then they
belong to one block, and since by our assumption the blocks are chains, the
elements x, y are comparable. Conversely, it is clear by the definition of
compatibility in lattice effect algebras that comparable elements are always
compatible. Thus compatible = comparable.

Suppose that there exist incomparable elements x, y ∈ E with x∨y < 1.
We may additionally assume that x ∧ y = 0: such elements exist because
for x0 = (x ∨ y) ∗ x and y0 = (x ∨ y) ∗ y we have x0 ∨ y0 ≤ x ∨ y < 1 and
x0 ∧ y0 = ((x ∨ y) ∗ x) ∧ ((x ∨ y) ∗ y) = (x ∨ y) ∗ (x ∨ y) = 0. Since x ∨ y is
compatible with both x and y, and since the blocks are subuniverses, x∨ y
is also compatible with ¬x and ¬y. Thus x∨ y ≤ ¬x or x∨ y ≥ ¬x. In the
former case we have y ≤ ¬x, so y is compatible with ¬x and hence with
x, which is impossible since compatible elements are comparable. Hence
x∨ y ≥ ¬x. The same argument gives x∨ y ≥ ¬y. Then x∨ y ≥ ¬x∨¬y =
¬(x ∧ y) = ¬0 = 1, a contradiction. Thus, if x, y ∈ E are incomparable,
then x ∨ y = 1, and symmetrically, x ∧ y = 0. The statement now follows
immediately.
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We now characterize the subdirectly irreducible algebras in Ek and DEk
for k ≥ 2. By Corollary 3.2, E1 = DE1 is term equivalent to the variety of
boolean algebras, so the only subdirectly irreducible algebra in this variety
is C2.

Theorem 3.1. Let k ≥ 2. The subdirectly irreducible algebras in the
variety Ek are the MV-chains C2, . . . ,Ck+1 and their horizontal sums.
The subdirectly irreducible algebras in DEk are C2, . . . ,Ck+1 and D, i.e.
DEk = V (C2, . . . ,Ck+1,D).

Proof. Let E ∈ Ek be subdirectly irreducible. We know that every block B
is a subuniverse of E and the subalgebra B is an MV-algebra. Hence, since
E is hereditarily simple by Lemma 3.3, each B is a simple MV-algebra.
Simple MV-algebras are (up to isomorphisms) subalgebras of the standard
MV-algebra (see [46, Theorem 3.5.1]). But B’s satisfaction of (Ek) implies
that the cardinality of B is ≤ k + 1, and therefore B ∼= Cj for some
j ∈ {2, . . . , k + 1}. Thus, by Lemma 3.6 we conclude that E is either an
MV-chain or the horizontal sum of a family of MV-chains each of which is
isomorphic to Cj for some j ∈ {2, . . . , k + 1}.

Now, let E ∈ DEk be subdirectly irreducible. Since E is a horizontal
sum of finite MV-chains, distributivity yields that E is among the algebras
C2, . . . ,Ck+1,D (because the only non-trivial distributive horizontal sum
of MV-chains is D).

Corollary 3.3. For any k ≥ 2, the variety DEk is the join of the variety
V (C2, . . . ,Ck+1) of k-potent MV-algebras and the variety V (D). In partic-
ular, DE2 = V (D). Every finitely generated subvariety of DE is contained
in the variety DEk, for some k.

This does not answer the question of axiomatizing all finitely generated
subvarieties of DE . Given ∅ 6= K ⊆ {C2, . . . ,Ck+1,D} for some k ≥ 2,
what we know about the variety V (K) is that (i) V (K) ⊆ DEk (here, k
can be chosen as the maximum length of chains in the algebras in K) and
(ii) the subdirectly irreducible algebras in DEk are C2, . . . ,Ck+1 and D.
But we need to ‘get rid of’ those MV-chains among C2, . . . ,Ck+1 which are
not subalgebras of the algebras in K.
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Theorem 3.2. Suppose that the set K = {Ck1 , . . . ,Cks ,D} is irredundant
(in the sense that the variety V (K) would be strictly smaller if any member
of K were omitted). If K = {C4,D}, then V (K) = DE3. If K 6= {C4,D},
let k+ 1 = max(k1, . . . , ks). Then k ≥ 4 and V (K) is axiomatized—relative
to DEk—by the identities

k · xp = (p · xp−1)k (Fk,p)

for all p ∈ {3, . . . , k − 1} that do not divide the numbers k1 − 1, . . . , ks − 1.

Before we give the proof we should observe what is the role of the
equations (Fk,p) for the MV-algebra Ck+1 (k ≥ 3). For the moment, we
may assume p ∈ {2, . . . , k − 1}. Recalling (3.5), and since in the standard
MV-algebra we have p · x = min(px, 1) and xp = max(1 − p(1 − x), 0) for
every x ∈ [0, 1], it follows that k · xp = 0 iff xp = 0 iff p(1 − x) ≥ 1 iff
1− 1

p ≥ x, and k · xp = 1 otherwise. On the other hand, (p · xp−1)k = 1 iff

p · xp−1 = 1 iff p(1− (p− 1)(1− x)) ≥ 1 iff x ≥ 1− 1
p , and (p · xp−1)k = 0

otherwise. Thus the following are equivalent:

• Ck+1 satisfies the equation k · xp = (p · xp−1)k;

• Ck+1 satisfies the condition: 1− 1
p ≥ x iff 1− 1

p > x, for all x ∈ Ck+1;

• 1
p /∈ Ck+1 =

{
0, 1

k , . . . ,
k−1
k , 1

}
;

• p does not divide k.

Proof of the theorem. The assumption that K is an irredundant set means
that no Cki is a subalgebra of any other algebra in K; in particular, C2

and C3 are not among the Cki ’s (because C2 and C3 are subalgebras of
D). Thus ki ≥ 4.

The case when K = {C4,D} is almost obvious: we have V (K) ⊆
DE3 and by Theorem 3.1, the subdirectly irreducible algebras in DE3 are
C2,C3,C4 and D, hence DE3 ⊆ V (K).

Now, let K 6= {C4,D} and k + 1 = max(k1, . . . , ks). We have k ≥ 4.
Further, let V be the subvariety of DEk defined by the identities (Fk,p).
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Since k ≥ k1 − 1, . . . , ks − 1 ≥ 3, the algebras in K satisfy (Ek) (kz
is either 0 or 1). By the previous discussion, the MV-chains Ck1 , . . . ,Cks

satisfy the identities (Fk,p) since the p’s do not divide the numbers k1 −
1, . . . , ks−1. Also D satisfies (Fk,p) because for p ≥ 3 we have xp = xp−1 = 1
iff x = 1, and xp = xp−1 = 0 otherwise. Hence V (K) ⊆ V.

Conversely, the subdirectly irreducible members of V are to be found
among C2, . . . ,Ck+1 and D. We must show that the satisfaction of (Fk,p)
eliminates those MV-chains which are not subalgebras of Ck1 , . . . ,Cks .
Suppose that Cl (with l ≤ k+ 1) is not a subalgebra of any of the algebras
Ck1 , . . . ,Cks ,D. Then l ∈ {4, . . . , k} and l−1 does not divide the numbers
k1−1, . . . , ks−1, hence Cl fulfills the identity (Fk,p) for p = l−1. But taking
a = l−2

l−1 = 1− 1
l−1 we have ¬a = 1

l−1 and k·al−1 = k·¬((l−1)·¬a) = k·¬1 = 0

while ((l− 1) · al−2)k =
(
(l− 1) · ¬((l− 2) · ¬a)

)k
= ((l− 1) · ¬a)k = 1k = 1.

Therefore, the subdirectly irreducible algebras in V are just the subalgebras
of the members of K, which proves V = V (K).

Let us take another look at our axiomatization of V (C2, . . . ,Ck+1,D),
viz. Theorem 3.1. When proving the lemmata that lead to Theorem 3.1,
we basically relied on these two facts (see Lemma 3.1 and 3.2):

(i) for every a, the element ka is idempotent (= sharp),

(ii) Ig(a) = [0, ka], so if a itself is idempotent, then Ig(a) = [0, a].

We now show that (i) and (ii) equally hold true for distributive effect basic
algebras satisfying the identity

kx = (k + 1)x. (Pk)

The property (i) easily follows from (Pk) because we can omit the brack-
ets in x⊕ · · · ⊕ x, and hence we have kx⊕ kx = kx.

For (ii) we need one more concept from effect algebras. Let (E; +, 0, 1)
be a lattice effect algebra. It is known and easy to show that for any a ∈
E, the structure ([0, a]; +, 0, a)—where the interval [0, a] comes equipped
with the restriction of + to [0, a]—is a lattice effect algebra. An element
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a ∈ E is called central if (E; +, 0, 1) is isomorphic to the direct product
of the interval effect algebras ([0, a]; +, 0, a) and ([0, a′]; +, 0, a′). By [136,
Theorem 5.5], in order for a ∈ E to be central it is necessary and sufficient
that x = (x ∧ a) ∨ (x ∧ a′) for all x ∈ E. In case of distributive lattice
effect algebras this simplifies to x ≤ a∨ a′ for all x, and this is the same as
a∨a′ = 1 (or dually, a∧a′ = 0). Hence, in distributive lattice effect algebras,
central and sharp elements coincide. Translated into the language of basic
algebras, for any E ∈ DE , the direct product decompositions correspond
one-one to the idempotent (= sharp) elements, and consequently, for every
idempotent a ∈ E, the interval [0, a] is an ideal of E (because [0, a] is the
0-class of a factor congruence). This is (ii).

Therefore, if we restrict ourselves to distributive effect basic algebras,
then starting from Lemma 3.3 everything remains true, mutatis mutandis,
with (Pk) in place of (Ek). That is, relative to the variety DE ,

• V (C2, . . . ,Ck+1,D) is axiomatized by the identity (Pk);

• V (C4,D) is axiomatized by (P3);

• if the set {Ck1 , . . . ,Cks ,D} 6= {C4,D} is irredundant and k + 1 =
max(k1, . . . , ks), then k ≥ 4 and V (Ck1 , . . . ,Cks ,D) is axiomatized
by (Pk) together with the identities (Fk,p) for those p ∈ {3, . . . , k−1}
that do not divide k1 − 1, . . . , ks − 1.

Thus, over the variety DE , the identities (Ek) and (Pk) are equivalent to
each other. But this is not the case for E where (Pk) is weaker; the reason
is that the analogue of Lemma 3.3 fails to be true without the assumption
of distributivity (in non-distributive effect basic algebras satisfying (Pk),
the interval [0, a] need not be an ideal even though a is idempotent).

Modular effect basic algebras also deserve a mention:

Theorem 3.3. For k ≥ 2, the variety MEk of modular effect basic alge-
bras that satisfy (Ek) is generated by the MV-chains C2, . . . ,Ck+1 and the
horizontal sums of copies of C3.
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Proof. In view of Theorem 3.1 the subdirectly irreducibles are the MV-
chains C2, . . . ,Ck+1 plus their horizontal sums. But if we involved Cj with
j ≥ 4, then the obtained horizontal sum would not be modular.

3.2.2 Free algebras in finitely generated subvarieties

In this part we aim at describing (for every n ≥ 1) the free n-generator
algebra FV(n) where V is a finitely generated subvariety of DE . Thus
V = V (K) where K consists of a finite number of finite MV-chains and/or
D. The variety V is locally finite (see [7, Corollary 1.4]): in general, if a
variety is generated by a finite set of finite algebras, then it is also generated
by their direct product, say A, which is finite, and for any positive integer n,
the free n-generator algebra in the variety is isomorphic to the subalgebra
of the direct power AAn generated by the projections πi : (a1, . . . , an) ∈
An 7→ ai ∈ Ai (for i = 1, . . . , n). Thus the free algebra is finite.

Now, since our variety V is contained in DEk for some k, it is a dis-
criminator variety (Lemma 3.5 and Corollary 3.3), and hence directly inde-
composable algebras in V are simple (see [27, Theorem IV.9.4]). There is
a more straightforward argument: by Lemma 3.3, E ∈ Ek is simple exactly
if it has only the trivial idempotents 0, 1, which is equivalent to E being
directly indecomposable, provided E ∈ DE .

It follows that the free algebra FV(n) is isomorphic to a direct product
of simple algebras in V = V (K), i.e. subalgebras of the algebras from K.
Thus, if Ck1 , . . . ,Cks and D are these simple algebras, then

FV(n) ∼= Cm1
k1
× · · · ×Cms

ks
×Dp (3.6)

and we only have to find the numbers m1, . . . ,ms and p. We underline that
Ck1 , . . . ,Cks ,D have different meaning than in Theorem 3.2: before it was
an irredundant generating set for the variety, while now it is the list (up to
isomorphism) of simple algebras in V.

Lemma 3.7. Let A = Am1
1 ×· · ·×Ams

s where A1, . . . ,As are pairwise non-
isomorphic non-trivial simple algebras in a congruence-distributive variety.
Then, for every j ∈ {1, . . . , s}, mj is the number of the congruences θ ∈
Con(A) with the property that A/θ ∼= Aj.
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Proof. Since A belongs to a congruence-distributive variety, it has directly
decomposable congruences, i.e. every congruence on A is of the form
θ1 × · · · × θm1+···+ms , where θ1, . . . , θm1 ∈ Con(A1), θm1+1, . . . , θm1+m2 ∈
Con(A2), etc. But the algebras A1, . . . ,As are simple, so each θi ∈ Con(Aj)
is either ∆j or ∇j (the trivial congruences on Aj). It is therefore obvious
that θ1 × · · · × θm1+···+ms is a maximal congruence on A if and only if
exactly one θi is ∆j , for some j ∈ {1, . . . , s}.

We prove the assertion for m1. The projections π1, . . . , πm1 of A onto
A1 induce m1 distinct (maximal) congruences θ ∈ Con(A) such that A/θ ∼=
A1. Namely, the congruence corresponding to πi has ∆1 as the ith compo-
nent. On the other hand, if η is a congruence on A such that A/η ∼= A1,
then it is a maximal congruence since the algebra A1 is simple. Hence η
must be one of the congruences induced by the projections π1, . . . , πm1 .

The number mj can be determined by counting the homomorphisms of
A onto Aj and the automorphisms of Aj (see [7]). Indeed, given a homo-
morphism ϕ of A onto Aj and an automorphism α of Aj , the composite
map αϕ is a homomorphism of A onto Aj , too, and both ϕ and αϕ induce
the same kernel congruence on A. Therefore, we have

mj =
the number of homomorphisms of A onto Aj

the number of automorphisms of Aj
.

Let us return to FV(n). Let X = {ξ1, . . . , ξn} be the set of free gener-
ators. Since the maps from X to members of V can be uniquely lifted to
homomorphisms, we are looking for the maps ϕ : X → Ckj and ϕ : X → D
such that the subalgebra generated by ϕ(X) is all of Ckj or D, respectively.

The case of MV-chains is known (see [46]), we recall it here for com-
pleteness. For any MV-chain Cr, each map ϕ : X → Cr is determined by
the n-tuple (l1, . . . , ln) ∈ {0, 1, . . . , r − 1}n where ϕ(ξi) = li

r−1 . Moreover,

the subalgebra of Cr generated by ϕ(X) =
{

l1
r−1 , . . . ,

ln
r−1

}
is Cr if and only

if the g.c.d. of the numbers l1, . . . , ln, r− 1 is 1. Thus, for any Ckj , the ex-
ponent mj in (3.6) is the number of n-tuples (l1, . . . , ln) ∈ {0, 1, . . . , kj−1}n
with the property that the g.c.d. of l1, . . . , ln, kj − 1 is 1.
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It remains to count the maps ϕ : X → D such that ϕ(X) generates D.
The ‘bad’ maps are those ϕ for which ϕ(X) ⊆ {0, a, 1} or ϕ(X) ⊆ {0, b, 1}.
There are 2 · 3n − 2n such maps (we subtract 2n maps ϕ : X → {0, 1}).
Hence the number of ‘good’ maps is 4n − 2 · 3n + 2n. However, the algebra
D has one non-trivial automorphism, viz. the map switching the atoms a
and b. It follows that the exponent p in (3.6) is

2 · 4n−1 − 3n + 2n−1 = 2n−1 · (2n + 1)− 3n. (3.7)

Corollary 3.4. Suppose that D ∈ K and let K∗ = (K\{D})∪{C3}. Then
V (K∗) is a variety of MV-algebras and FV(n) ∼= FV (K∗)(n) × Dp where
p = 2n−1 · (2n + 1)− 3n. Hence, FV(1) = FV (K∗)(1) is an MV-algebra, and
if n ≥ 2, then FV(n) is not an MV-algebra.

Proof. The set K∗ is K minus D plus C3 since C3 is a subalgebra of D. The
direct product Cm1

k1
× · · · ×Cms

ks
from (3.6) is the free n-generator algebra

in V (K∗). If n = 1, then p = 0 by (3.7), hence FV(1) = FV (K∗)(1). For
n ≥ 2 we have p ≥ 1, so FV(n) cannot be an MV-algebra.

We can explicitly describe the free algebra FV (D)(n):

Corollary 3.5. For any integer n ≥ 1,

FV (D)(n) ∼= C2n

2 ×C3n−2n

3 ×Dp ∼= FV (C3)(n)×Dp

where p = 2n−1 · (2n + 1)− 3n.

Proof. Here K = {D}, and so K∗ = {C3}. The subdirectly irreducible
algebras in V (D) are C2, C3 and D, thus, following the notation of (3.6),
we have FV (D)(n) ∼= Cm1

2 ×Cm2
3 ×Dp. Obviously, m1 = 2n andm2 = 3n−2n

since the ‘bad’ maps are just ϕ : X → {0, 1}, and p is given by (3.7). That
FV (C3)(n) ∼= C2n

2 ×C3n−2n

3 follows from the fact that C2 and C3 are the
only subdirectly irreducible algebras in V (C3).

For example, we have: FV (D)(1) ∼= C2
2 ×C3

∼= FV (C3)(1), FV (D)(2) ∼=
C4

2×C5
3×D ∼= FV (C3)(2)×D and FV (D)(3) ∼= C8

2×C19
3 ×D9 ∼= FV (C3)(3)×

D9.
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3.3 How to produce S-tense operators
on lattice effect algebras

Introduction

Logic of quantum mechanics is an important tool for deciding and evaluat-
ing propositions and propositional formulas on a physical system describing
events in microcosmos. As known in quantum physics, behaviour of these
physical systems and their elements (i.e., elementary particles) differs from
physical systems which are observed in classical physics and whose be-
haviour is ruled by the classical propositional calculus. This was the reason
that Foulis and Bennett [84] introduced the so-called effect algebras describ-
ing algebraic properties of propositions on events in quantum mechanics.
For a more detailed motivation, the reader is referred to the monograph
[73] by Dvurečenskij and Pulmannová.

Every physical system P is a dynamic one which means that the true
values of propositions about P vary in time. However, the majority of
propositional calculi used for a description of P traditionally do not incor-
porate the time dimension. This means that the propositions are considered
relative to a given moment. On the other hand, for a physical system P
there are usually discerned its states.

We assume that P is in a state s1 at time t1 and it goes to a state
s2 at time t2 (as an example may serve Minkowski spacetime R1,3 where
three ordinary dimensions of space are combined with a single dimension
of time to form a four-dimensional manifold for representing a spacetime –
elements of R1,3 are then states in our setting). Hence this transition from
the state s1 to s2 can be taken as a movement from time t1 to t2 in the
time scale induced by the set S of states. Since not from every state s1

we can realize a transition to an arbitrary state of S, there is a non-trivial
binary relation R on S such that (s1, s2) ∈ R if and only if the system
P can switch from s1 to s2. Hence, we take advantage of thinking of the
set S of states as the time scale and of the relation R as time preference,
i.e., (s1, s2) ∈ R if s1 is “before” s2 or s2 is “after” s1. Assuming that
(s1, s2) ∈ R, (s2, s3) ∈ R and possibly s1 = s3 means, among other things,
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that time loops are allowed. The pair (S,R) is then a time frame as before
for tense MV-algebras. Having a time frame of a physical system P, we
can quantify our propositions in time as follows.

Let p(t) be a propositional formula of a logic of the system P having
only one free variable t which plays the role of time. We introduce two
of the so-called tense operators G and H which quantify p(t) over time as
follows:

G(p)(s) is valid if for any t with (s, t) ∈ R the formula p(t) is valid,
H(p)(s) is valid if for any t with (t, s) ∈ R the formula p(t) is valid.

Thus the unary operator G is a tense operator saying “it is always going
to be the case that” and H is saying “it has always been the case that”.

Our first question concerns an algebraic axiomatization of tense oper-
ators. It was already studied for effect algebras in [37, 40], for Boolean
algebras in [26], for MV-algebras in [54, 24] and for de Morgan algebras in
[41, 81]. This axiomatization will be used also here. However, having an
effect algebra E as an axiomatization of the propositional logic of a given
physical system P, and the tense operators G and H on E, we can ask
about the following:

(a) If a time frame is given (or it is already constructed), how can we
compute tense operators G∗ and H∗ on E having at least the same
values for propositional formulas p(t) as by the given operators G and
H.

(b) How to construct all possible pairs of tense operators on E.

(c) Having tense operators satisfying our axiomatization on the lattice
effect algebra E only, i.e., if a time frame is not given, under which
conditions on E we can create the time frame in order to enable the
solution of the above mentioned questions (a) and (b). This is usually
called a representation problem.

The representation problem goes back to Rutledge (see [139]) where he
studied monadic MV-algebras as an algebraic model for the monadic pred-
icate calculus of  Lukasiewicz infinite-valued logic, in which only a single in-
dividual variable occurs. Recall that monadic MV-algebras are a particular
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case of tense MV-algebra (see [54]). Rutledge represented each subdirectly
irreducible monadic MV-algebra as a subalgebra of a functional monadic
MV-algebra.

In fact, some solutions of above questions were already found by the
authors, see e.g. [40], [129] and [127]. However, the next question is how
our formal and purely algebraic approach coresponds to a real physical
quantum system P.

For this sake, we prefer not to use all possible states of P but only the
so-called Jauch-Piron states. The advantage is that these states reflect an
important property of the logic of quantum mechanics, namely the so-called
Jauch-Piron property saying that if the probability of propositions p and
q being true is zero then there exits a proposition r covering both p and q
such that the probability of r being true is also zero. In our paper, we start
with lattice effect algebras for the sake of simplicity. Hence, we can take
r = p ∨ q. This is in accordance with Kolmogorovian probability theory.
The study of Jauch-Piron states was motivated by the requirement that
states on projection structures that qualify for having physical meaning
should satisfy the natural Jauch-Piron property (see [130]).

3.3.1 S-tense operators on lattice effect algebras

In what follows, we develop and study the basic concepts of tense effect
algebras and an explanation of the role of time scale. We also give a jus-
tification for considering S-tense operators, describe their construction and
a framework for their representation. The main results are the following:

(a) any S-time frame (T,R) (see page 95) on a linearly ordered com-
plete MV-algebra M induces S-tense operators (see page 96) on the
cartesian product MT ,

(b) conversely, any S-tense lattice effect algebra with a suitable set T of
Jauch-Piron states is representable by some S-time frame (T,R) as a
subalgebra of the respective cartesian product [0, 1]T equipped with
the respective S-tense operators from (a).
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The axiomatization of tense operators G and H in the classical propo-
sitional logic is given in [26]. For effect algebras, it was settled in [37, 40]
and [129]. We can repeat the definition.

Let E = (E; +, 0, 1) be an effect algebra. Unary operators G and H on
E are called partial tense operators if they are partial mappings of E into
itself satisfying the following axioms:

(T1) G(0) = 0, G(1) = 1, H(0) = 0 and H(1) = 1

(T2) x ≤ y implies G(x) ≤ G(y) whenever G(x), G(y) exist and H(x) ≤
H(y) whenever H(x), H(y) exist

(T3) if x + y and G(x), G(y), G(x + y) exist then G(x) + G(y) exists and
G(x) +G(y) ≤ G(x+ y) and if x+ y and H(x), H(y), H(x+ y) exist
then H(x) +H(y) exists and H(x) +H(y) ≤ H(x+ y)

(T4) x ≤ GP (x) if H(x′) exists, P (x) = H(x′)′ and GP (x) exists, x ≤
HF (x) if G(x′) exists, F (x) = G(x′)′ and HF (x) exists.

If both G and H are total (i.e., G and H are mappings of E into itself
defined for each x ∈ E) then G and H are called tense operators and the
triple (E;G,H) is called a tense effect algebra.

This is exactly the case when a time frame (T,R) is not explicitly men-
tioned. But it may happen, if a time scale T and a relation R for this
axiomatization were constructed, that the obtained binary relation R is
neither reflexive nor transitive. The conditions under which R will be a
quasi-order are analysed in Theorems 3.4 and 3.5.

One can immediately mention that if E = (E; +, 0, 1) is an effect algebra
and G and H are mappings of E into itself defined by G(1) = 1 = H(1) and
G(x) = 0 = H(x) for all x ∈ E, x 6= 1 then G and H are tense operators.
However, these operators reveal little about the physical system P because
all that is not identically equal to 1 is considered to be false both in the
past and in the future. Hence, we are searching to find tense operators
on E having maximally many values. The construction of an important
class of such operators is given below in Theorem 3.6. However, it can
happen that tense operators with maximally many values can loose their
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physical interpretation but another couple with smaller values can be more
appropriate.

Since any lattice effect algebra can be covered by its maximal sub-
MV-algebras called blocks [137] it is quite natural to ask that our (total)
tense operators behave on MV-algebras according to the axiomatization of
tense MV-algebras given by Diaconescu and Georgescu in [54]. This can be
accomplished by the following axioms formulated for lattice effect algebras:

(T5) G(x⊕ x) = G(x)⊕G(x), H(x⊕ x) = H(x)⊕H(x),

(T6) G(x� x) = G(x)�G(x), H(x� x) = H(x)�H(x).

We call such tense operators G and H E-tense operators. Note that an
embedding between tense effect algebras is an order reflecting morphism of
effect algebras such that it commutes with the corresponding tense opera-
tors.

For any pair G and H of E-tense operators on E and any x ∈ S(E), we
have that G(x) and H(x) are in S(E).

Now, in our case, by an S-time frame is meant a couple (T,R) where
T is a non-void set and R ⊆ T × T is a reflexive and transitive relation.
The last condition on R comes from the interpretion of (s, t) ∈ R as s is
before t in the non-strict sense so it would seem that R should be at least
a quasi-order.

Having a lattice algebra E and a non-void set T , we can produce the
direct power (ET ; +, o, j) where the operation + and the induced operations
∨, ∧, ⊕, � and ¬ are defined and evaluated on x, y ∈ ET componentwise.
Moreover, o, j are such elements of ET that o(t) = 0 and j(t) = 1 for all
t ∈ T . The direct power ET is again a lattice effect algebra.

The following theorem is an immediate corollary of Theorem 3.6 so we
shall omit the proof up to Subsection 3.3.3.

Theorem 3.4. Let M be a linearly ordered complete MV-effect algebra,
(T,R) be an S-time frame and G,H be maps from MT into MT defined by

G(x)(s) =
∧
{x(t) | t ∈ T, sRt}
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and
H(x)(s) =

∧
{x(t) | t ∈ T, tRs}

for all x ∈ MT and s ∈ T . Then G and H are E-tense operators on the
MV-effect algebra MT such that

(T7) G(x) ≤ x,H(x) ≤ x,

(T8) G(x) = G(G(x)), H(x) = H(H(x)).

Motivated by Theorem 3.4 we say that E-tense operators G and H on a
lattice effect algebra E are S-tense whenever they satisfy axioms (T7) and
(T8) and that (E;G,H) is an S-tense lattice effect algebra.

It follows that G(x) means that “x is always going to be the case –
starting now” and H(x) means that “x was always, and is now the case”.
Moreover, the condition (T8) yields that the statement “x will always be
the case” is equivalent to the statement “it will always be the case that x
will always be the case”.

A functional S-tense lattice effect algebra (E;GE , HE) is an S-tense lat-
tice effect algebra (E with S-tense operators GE and HE which is an E-
effect-algebraic reduct of [0, 1]T for a time frame (T,R) such that GE is a
restriction of G from Theorem 3.4 on E and HE is a restriction of H from
Theorem 3.4, respectively.

By a functional representation of an S-tense lattice effect algebra A
with S-tense operators GA and HA, we mean simply a functional S-tense
lattice effect algebra E such that there is an isomorphism of effect algebras
f : A→ E satisfying f ◦GA = GE ◦ f and f ◦HA = HE ◦ f .

As mentioned before, the set of states of an effect algebra can serve as
a time scale over which we can quantify propositions on a physical system
P. Hence, it is worth to know as much as possible about states on a
given effect algebra. For this, we introduce particular states, named E-
states and Jauch-Piron E-states, which can be used for a representation of
an effect algebra into a direct product of standard MV-effect algebras on
the interval [0, 1]. Although it can be introduced in full generality, we are
concentrating only on the case of lattice effect algebras in order to reach
everywhere defined mappings.



CHAPTER 3. LATTICE EFFECT ALGEBRAS 97

Definition 3.1. Let E = (E; +, 0, 1) be a lattice effect algebra. A map
s : E → [0, 1] is called

1. an E-state on E if s is an E-morphism of effect algebras;

2. a Jauch-Piron E-state on E if s is an E-state and

(JP) s(x) = 1 = s(y) implies s(x ∧ y) = 1.

3. If there exists an order reflecting set T of E-states (Jauch-Piron E-
states, respectively) on E then E is said to be E-representable (E-
Jauch-Piron representable, respectively).

4. If any E-state is E-Jauch-Piron then E is called an E-Jauch-Piron
lattice effect algebra.

First, note that any E-Jauch-Piron lattice effect algebra with an order
reflecting set of E-states is E-Jauch-Piron representable. Also, any E-Jauch-
Piron representable lattice effect algebra is E-representable.

Second, if E is E-representable then the induced morphism iTE : E →
[0, 1]T (sometimes called an embedding) is an order reflecting morphism
of effect algebras such that iTE(x ⊕ x) = iTE(x) ⊕ iTE(x) and iTE(x � x) =
iTE(x)� iTE(x) for all x ∈ E.

Third, if there exists an order reflecting set T of states that are also
lattice morphisms then E is an MV-effect algebra that is E-Jauch-Piron
representable.

Fourth, if E is an MV-effect algebra and s a state on E then we always
have s(x∨ y) + s(x∧ y) = s(x) + s(y) for all x, y ∈ E. Hence in every MV-
effect algebra any state s satisfies (JP). Moreover from Proposition 2.4 we
know that s is an E-state if and only if s is an extremal state (MV-algebra
morphism).

The next theorem gives us a solution of the representation problem for
S-tense operators. It immediately follows from Theorem 3.8 so we postpone
its proof until Subsection 3.3.4.



CHAPTER 3. LATTICE EFFECT ALGEBRAS 98

Theorem 3.5. Let E be an E-representable E-Jauch-Piron S-tense lattice
effect algebra with S-tense operators GE and HE. Then (E;GE , HE) can be
embedded into the tense MV-algebra ([0, 1]T ;G,H) induced by S-time frame
(T, ρG), where T is the set of all Jauch-Piron E-states from E to [0, 1] and
the relation ρG is defined by

sρGt if and only if s(G(x)) ≤ t(x) for any x ∈ E.

In particular, the following diagram of functions commutes:

E
GE - E

[0, 1]T

iTE

?

G
- [0, 1]T

iTE

?

.

3.3.2 E-semi-states on lattice effect algebras

In this part we will systematically study the notion of an (Jauch-Piron)
E-semi-state on a lattice effect algebra. The study of (Jauch-Piron) E-
semi-states was motivated by the fact that a composition of an E-tense
operator with an (Jauch-Piron) E-state is an (Jauch-Piron) E-semi-state.
The basic result is Proposition 3.2 that any Jauch-Piron E-semi-state on
an E-representable lattice effect algebra E is a meet of E-states.

Definition 3.2. Let E = (E; +, 0, 1) be a lattice effect algebra. A map
s : E → [0, 1] is called

1. an E-semi-state on E if

(i) s(0) = 0, s(1) = 1,

(ii) s(x) + s(y) ≤ s(x+ y) whenever x+ y is defined,

(iii) s(x)� s(x) = s(x� x),
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(iv) s(x)⊕ s(x) = s(x⊕ x),

2. a Jauch-Piron E-semi-state on E if s is an E-semi-state and

(JP) s(x) = 1 = s(y) implies s(x ∧ y) = 1.

Lemma 3.8. Let E = (E; +, 0, 1) be a lattice effect algebra, s : E → [0, 1]
a Jauch-Piron E-semi-state on E. Then s satisfies the following condition:

s(x) = 1 = s(y) and x · y defined implies s(x · y) = 1.

Proof. Assume that s(x) = 1 = s(y) and x · y is defined. Then there is a
block M (see [73]) of E which is an MV-effect algebra containg x and y.
Hence also x ∧ y, x � y = x · y and (x ∧ y) � (x ∧ y) are in M . It follows
that s(x ∧ y) = 1 and therefore also

1 = s(x∧y) = s(x∧y)�s(x∧y) = s((x∧y)� (x∧y)) ≤ s(x�y) = s(x ·y).

Lemma 3.9. Let E = (E; +, 0, 1) be a lattice effect algebra, S a non-empty
set of E-semi-states on E. Then

(a) the pointwise meet t =
∧
S is an E-semi-state on E,

(b) if S is linearly ordered then q =
∨
S is an E-semi-state on E.

Proof. (a): Let us check the conditions (i)-(iv) from Definition 3.2.
(i): Clearly, t(0) =

∧
{s(0) | s ∈ S} =

∧
{0 | s ∈ S} = 0 and t(1) =∧

{s(1) | s ∈ S} =
∧
{1 | s ∈ S} = 1.

(ii): Assume that x ≤ y′.There is an element s0 ∈ S such that s0(x) +
s0(y) is defined and clearly t ≤ s0. It follows that t(x) + t(y) is defined.
Let us compute the following

t(x) + t(y) = t(x)⊕ t(y) =
∧
{s1(x) | s1 ∈ S} ⊕

∧
{s2(y) | s2 ∈ S}

=
∧
{s1(x)⊕ s2(y) | s1, s2 ∈ S} ≤

∧
{s(x)⊕ s(y) | s ∈ S}

=
∧
{s(x) + s(y) | s ∈ S} ≤

∧
{s(x+ y) | s ∈ S} = t(x+ y).



CHAPTER 3. LATTICE EFFECT ALGEBRAS 100

(iii), (iv): As in Lemma 2.4, parts (iv) and (v).
(b): As above we have to verify the conditions (i)-(iv).
(i): Clearly, q(0) =

∨
{s(0) | s ∈ S} =

∨
{0 | s ∈ S} = 0 and q(1) =∨

{s(1) | s ∈ S} =
∨
{1 | s ∈ S} = 1.

(ii): Assume that x ≤ y′.Then, for all u, v ∈ S, u ≤ v we have u(x) ≤
v(x) ≤ v(y)′. This yields that u(x) ≤

∧
{w(y)′ | w ∈ S, u ≤ w} = (

∨
{w(y) |

w ∈ S, u ≤ w})′ = q(y)′. It follows that q(x) ≤ q(y)′, i.e., q(x) + q(y) is
defined. Let us compute the following

q(x) + q(y) =
∨
{s1(x) | s1 ∈ S}+

∨
{s2(y) | s2 ∈ S}

=
∨
{s1(x) + s2(y) | s1, s2 ∈ S} ≤

∨
{s(x) + s(y) | s ∈ S}

≤
∨
{s(x+ y) | s ∈ S} = q(x+ y).

(iii), (iv): It follows by the same arguments as above in part (a) since
⊕ and � distribute in any complete MV-algebra over arbitrary joins.

Following Corollary 2.1 we are able to compare E-semi-states s via in-
clusion relation looking only on the respective order filters s−1({1}.

Lemma 3.10. Let E = (E; +, 0, 1) be a lattice effect algebra, s, t E-semi-
states on E. Then t ≤ s iff t(x) = 1 implies s(x) = 1 for all x ∈ E.

Proof. Clearly, t ≤ s yields the condition t(x) = 1 implies s(x) = 1 for all
x ∈ E.

Assume now that t(x) = 1 implies s(x) = 1 for all x ∈ E is valid
and that there is y ∈ E such that s(y) < t(y). Thus, there is a dyadic
number r ∈ (0, 1) ∩ D such that s(y) < r < t(y). By Corollary 2.1 there
is a term tr in TD such that tr(s(y)) < 1 and tr(t(y)) = 1. It follows that
s(tr(y)) = tr(s(y)) < 1 and t(tr(y)) = tr(t(y)) = 1. The last condition
yields that s(tr(y)) = 1, a contradiction.

Riesz decomposition property and ideals in effect algebras

We recall that an effect algebra E satisfies the Riesz Decomposition Property
((RDP) in abbreviation) if x ≤ y1 +y2 implies that there exist two elements
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x1, x2 ∈ E with x1 ≤ y1 and x2 ≤ y2 such that x = x1 + x2. Any MV-
algebra satisfies (RDP).

An ideal of an effect algebra E is a non-empty subset I of E such that

(i) x ∈ E, y ∈ I, x ≤ y imply x ∈ I,

(ii) if x, y ∈ I and x+ y is defined in E, then x+ y ∈ I.

A filter of an effect algebra E is an ideal in the dual effect algebra Eop =
(E; ·, 1, 0).

We denote by Id(E) the set of all ideals of E. An ideal I is said to be a
Riesz ideal if, for x ∈ I, a, b ∈ E and x ≤ a+ b, there exist a1, b1 ∈ I such
that x = a1 + b1 and a1 ≤ a and b1 ≤ b.

For example, if E has (RDP), then any ideal of E is Riesz and there
is a one-to-one correspondence between congruences and ideals of E (see
[69]), and given an ideal I, the congruence ∼I on E is assigned by a ∼I b
iff there are x, y ∈ I with x ≤ a and y ≤ b such that a − x = b − y. Then
the quotient E/I is an effect algebra with RDP.

Moreover, if E is a lattice effect algebra then Riesz ideals of E are
exactly ideals (see Section 4.1.1) of the effect basic algebra corresponding
to E.

The main supporting statement that we need (and which is essentially
contained in the proof of Proposition 2.3) is

Proposition 3.2. Let E = (E; +, 0, 1) be a lattice effect algebra with an
order reflecting set S = {s : E → [0, 1] | s is an E-state on E}, t a
Jauch-Piron E-semi-state on E and St = {s ∈ S | s ≥ t}. Then t =

∧
St.

Proof. We may assume that E ⊆ [0, 1]S such that x + y, x · y, x ⊕ x and
x � x computed in E gives us the same results as x + y, x · y, x ⊕ x and
x � x computed in [0, 1]S and restricted to elements from E. This means
that the inclusion map i : E → [0, 1]S is an order reflecting E-morphism of
lattice effect algebras. Note also that [0, 1]S is a lattice effect algebra with
RDP (MV-effect algebra).



CHAPTER 3. LATTICE EFFECT ALGEBRAS 102

Clearly, t ≤
∧
St. Assume that there is x ∈ E such that t(x) <

∧
St(x).

Thus, there is a dyadic number r ∈ (0, 1)∩D such that t(x) < r <
∧
St(x).

Again by Corollary 2.1 there is a term tr in TD such that t(tr(x)) =
tr(t(x)) < 1. Let us put U = {z ∈ E | t(z) = 1}. The set U is by
Lemma 3.8 a filter of E which is closed under finite meets and z ∈ U yields
µk(z) ∈ U for all k ∈ N since t is a Jauch-Piron E-semi-state, tr(x) 6∈ U .
Let V be a filter of [0, 1]S generated by the set U . Then by [69, Proposition
3.1]

V = {y ∈ [0, 1]S | ∃n ∈ N,∃g1, . . . , gn ∈ [0, 1]S ,∃f1, . . . , fn ∈ U,
fi ≤ gi, i = 1, . . . , n, y = g1 · . . . · gn}.

Assume that tr(x) ∈ V . Then ∃n ∈ N,∃g1, . . . , gn ∈ [0, 1]S ,∃f1, . . . , fn ∈
U, fi ≤ gi, i = 1, . . . , n, tr(x) = g1 · . . . · gn. We then put f = f1 ∧ · · · ∧ fn.
Let k ∈ N be minimal such that n ≤ 2k. It follows that

tr(x) = g1 · . . . · gn · 1 · . . . · 1︸ ︷︷ ︸
2k−n times

≥ µk(f) ∈ U,

a contradiction.
So we have that tr(x) /∈ V . Let W be a maximal filter of [0, 1]S which

does contain V and does not contain tr(x). Then the set I = {y ∈ [0, 1]S |
y′ ∈W} is a prime ideal in [0, 1]S , tr(x)′ /∈ I. It follows by [69, Proposition
6.5 and Proposition 6.10] that [0, 1]S/I is a linearly ordered effect algebra,
i.e. an MV-algebra such that tr([x]I) = [tr(x)]I 6= [1]I . In particular the
factor map πI : [0, 1]S → [0, 1]S/I is an MV-morphism such that πI(x) =
[x]I and πI(U) ⊆ πI(V ) ⊆ πI(W ) = {[1]I}.

Let us denote by UI the maximal ideal of [0, 1]S/I and by s : [0, 1]S/I →
[0, 1] the corresponding MV-morphism. Hence by Proposition 2.1 s([x]I) <
r < 1. Let us put s = s ◦ πI ◦ i. Then s is an E-state such that s(U) =
s(πI(U)) = s({[1]I}) = {1}. It follows by Lemma 3.10 that t ≤ s, i.e.,
s ∈ St and s(x) = s([x]I) < r <

∧
St(x) ≤ s(x), a contradiction.
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3.3.3 Functions between lattice effect algebras and their
construction

This part studies the notion of an EM-function between lattice effect alge-
bras and a very Jauch-Piron EM-function between lattice effect algebras.
The overall goal of this section is to establish in some sense a canonical
construction of very Jauch-Piron EM-functions. We would like to under-
stand this construction because its particular case is the construction of
S-tense operators when we apply the time frame (T,R). This construction
can serve as an ultimate source of numerous examples.

Definition 3.3.

1. By an EM-function G between lattice effect algebras is meant a func-
tion G : E1 → E2 such that E1 = (E1; +1, 01, 11) and boE2 =
(E2; +2, 02, 12) are lattice effect algebras and

(EM1) G(01) = 02, G(11) = 12,

(EM2) G(x) +2 G(y) ≤ G(x+1 y),

(EM3) G(x)�2 G(x) = G(x�1 x),

(EM4) G(x)⊕2 G(x) = G(x⊕1 x).

If E1 = E2 we say that G is an EM-operator on E1.

2. If moreover G satisfies conditions

(EM2)’ G(x) +2 G(y) = G(x+1 y)

we say that G is an EM-morphism between lattice effect algebras.

3. If G is an EM-function between lattice effect algebras such that (EM5)
(resp. (EM5)’) is satisfied we say that G is Jauch-Piron (resp. very
Jauch-Piron)

(EM5) G(x) = 12 = G(y) implies G(x ∧1 y) = 12,

(EM5)’ G(x) ∧2 G(y) = G(x ∧1 y).
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4. If G is an EM-function between lattice effect algebras such that

(EM6) G(x)�2 G(y) ≤ G(x�1 y),

(EM7) G(x)⊕2 G(y) ≤ G(x⊕1 y),

(EM8) G(xn) = G(x)n for all n ∈ N,

(EM9) n×2 G(x) = G(n×1 x) for all n ∈ N,

we say that G is an FEM-function.

5. If G : E1 → E2 and H : B1 → B2 are EM-functions between lattice
effect algebras, then a morphism between G and H is a pair (ϕ,ψ) of
morphisms of lattice algebras ϕ : E1 → B1 and ψ : E2 → B2 such
that ψ(G(x)) = H(ϕ(x)), for any x ∈ E1.

Note that (EM2)’ yields (EM2), (EM5)’ yields (EM5). By essentially
same considerations as in Lemma 3.8 the condition (EM5) yields the fol-
lowing:

G(x) = 12 = G(y) and x · y defined implies G(x�1 y) = 12.

Also, a composition of EM-functions (very Jauch-Piron EM-functions,
FEM-functions) is an EM-function (a very Jauch-Piron EM-function, an
FEM-function) again and a composition of a very Jauch-Piron EM-function
with a Jauch-Piron EM-function is a Jauch-Piron EM-function.

The notion of an EM-function generalizes both the notions of an E-semi-
state, of a �-operator from [127] for MV-algebras and of an fm-function.

According to both (EM3) and (EM4), G|S(E1) : S(E1) → S(E2) is an
EM-function (a Jauch-Piron EM-function, a very Jauch-Piron EM-function)
whenever G has the corresponding property.

Recall also, that EM-functions between E-representable MV-effect al-
gebras (which are exactly semisimple MV-algebras) coincide with FEM-
functions between them (see Proposition 2.6). On the contrary, there is
an MV-effect algebra M with an EM-operator on M that is not an FEM-
operator (see Proposition 2.7).
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Lemma 3.11. Let G : E1 → E2 be an EM-function between lattice effect
algebras, r ∈ (0, 1) ∩ D. Then tr(G(x)) = G(tr(x)) for all x ∈ E1.

Proof. Note that G(x)⊕2G(x) = G(x⊕1 x) by (EM4) and G(x)�2G(x) =
G(x�1 x) by (EM3). Then, since tr ∈ TD is defined inductively using only
the operations (−)⊕ (−) and (−)� (−), we get tr(G(x)) = G(tr(x)).

An E-frame is a frame (S, T,R) satisfying that for every x ∈ S there is
y ∈ T such that xRy and for every y ∈ T there is x ∈ S such that xRy. If
S = T , we will write briefly (T,R) for the E-frame (T, T,R) and we speak
about an E-time frame. Having a lattice algebra (E; +, 0, 1) and a non-void
set T , we can produce the direct power (ET ; +, o, j) where the operation
+ and the induced operations ∨, ∧, ⊕, � and ¬ are defined and evaluated
on p, q ∈ ET componentwise. Moreover, o, j are such elements of ET that
o(t) = 0 and j(t) = 1 for all t ∈ T . The direct power ET is again a lattice
effect algebra.

The notion of E-frame allows us to construct examples of FEM-functions
between lattice effect algebras.

In what follows we will need the following

Lemma 3.12. ([37, 40]) Let E = (E; +, 0, 1) be an effect algebra. Let
ai, bi, ci ∈ E for i ∈ I and assume ai⊥bi for all i ∈ I. Let

∧
{ai | i ∈ I},∧

{bi | i ∈ I},
∧
{ci | i ∈ I},

∧
{c′i | i ∈ I} and

∧
{ai + bi | i ∈ I} exist.

Then

(1)
∧
{ai | i ∈ I}+

∧
{bi | i ∈ I} exists and∧

{ai | i ∈ I}+
∧
{bi | i ∈ I} ≤

∧
{ai + bi; i ∈ I}

(2)
∧
{c′i | i ∈ I} ≤ (

∧
{ci | i ∈ I})′.

We now prove a generalization of Theorem 2.17.

Theorem 3.6. Let M be a linearly ordered complete MV-effect algebra,
(S, T,R) be an E-frame and G be a map from MT into MS defined by

G(p)(s) =
∧
{p(t) | t ∈ T, sRt},



CHAPTER 3. LATTICE EFFECT ALGEBRAS 106

for all p ∈ MT and s ∈ S. Then G is a very Jauch-Piron FEM-function
between MV-effect algebras which has a left adjoint P , i.e., P (q) ≤ p iff
q ≤ G(p) for all q ∈ MS and p ∈ MT . In this case, for all q ∈ MS and
t ∈ T ,

P (q)(t) =
∨
{q(s) | s ∈ T, sRt}

and P : (MS)op → (MT )op is a very Jauch-Piron FEM-function between
MV-algebras.

Proof. Trivially we can verify G(o)(s) = 0, G(j)(s) = 1 for all s ∈ S due to
the fact that o(t) = 0 and j(t) = 1 for each t ∈ T thus (EM1) holds. Let us
check (EM2). Assume that p, q ∈ MT and p + q exists. Hence, p(t) + q(t)
exists for each t ∈ T . Let s ∈ S. By Lemma 3.12 (1) also

∧
{p(t); sRt} +∧

{q(t); sRt} exists and G(p)(s)+G(q)(s) =
∧
{p(t); sRt}+

∧
{q(t); sRt} ≤∧

{p(t) + q(t); sRt} = G(p+ q)(s). Thus G(p) +G(q) ≤ G(p+ q).
The conditions (EM5)’, (EM6)-(EM9) and the adjointness between P

and G follow directly from Theorem 2.16, the condition (EM3) follows from
(EM8) and the condition (EM4) follows from (EM9). The remaining part
for P follows by the same arguments applied to the dual MV-effect algebra
Mop.

We say that G : MT → MS is the canonical very Jauch-Piron FEM-
function induced by the E-frame (S, T,R) and the MV-algebra M.

Corollary 3.6. Let M be a linearly ordered complete MV-effect algebra,
(S,R) be an E-frame, G and H be maps from MS into MS defined by

G(p)(s) =
∧
{p(t) | t ∈ S, sRt},

H(p)(s) =
∧
{p(t) | t ∈ S, tRs}

for all p ∈ MS and s ∈ S. Then G (H) is a very Jauch-Piron E-tense
operator on MS which has a left adjoint P (F ) and (MS ;G,H) is a tense
effect algebra. In this case, for all q ∈MS and t ∈ S,

P (q)(t) =
∨
{q(s) | s ∈ S, sRt},

F (q)(t) =
∨
{q(s) | s ∈ S, tRs}.
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Now we give the postponed proof of Theorem 3.4. It is enough to check
conditions (T7) and (T8), the remaining parts follow immediately from
Corollary 3.6. But (T7) and (T8) follow from Theorem 2.21.

3.3.4 The representation theorem and its applications

The aim of this part is to show that an E-representable E-Jauch-Piron
lattice effect algebra with E-tense operators G and H (or with a very Jauch-
Piron operator G) can be represented in a power of the standard MV-
algebra [0, 1], where the set of all Jauch-Piron E-states serves as a E-time
frame (in the sense given in Introduction) with a relation defined by means
of the point-wise ordering of these states on x as well as on G(x) or H(x). It
properly means that for every E-representable E-Jauch-Piron lattice effect
algebra with tense operators a suitable E-time frame exists and can be
constructed by use of the previously introduced concepts.

Theorem 3.7. Let G : E1 → E2 be a very Jauch-Piron EM-function
between lattice effect algebras. Let E1 be an E-representable lattice effect
algebra and let E2 be an E-Jauch-Piron representable lattice effect algebra,
T a set of all E-states from E1 to the standard MV-effect algebra [0, 1] and
S a set of all Jauch-Piron E-states from E2 to [0, 1].

Further, let (S, T, ρG) be a frame such that the relation ρG ⊆ S × T is
defined by

sρGt if and only if s(G(x)) ≤ t(x) for any x ∈ E1.

Then G is representable via the canonical very Jauch-Piron FEM-fun-
ction G∗ : [0, 1]T → [0, 1]S between MV-effect algebras induced by the E-
frame (S, T, ρG) and the standard MV-effect algebra [0, 1], i.e., the following
diagram of EM-functions commutes:
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E1
G

- E2

[0, 1]T

iTE1

?

G∗
- [0, 1]S

iSE2

?

.

Proof. Assume that x ∈ E1 and s ∈ S. Then iSE2
(G(x))(s) = s(G(x)) ≤

t(x) for all t ∈ T such that (s, t) ∈ ρG. It follows that iSE2
(G(x)) ≤

G∗(iTE1
(x)).

Note that s ◦ G is a Jauch-Piron semi-state on E1 and by Proposition
3.2 we get that

s ◦G =
∧
{t : E1 → [0, 1] | t is an E-state, t ≥ s ◦G}

=
∧
{t ∈ T | (s, t) ∈ ρG}.

This yields that actually iSE2
(G(x)) = G∗(iTE1

(x)).

Note also that Theorem 2.18 is a particular case of Theorem 3.6 for
fm-functions G such that G(0) = 0.

The following result which is an immediate corollary of Theorem 3.7
generalizes the main result of the paper [127, Theorem 4.5].

Corollary 3.7. (Representation theorem for lattice effect algebras
with a very Jauch-Piron operator) For any E-representable E-Jauch-
Piron lattice effect algebra E with a very Jauch-Piron operator G and where
T is an order reflecting set of all Jauch-Piron E-states, E is embeddable via
E-morphism iTE into the canonical MV-algebra LG = ([0, 1]T ;G∗) with a
very Jauch-Piron operator G∗ induced by the canonical frame (T, ρG) and
the standard MV-effect algebra [0, 1]. Further, for all x ∈ E and for all
s ∈ T , s(G(x)) = G∗((t(x))t∈T )(s).

The next theorem yields a solution of the representation problem for
E-tense operators. The idea of the proof is taken from Theorem 2.20.
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Theorem 3.8. Let E be an E-representable E-Jauch-Piron lattice effect
algebra with E-tense operators G and H. Then (E;G,H) can be embedded
into the tense MV-algebra ([0, 1]T ;G∗, H∗) induced by the frame (T, ρG),
where T is the set of all Jauch-Piron E-states from E to [0, 1] and the
relation ρG is defined by

sρGt if and only if s(G(x)) ≤ t(x) for any x ∈ E.

Proof. We may assume that E ⊆ [0, 1]T . First, let us define a second
relation ρH ⊆ T 2 by the stipulation:

tρHs if and only if t(H(x)) ≤ s(x) for any x ∈ E.

We show that the equality ρG = ρ−1
H holds. Let us suppose that sρGt

for some s, t ∈ T. Due to the definition of E-tense operators we have
G(H(x)′)′ ≤ x and hence x′ ≤ G(H(x)′), i.e., s(x′) ≤ s(G(H(x)′)). Then
sρGt yields s(G(H(x)′)) ≤ t(H(x)′) and together with the preceding we get
s(x′) ≤ t(H(x)′). It follows that t(H(x)) ≤ s(x) for any x ∈ E.

Due to the definition of ρH we have tρHs and ρG ⊆ ρ−1
H . Analogously

we can prove the second inclusion.
The remaining part follows from Theorem 3.7. Basically, the obtained

equations G∗(x) = G(x) and H∗(x) = H(x) finish the proof.

Now we give the postponed proof of Theorem 3.5. It is enough to show
that the relation ρG from Theorem 3.8 is reflexive and transitive. But to
prove this we can use the same arguments as in Theorem 2.21 or [129,
Lemma 4.7].

The next example shows an E-representable E-Jauch-Piron lattice effect
algebra E, that is not an MV-effect algebra, with all possible (E- and S-)
tense operators. In particular, we constructed a (time) frame (T, ρ) from
the set T of all Jauch-Piron E-states on E and we also described a respective
representation in [0, 1]T , in accordance to Theorem 3.8.

Example 3.1. Let us consider a lattice effect algebra E = (E; +, 0, 1),
where E = {0, a, b, c, a + b = 2c = 1} (see Figure 3.1). It is a horizontal
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0

a b c

a+ b= 2c= 1

Figure 3.1: (E; +, 0, 1)

sum of a Boolean algebra {0, a, b, a+b = 1} and an MV-chain {0, c, 2c = 1}.
Let us have pairs of tense operators Gi, Hi on E for some i ∈ I ⊆ N. By
definition we have Gi(1) = Hi(1) = 1 and Gi(0) = Hi(0) = 0 for any
i ∈ I. For every i ∈ I, it holds Gi(c) ∈ {0, c}. Moreover, if Gi(c) = c then
Hi(c) = c and Gi(c) = 0 implies Hi(c) = 0.

G1 = H1 = idE ,

G2(a) = a,G2(b) = 0, G2(c) = c, H2(a) = 0, H2(b) = b,H2(c) = c,

G3(a) = 0, G3(b) = b,G3(c) = c, H3(a) = a,H3(b) = 0, H3(c) = c,

G4(a) = 0, G7(b) = 0, G7(c) = c, H7(a) = 0, H7(b) = 0, H7(c) = c

G5(a) = b,G4(b) = a,G4(c) = c, H4(a) = b,H4(b) = a,H4(c) = c,

G6(a) = b,G5(b) = 0, G5(c) = c, H5(a) = b,H5(b) = 0, H5(c) = c,

G7(a) = 0, G6(b) = a,G6(c) = c, H6(a) = 0, H6(b) = a,H6(c) = c,

Additional pairs of tense operators Gj+7, Hj+7 can be defined by setting
Gj+7(c) = Hj+7(c) = 0 and Gj+7(a) = Gj(a), Hj+7(a) = Hj(a), Gj+7(b) =
Gj(b), Hj+7(b) = Hj(b) for any j ∈ {1, . . . , 7}. From equalities a ⊕ a = a,
b⊕ b = b and c⊕ c = c+ c = 1 it follows, that the properties (T5) and (T6)
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are satisfied if and only if Gi(c) = Hi(c) = c, hence E-tense operators are
only G1, . . . G7, H1 . . . H7. The axioms (T7) and (T8), which are necessary
for E-tense operators to be S-tense, hold only for G1, . . . G4, H1 . . . H4.

G 3(a)= G 3(0)

a G 3(b)

G 3(c)

G 3(1)

H 3(b)= H 3(0)

H 3(a) b H 3(c)

H 3(1)

Figure 3.2: Example of S-tense operators G3, H3.

There exist two extremal states T = {s1, s2}, given by s1(a) = 1, s1(b) =
0, s2(a) = 0, s2(b) = 1 and s1(c) = s2(c) = 1

2 . The set T is also the set of
all E-states, it is order reflecting and s1, s2 are Jauch-Piron, hence E is an
E-representable E-Jauch-Piron lattice effect algebra.

By Theorem 3.8 for every E-representable E-Jauch-Piron lattice effect
algebra (E;Gi, Hi) with E-tense operators there exists an embedding into
a tense MV-algebra ([0, 1]T , G∗i , H

∗
i ) with a frame (T, ρGi), where relation

ρGi is given by the following:

ρG1 : s1ρG1s1, s2ρG1s2,

ρG2 : s1ρG2s1, s2ρG2s1, s2ρG2s2,

ρG3 : s1ρG3s1, s1ρG3s2, s2ρG3s2,

ρG4 : s1ρG7s1, s2ρG4s1, s2ρG7s1, s2ρG7s2.

ρG5 : s1ρG4s2, s2ρG5s1,

ρG6 : s1ρG5s1, s1ρG6s2, s2ρG5s1,
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ρG7 : s2ρG6s2, s1ρG7s2, s2ρG6s1,

We can see that relation ρi is reflexive and transitive iff i ∈ {1, . . . , 4},
that is for the case when Gi, Hi are S-tense operators. The embedding of E
into [0, 1]T is then given by iTE(a) = (1, 0), iTE(b) = (0, 1) and iTE(c) = (1

2 ,
1
2).

As an example, let us investigate G∗3 and H∗3 .

G∗3(iTE(a)) = G∗3(1, 0) = (
∧
{t(a) | t ∈ {s1, s2}, s1ρ3t},

∧
{t(a) | t ∈

{s1, s2}, s2ρ3t}) = (s2(a), s2(a)) = (0, 0),

G∗3(iTE(b)) = G∗3(0, 1) = (
∧
{t(b) | t ∈ {s1, s2}, s1ρ3t},

∧
{t(b) | t ∈

{s1, s2}, s2ρ3t}) = (s1(b), s2(b)) = (0, 1),

G∗3(iTE(c)) = G∗3(1
2 ,

1
2) = (1

2 ,
1
2),

H∗3 (iTE(a)) = H∗3 (1, 0) = (
∧
{t(a) | t ∈ {s1, s2}, tρ3s1},

∧
{t(a) | t ∈

{s1, s2}, tρ3s2}) = (s1(a), s2(a)) = (1, 0),

H∗3 (iTE(b)) = H∗3 (0, 1) = (
∧
{t(b) | t ∈ {s1, s2}, tρ3s1},

∧
{t(b) | t ∈

{s1, s2}, tρ3s2}) = (s1(b), s1(b)) = (0, 0),

H∗3 (iTE(c)) = H∗3 (1
2 ,

1
2) = (1

2 ,
1
2).

There can be defined additional nine relations on the set T , namely R =
{∅, {[s1, s1]}, {[s1, s2]}, {[s2, s1]}, {[s2, s2]}, {[s1, s1], [s1, s2]}, {[s2, s2], [s2, s1]},
{[s1, s1], [s2, s1]}, {[s2, s2], [s1, s2]}}. For any relation δ ∈ R, the maps
G∗δ , H

∗
δ which are defined as in Corollary 3.6 by the prescriptions

G∗δ(p)(s) =
∧
{p(t) | t ∈ T, sδt},

H∗δ (p)(s) =
∧
{p(t) | t ∈ T, tδs}

for all p ∈ [0, 1]T and s ∈ T will not satisfy the axiom (T1). Hence G∗δ , H
∗
δ

are not a pair of tense operators on [0, 1]T . Moreover, for any σ ∈ R, σ 6= ∅,
it holds G∗σ(iTE(c)) = G∗σ(1

2 ,
1
2) /∈ iTE(E) or H∗σ(1

2 ,
1
2) /∈ iTE(E), iTE(E) ⊆

[0, 1]T , i.e., G∗σ, H
∗
σ define only partial (but not partial tense) operators

Gσ, Hσ on E.



Chapter 4

Non-associative logics

Lambek [115], 50 years ago, considered a non-associative variant of his
famous syntactic calculus (see [114], [115]). We can also find numerous pa-
pers arguing that one should not always hold on to associativity because,
as pointed out in [83], “when one works with binary conjunctions and there
is no need to extend them for three or more arguments (...) associativity of
the conjunction is an unnecessarily restrictive condition.” Accordingly, in
fuzzy logics where the truth values are taken from the real interval [0, 1],
some authors suggest that t-norms should be replaced with copulas or qua-
sicopulas (see [63], [98]) or even with functions satisfying certain weaker
assumptions such as conjunctors or semicopulas (in our framework we have
left-continuous semicopulas, see [63]).

Non-associative functions are considered also in the context of statistics,
see e.g. [105], [123] or [124]. In the probabilistic framework the dependence
structure of a bivariate random vectors, which are in general non-associative
functions. Their connections to fuzzy logic were studied e.g. in [63] or [98],
where many important results can be found.

Non-associative functions, called disjunctors, have been succesfully used
for modelling the multi-valued implication operator in fuzzy logic, see [146].
Note that conjunctors and disjunctors are special so-called aggregation
operators, including also copulas and co-copulas. While t-norms and t-

113
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conorms require commutativity and associativity, these properties are not
required by copulas, co-copulas, conjunctors and disjunctors.

Hence it seems to be important to search for some reasonable general-
izations of fuzzy logics (e.g.  Lukasiewicz, Gödel or product logic) having a
non-associative conjunction.

4.1 Commutative basic algebras

Likewise we skip associativity and attempt to establish the notion of state
in the fuzzy logic LCBA which is quite close to the  Lukasiewicz logic, but
differs in that the conjunction is non-associative. This logic has recently
been introduced in [22] as the propositional logic with the axioms

ϕ→ (ψ → ϕ), (Ax1)

((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ), (Ax2)

(¬ϕ→ ¬ψ)→ (ψ → ϕ), (Ax3)

¬¬ϕ→ ϕ, (Ax4)

(ϕ→ ψ)→ (ϕ→ ¬¬ψ), (Ax5)

and modus ponens and the rule of suffixing

(MP)
ϕ,ϕ→ ψ

ψ
(Sf)

ϕ→ ψ

(ψ → χ)→ (ϕ→ χ)

as inference rules. The conjunction ϕ&ψ is definable as ¬(ϕ → ¬ψ).
Commutativity of & is provable, but associativity is not; as a matter of
fact, associativity of & would make LCBA the  Lukasiewicz logic. Also, if
we replace (Ax4) and (Ax5) with the axiom (ϕ → ψ) → ((ψ → χ) →
(ϕ→ χ)) and skip the rule (Sf), which is then supefluous, we have just the
 Lukasiewicz logic.

LCBA is an algebraizable logic in the sense of [11] and its equivalent
algebraic sematics is the variety of commutative basic algebras (see [22]).
The name “basic algebra” first appears in the paper [35] where we have pri-
marily aimed at describing the class of algebras (A;⊕,¬, 0) of type (2, 1, 0)
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that stand to orthomodular lattices as MV-algebras stand to Boolean alge-
bras, i.e., we wanted the idempotent elements to form the “orthomodular
skeleton” of (A;⊕,¬, 0). The simplest situation considered in [35] was the
case when the underlying poset of (A;⊕,¬, 0) defined as in MV-algebras is
a bounded lattice whose sections (= intervals [a, 1]) are equipped with an-
titone involutions; such algebras are therefore called basic algebrasa (for the
exact definition see below), and commutative basic algebras are those with
commutative ⊕. Among others, examples of commutative basic algebras
include MV-algebras (= commutative basic algebras with associative ⊕)
and Boolean algebras (= commutative basic algebras with idempotent ⊕).
Hence we may regard commutative basic algebras as a non-associative gen-
eralization of MV-algebras. It is worth noticing that commutative basic
algebras share many properties with MV-algebras; especially, finite com-
mutative basic algebras coincide with finite MV-algebras, thus the logic
LCBA and the  Lukasiewicz logic have the same finite models (see [20]).

4.1.1 Commutative basic algebras

In what follows, we restrict ourselves to commutative basic algebras (unless
we say otherwise). We have already pointed out in the introduction that
commutative basic algebras are similar to MV-algebras; for instance, the
underlying lattice of a commutative basic algebra is distributive (cf. [35])
and every finite commutative basic algebra is actually an MV-algebra (cf.
[20]). Moreover, in commutative basic algebras on the real interval [0, 1],
the operation � defined by x�y = ¬(¬x⊕¬y) is a semicopula [63] and (up
to isomorphism) the negation is given by ¬x = 1−x (see [17]). An example
of a proper commutative basic algebra which is not an MV-algebra can be
found in [17].

We define a term operations x� y = ¬(¬x⊕¬y) and x→ y := ¬x⊕ y.
Those operation satisfy the adjointness property

x� y ≤ z if and only if x ≤ y → z.

aWe should stress that our basic algebras and Hájek’s BL-algebras are two independent
notions; in fact, the intersection of basic algebras and BL-algebras are just MV-algebras.
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It is useful to work with another term operation which we call subtrac-
tion and which is defined by

x	 y = ¬(¬x⊕ y).

The underlying partial order is then given by x ≤ y iff x 	 y = 0, and we
have

x ∨ y = (x	 y)⊕ y and x ∧ y = x	 (x	 y). (4.1)

We now list some arithmetical properties of commutative basic algebras;
the proofs are straightforward and thus left to the reader.

Lemma 4.1. In any commutative basic algebra A, for all x, y, z ∈ A:

(i) if x ≤ y, then x⊕ z ≤ y ⊕ z, z 	 y ≤ z 	 x and x	 z ≤ y 	 z,

(ii) (x⊕ y)	 y = x ∧ ¬y,

(iii) (x ∧ y)⊕ z = (x⊕ z) ∧ (y ⊕ z),
(iv) x⊕ y = (x ∧ ¬y)⊕ y,

(v) (x⊕ y) ∧ z ≤ (x ∧ z)⊕ (y ∧ z),
(vi) (x ∨ y)⊕ z = (x⊕ z) ∨ (y ⊕ z),
(vii) (x ∨ y)	 y = x	 y = x	 (x ∧ y),

(viii) (x ∧ y)⊕ (x	 y) = x,

(ix) (x	 y) ∧ (y 	 x) = 0 (prelinearity).

We close this paragraph with an alternative characterization of MV-
algebras in the setting of basic algebras:

Lemma 4.2. A commutative basic algebra is an MV-algebra if and only if
it satisfies the identity

(z 	 y)	 (z 	 x) ≤ x	 y. (4.2)
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Proof. Let A be a commutative basic algebra satisfying (4.2). Then for
x, y, z ∈ A we have (¬z	 y)	 x ≥ (¬z	 x)	 (¬z	 (¬z	 y)) = (¬z	 x)	
(¬z ∧ y) ≥ (¬z 	 x)	 y by (4.1) and Lemma 4.1 (i). When interchanging
x and y, we get the converse inequality, hence ¬((z ⊕ y) ⊕ x) = (¬z 	
y) 	 x = (¬z 	 x) 	 y = ¬((z ⊕ x) ⊕ y). Thus A satisfies the identity
(z ⊕ y)⊕ x = (z ⊕ x)⊕ y, and so ⊕ is associative.

The other direction is easy: if A is an MV-algebra, then (z	y)	(z	x) =
¬(¬z ⊕ y ⊕ ¬(¬z ⊕ x)) = ¬(y ⊕ (¬x ∨ ¬z)) ≤ ¬(y ⊕ ¬x) = x	 y.

4.1.2 Ideals in commutative basic algebras

A preideal of a basic algebra A is a non-empty subset I such that

(i) a⊕ b ∈ I for all a, b ∈ I, and

(ii) for every a ∈ I and b ∈ A, if b ≤ a, then also b ∈ I.

An idealb of A is then a subset which is the 0-class of some congruence on
A (see [111]). We denote by P(A) and I(A) the set of preideals of A and
the set of ideals of A, respectively.

As proved in [35], the variety of basic algebras is congruence regular
(see [31]), i.e., every congruence is determined by its arbitrary class, and
hence an ideal I is the 0-class of a unique congruence on A, say ΘI , which
is specified by I as follows:

(a, b) ∈ ΘI iff a	 b, b	 a ∈ I. (4.3)

This means that I(A) ordered by set-inclusion forms a complete lattice that
is isomorphic to the congruence lattice Con(A) of A under the assignment
I 7→ ΘI , the inverse of which is Θ 7→ [0]Θ. Accordingly, given an ideal

bA terminological note: We reserve the term “ideal” for the 0-classes of congruences.
In MV-algebras, ideals and preideals coincide, but in basic algebras, the conditions (i)
and (ii) are not enough for I to be the 0-class of a congruence. Moreover, the term
“MV-ideal” instead of “ideal” is sometimes used in the literature on MV-algebras. We
would like to warn the reader that our MV-ideals defined below (see Lemma 4.6 and the
definition before it) are something else.
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I ∈ I(A), we simply write A/I for the quotient algebra A/ΘI , and a/I for
the congruence class a/ΘI . It is obvious that in A/I we have a/I ≤ b/I iff
a	 b ∈ I.

Likewise P(A) is a complete lattice under set-inclusion; by [111], it is
a distributive lattice which contains I(A) as a complete sublattice. It is
readily seen that the preideal generated by ∅ 6= B ⊆ A contains exactly
those elements a ∈ A such that a ≤ τ(b1, . . . , bn) for some n-ary additive
termc τ and b1, . . . , bn ∈ B.

Lemma 4.3. Let A be a commutative basic algebra. Then I ⊆ A is a
preideal iff 0 ∈ I and, for all a, b ∈ A, if a	 b, b ∈ I, then a ∈ I.

Proof. If I is a preideal, then a	b, b ∈ I implies a∨b = (a	b)⊕b ∈ I, whence
a ∈ I. Conversely, if a, b ∈ I, then ((a⊕ b)	 b)	 a = (a ∧ ¬b)	 a = 0 ∈ I
which yields a⊕ b ∈ I. Also, I is downwards closed since if a ≤ b and b ∈ I,
then a	 b = 0 ∈ I, which implies a ∈ I.

We now give an internal characterization of ideals of commutative basic
algebras (cf. [18], [39]).

Lemma 4.4. In any commutative basic algebra A, for every I ∈ P(A),
the following are equivalent:

(i) I is an ideal of A;

(ii) (a⊕ (b⊕ x))	 (a⊕ b) ∈ I for all a, b ∈ A and x ∈ I;

(iii) for all a, b, c ∈ A, if a	 b ∈ I, then (c⊕ a)	 (c⊕ b) ∈ I;

(iv) for all a, b, c ∈ A, if a	 b ∈ I, then (c	 b)	 (c	 a) ∈ I.

Proof. (i) ⇒ (ii) Let I be an ideal, i.e. I = [0]Θ where Θ ∈ Con(A). If
x ∈ I, then (x, 0) ∈ Θ implies (a⊕(b⊕x))	(a⊕b) Θ (a⊕(b⊕0))	(a⊕b) = 0,
so (a⊕ (b⊕ x))	 (a⊕ b) ∈ I.

(ii) ⇒ (iii). If a	 b ∈ I, then by Lemma 4.1 (i) and (4.1)

(c⊕ a)	 (c⊕ b) ≤ (c⊕ (a ∨ b))	 (c⊕ b) = [c⊕ (b⊕ (a	 b))]	 (c⊕ b) ∈ I,
cBy an additive term we mean a term in which ¬ does not occur, i.e., τ is built from

the variables (and the constant 0) using only the addition ⊕.
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whence (c⊕ a)	 (c⊕ b) ∈ I.
(iii) ⇔ (iv). It suffices to observe that (c 	 b) 	 (c 	 a) = ¬(¬c ⊕ b) 	

¬(¬c⊕ a) = (¬c⊕ a)	 (¬c⊕ b) for every c ∈ A.
(iii)/(iv) ⇒ (i). We prove that ΘI defined by (4.3) is a congruence

whose 0-class is I. We have (a, 0) ∈ ΘI iff a ∈ I, i.e. [0]ΘI = I, and ΘI

is obviously reflexive, symmetrical and compatible with ¬ and ⊕ by (iii).
So there remains to show that it is transitive: If (x, y), (y, z) ∈ ΘI , then
y 	 z ∈ I implies (x 	 z) 	 (x 	 y) ∈ I whence x 	 z ∈ I since x 	 y ∈ I.
Similarly, from y	x, z	y ∈ I we get (z	x)	(z	y) ∈ I, and consequently,
z 	 x ∈ I. Thus (x, z) ∈ ΘI .

Lemma 4.5. Let A be a commutative basic algebra and I ∈ I(A). Then,
for all a, b ∈ A,

a⊕ (b⊕ I) = (a⊕ b)⊕ I.d (4.4)

Proof. Since I is an ideal of A, by Lemma 4.4 (ii) we have (a⊕ (b⊕ x))	
(a⊕ b) ∈ I for all a, b ∈ A and x ∈ I, and hence

a⊕(b⊕x) = (a⊕(b⊕x))∨(a⊕b) = [(a⊕(b⊕x))	(a⊕b)]⊕(a⊕b) ∈ I⊕(a⊕b),

proving a⊕ (b⊕ I) ⊆ I ⊕ (a⊕ b) = (a⊕ b)⊕ I. On the other hand, if x ∈ I,
then

(((a⊕ b)⊕ x)	 a)	 b ΘI ((a⊕ b)	 a)	 b = (¬a ∧ b)	 b = 0,

and so (((a⊕ b)⊕ x)	 a)	 b ∈ I. Then

(a⊕ b)⊕ x = ((a⊕ b)⊕ x) ∨ a ∨ (a⊕ b)
= [(((a⊕ b)⊕ x)	 a)⊕ a] ∨ (b⊕ a)

= [(((a⊕ b)⊕ x)	 a) ∨ b]⊕ a
= ([(((a⊕ b)⊕ x)	 a)	 b]⊕ b)⊕ a
∈ (I ⊕ b)⊕ a = a⊕ (b⊕ I),

which proves the converse inclusion.

dHere a⊕ (b⊕ I) = {a⊕ (b⊕ x) | x ∈ I} and (a⊕ b)⊕ I = {(a⊕ b)⊕ x | x ∈ I}.
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By the polar of a non-empty set X in a basic algebra A we mean the
set

X⊥ = {a ∈ A | a ∧ x = 0 for all x ∈ X}.

Writing x⊥ instead of {x}⊥ we have X⊥ =
⋂
x∈X x

⊥; Lemma 4.1 (v) then
entails that X⊥ is a preideale of A. Moreover, for every preideal I of A,
the polar I⊥ is the pseudocomplement of I in the lattice P(A) of preideals
of A (see [111]). We write X⊥⊥ for (X⊥)⊥.

It is worth observing that x⊥⊥∩y⊥⊥ = {0} whenever x∧y = 0. Indeed,
if x ∧ y = 0, then x ∈ y⊥ which implies y⊥⊥ ⊆ x⊥, whence x⊥⊥ ∩ y⊥⊥ ⊆
x⊥⊥ ∩ x⊥ = {0}.

Theorem 4.1. Let A be a commutative basic algebra. Then A is rep-
resentable (i.e., A is a subdirect product of linearly ordered commutative
basic algebras) if and only if A satisfies the identity

[(x⊕ (y ⊕ (z 	 u)))	 (x⊕ y)] ∧ (u	 z) = 0. (4.5)

Proof. The satisfaction of (4.5) amounts to saying that every polar in A is
an ideal in A. Indeed, if polars are ideals, then z	u ∈ (u	z)⊥ (this is just
a reformulation of prelinearity) implies (x⊕(y⊕(z	u)))	(x⊕y) ∈ (u	z)⊥.
Conversely, if A fulfills (4.5), then z ∈ u⊥ yields z 	 u = z and u	 z = u,
and consequently, (x ⊕ (y ⊕ z)) 	 (x ⊕ y) ∈ u⊥. Thus u⊥ is an ideal by
Lemma 4.4 (ii).

Any representable basic algebra satisfies (4.5) since the identity is sat-
isfied by all linearly ordered basic algebras where we either have z 	 u = 0
or u	 z = 0. For the converse, assume that A satisfies (4.5). By Birkhoff’s
theorem (see e.g. [27], Theorem 8.6), A is a subdirect product of subdi-
rectly irreducible algebras which are homomorphic images of A, i.e. com-
mutative basic algebras satisfying (4.5). Hence it suffices to show that if
A is subdirectly irreducible, then it is linearly ordered. If A is not lin-
early ordered, then there exist a, b ∈ A such that a 	 b 6= 0 6= b 	 a and
(a	 b)∧ (b	a) = 0. Then (a	 b)⊥⊥ and (b	a)⊥⊥ are non-zero ideals with

eWe do not claim that X⊥ is an ideal, it is a preideal! The situation when all polars
are ideals is described in Theorem 4.1.
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(a	 b)⊥⊥ ∩ (b	 a)⊥⊥ = {0} (by the observation before the theorem), and
since the ideal lattice I(A) is isomorphic to the congruence lattice Con(A),
it follows that A cannot be subdirectly irreducible.

Given a basic algebra A, we call an ideal I of A an MV-ideal f provided
that the quotient algebra A/I is an MV-algebra. Since MV-algebras are
characterized as basic algebras satisfying the identity (4.2), it is plain that
I ∈ I(A) is an MV-ideal iff

[(c	 b)	 (c	 a)]	 (a	 b) ∈ I

for all a, b, c ∈ A. It follows that the set MV(A) of all MV-ideals of A is a
complete lattice under set-inclusion. The MV-ideal generated by ∅ 6= X ⊆
A is denoted by MV (X) and can be described as follows:

Lemma 4.6. In a commutative basic algebra A, a preideal I ∈ P(A)
is an MV-ideal iff [(c 	 b) 	 (c 	 a)] 	 (a 	 b) ∈ I for all a, b, c ∈ A.
Moreover, for every ∅ 6= X ⊆ A, MV (X) is the preideal generated by the
set X ∪ {[(c	 b)	 (c	 a)]	 (a	 b) | a, b, c ∈ A}.

Proof. Let I be a preideal such that [(c	 b)	 (c	 a)]	 (a	 b) ∈ I for all
a, b, c ∈ A. Then (c 	 b) 	 (c 	 a) ∈ I whenever a 	 b ∈ I. Thus I fulfills
the condition (iv) of Lemma 4.4, and hence it is an ideal of A.

The statement about MV (X) is straightforward.

For every a ∈ A we define N(a) to be the smallest subset of A such
that a ∈ N(a) and x ⊕ y ∈ N(a) for all x, y ∈ N(a). In other words, the
elements of N(a) are of the form τ(A; . . . , a) where τ is an additive term;
for example, a⊕ a, (a⊕ a)⊕ a, a⊕ (a⊕ a), (a⊕ a)⊕ (a⊕ a) etc. belong to
N(a).

Lemma 4.7. Let A be a commutative basic algebra. For every I ∈MV(A)
and x ∈ A,

MV (I ∪ {x}) = {a ∈ A | a ≤ b⊕ c where b ∈ I and c ∈ N(x)}.
fClearly, in MV-algebras we have MV-ideals = ideals = preideals, while in case of

basic algebras we have generally strict inclusions MV-ideals ⊂ ideals ⊂ preideals.
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Proof. Since I is an MV-ideal, it contains all the elements [(c 	 b) 	 (c 	
a)]	 (a	 b) for a, b, c ∈ A, and hence, by Lemma 4.6, a ∈MV (I ∪ {x}) iff
a ≤ y where y is a sum of elements of I ∪{x}. However, using the property
(4.4), we can rewrite y as b⊕ c where b ∈ I and c ∈ N(x).

We say that an ideal I ∈ I(A) is proper if I 6= A. If there is no proper
ideal strictly exceeding I, then I is maximal. MV-ideals which are maximal
ideals can be characterized in a similar way in which maximal ideals of
MV-algebras are described:

Corollary 4.1. Let A be a commutative basic algebra and I its proper
MV-ideal. The following are equivalent:

(i) I is a maximal ideal;

(ii) for every x ∈ A, x /∈ I iff ¬y ∈ I for some y ∈ N(x).

Proof. (i) ⇒ (ii). First, if x /∈ I, then MV (I ∪ {x}) = A, so 1 = b ⊕ c for
some b ∈ I and c ∈ N(x). Hence ¬c ≤ b, which yields ¬c ∈ I. Second, let
x ∈ I and suppose that ¬y ∈ I for some y ∈ N(x). Then 1 = y ⊕ ¬y ∈ I
since N(x) ⊆ I. But this contradicts the assumption I 6= A.

(ii)⇒ (i). Let J be an ideal with I ⊂ J . For every x ∈ J \I there exists
y ∈ N(x) such that ¬y ∈ I. Since N(x) ⊆ J , we have 1 = ¬y ⊕ y ∈ J ,
which entails J = I. Thus I is a maximal ideal.

4.2 Examples of non-associative commutative ba-
sic algebras

It has been show in [20] that every finite commutative basic algebra is an
MV-algebra. On the other hand, the variety of commutative basic algebras
does not coincide with the variety of MV-algebras as it was shown by in
[17]. In fact, it will be shown that there exists a commutative basic algebra
on interval [0, 1] of reals which is subdirectly irreducible and is not an MV-
algebra. Of course, it is linearly ordered.
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Hence, it is a natural question for which cardinalities there exist totally-
ordered basic algebras which are not MV-algebras. The problem of exis-
tence of totally ordered MV-algebras of an arbitrary cardinality was solved
recently by P. Wojciechowski [145]. It motivated us to find a similar con-
struction. P. Wojciechowski used a famous Hahn Embedding Theorem
saying that every abelian o-group embeds into the Hahn group on some
totally ordered set. Since every MV-algebra can be constructed as an in-
terval of a lattice ordered abelian group (see e.g. [46]), this machinery
works also for MV-algebras. On the contrary, commutative basic algebras
are not related to ordered groups. Hence, our approach is rather different.
We use the construction by P. Wojciechowski to obtain infinite MV-algebra
and we use another algebraic construction to change this MV-algebra into
a commutative basic algebra which is not an MV-algebra but which is still
totally ordered and of the same cardinality. Then, applying recent results
from [21], [20], it can be shown easily that the resulting basic algebra is,
moreover, subdirectly irreducible.

Among other things this shows that the variety of (commutative) basic
algebras is not residually small. On the contrary, it has a proper class of
SI-members of an arbitrary infinite cardinality.

In any basic algebra A = (A;⊕,¬, 0), one can consider the term oper-
ation x → y := ¬x ⊕ y. Of course, we can derive also conversely x ⊕ y =
¬x→ y due to the double negation law (BA2). Hence, A can be described
alternatively in the operations {→, 0} where ¬x = x → 0. Recall that by
chain basic algebra is meant a basic algebra which is a chain with respect
to the induced partial order. The following assertion is easy to check.

Proposition 4.1. (1) Let A = (A;⊕,¬, 0) be a chain basic algebra. Then

(i) x ≤ y implies x→ y = 1,

(ii) x ≤ y implies (y → x)→ x = y,

(iii) if y ≤ x ≤ z then z → y ≤ x→ y.

If A is, moreover, commutative then
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(iv) x→ y = (y → 0)→ (x→ 0) = ¬y → ¬x.

(2) Let (A;≤) be an ordered set with a least element 0 and a greast element
1. Let → be a binary operation on A satisfying (i), (ii) and (iii). Define
¬x = x → 0 and x ⊕ y = ¬x → y. Then A = (A;⊕,¬, 0) is a chain basic
algebra. If, moreover, → satisfies (iv) then A is commutative.

It is evident that a commutative basic algebra is an MV-algebra if and
only if the operation ⊕ is associative. Using the operation →, it can be
expressed as follows: A basic algebra A = (A;⊕,¬, 0) is an MV-algebra if
and only if satisfies the Exchange Identity

x→ (y → z) = y → (x→ z) (E)

(se e.g. [34]).
We denote by R or Q the set of all real or rational numbers. By + or −

we mean the arithmetical operations on reals. By R+ or Q+ is meant the
interval [0,∞) ∩ R or [0,∞) ∩ Q. Analogously, by R− or Q− is meant the
interval (∞, 0] ∩ R or (∞, 0] ∩Q.

Let A be a linearly ordered MV-algebra. Denote by

A(R) = ({1} × R−) ∪ ({0} × R+) ∪ ({A \ {0, 1}} × R),

A(Q) = ({1} ×Q−) ∪ ({0} ×Q+) ∪ ({A \ {0, 1}} ×Q).

Let us introduce the order ≤ on the sets A(R) and A(Q) such that
(a, x) ≤ (b, y) if and only if a ≤ b (in A) or a = b and x ≤ y (as numbers).
We introduce the operations ⊕ and ¬ on A(R) or A(Q) as follows:

¬(x, y) := (¬x,−y),

(x, y)⊕ (z, v) :=


(x⊕ z, y + v) if x⊕ z 6= 1 or

¬x = z and y + v ≤ 0

(1, 0) otherwise.
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It is easy to check that A(R) and A(Q) are linearly ordered MV-algebras
with the least element (0, 0) and the greatest element (1, 0) with respect to
the lexicographic order on A(R) and A(Q).

Moreover, if A is of an infinite cardinality (or of the cardinality at least
continuum) then A(Q) (or A(R), respectively) is of the same cardinality.

If x→ y = ¬x⊕y is derived in the standard MV-algebra on the interval
[0, 1] of reals., then:

x→ y :=


1− x+ y if x ≤ y

1 otherwise.

To obtain a commutative basic algebra which is not an MV-algebra, the
operation → must be changed. We are able to do it by means of a new
function of deformation d(x, y) which is described in [17]. The operation
→ is defined now by

x→ y :=


1− x+ y + d(x, y) if x ≤ y

1 otherwise.

However, d(x, y) must be picked up in the way to satisfy axioms of
commutative basic algebra. If d(x, y) = 0 for all reals x, y then resulting
algebra is the standard MV-algebra.

We generalize this idea for construction of system of deformation func-
tions on MV-algebras A(R) or A(Q) such that new algebra is commutative
basic algebra, but it is not an MV-algebra. The operation → on A(R) and
A(Q) can be defined as

(a, x)→ (b, y) :=


(a→ b, y − x) if (a, x) ≥ (b, y)

(1, 0) otherwise.

To find the system of deformation functions we must firstly prove the
following theorem.
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Theorem 4.2. Let A be an MV-algebra and a → b := ¬a ⊕ b. On A(R)
or A(Q) we define

(a, x)→ (b, y) :=


(a→ b, y − x+ da,b(x, y)) if (a, x) ≥ (b, y)

(1, 0) otherwise,

where {da,b | a, b ∈ A; b ≤ a} is a system of functions da,b : R2 −→ R
or da,b : Q2 −→ Q which satisfy for (b, y) ≤ (a, x) < (a, z) the following
conditions

(Di) da,0(x, 0) = 0,

(Dii) da,b(x, y) = da→b,b(y − x+ da,b(x, y), y),

(Diii) da,b(x, y) = d¬b,¬a(−y,−x),

(Div)
da,b(z,y)−da,b(x,y)

z−x < 1.

Define (a, x) ⊕ (b, y) := ((a, x) → (0, 0)) → (b, y) and ¬(a, x) = (a, x) →
(0, 0). Then the algebras

A(R) = (A(R),⊕,¬, (0, 0))

and
A(Q) = (A(Q),⊕,¬, (0, 0))

are linearly ordered commutative basic algebras.

Proof. By Proposition 4.1 we have to check the conditions (i)-(iv). Firstly,
we can easily check that ¬(a, x) = (a, x) → (0, 0) = (a → 0, 0 − x +
da,0(x, 0)) = (¬a,−x).
(i) Clearly, (a, x)→ (b, y) = (1, 0) = ¬(0, 0), if (a, x) ≥ (b, y) holds.
(ii) Let (a, x) ≥ (b, y). Then we can write
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((a, x)→ (b, y))→ (b, y) = (a→ b, y − x+ da,b(x, y))→ (b, y) =

((a→ b)→ b, y − (y − x+ da,b(x, y)) +

da→b,b(y − x+ da,b(x, y), y)) =

(a ∨ b, x− da,b(x, y)) +

da→b,b(y − x+ da,b(x, y), y)) =

(a, x)

(iii) Consider the elements (b, y) ≤ (a, x) < (c, z). If a < c then clearly
c→ b < a→ b and also (c, z)→ (b, y) = (c→ b, y − z + dc,b(z, y)) < (a→
b, y − x+ da,b(x, y)) = (a, x)→ (b, y).

If a = c then the inequality (b, y) ≤ (a, x) < (a, z) is satisfied and
z − x > 0. Then

da,b(z, y)− da,b(x, y)

z − x
< 1

yields da,b(z, y) − z + y < da,b(x, y) − x + y and finally (a, z) → (b, y) =
(a→ b, y − z + da,b(z, y)) < (a→ b, y − x+ da,b(x, y)) = (a, x)→ (b, y).
(iv) Let (a, x) ≥ (b, y). Then we have

¬(b, y)→ ¬(a, x) = (¬b,−y))→ (¬a,−x) =

(¬b→ ¬a,−y − (−x) + d¬b,¬a(−y,−x)) =

(a→ b, x− y + da,b(x, y)) =

(a, x)→ (b, y).

The following facts taken from [21],[20],[35],[33] will be employed in the
next proof.
Fact 1. If A = (A;⊕,¬, 0) is a basic algebra and θ ∈ Con A then
x, y ∈ 0/θ yields x⊕ y ∈ 0/θ.
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Fact 2. If
∨
{xi | i ∈ I} exists in commutative basic algebra A =

(A;⊕,¬, 0) then there exists also
∨
{y ⊕ xi | i ∈ I} for any y ∈ A and

y ⊕
∨
{xi | i ∈ I} =

∨
{y ⊕ xi | i ∈ I}.

Fact 3. Since ⊕-idempotent elements in any basic algebra are just the
boolean elements, any chain basic algebra has only two such elements which
are 0 and 1.

Theorem 4.3. Commutative basic algebras A(R) and A(Q) constructed
in Theorem 4.2 are subdirectly irreducible.

Proof. As pointed in [34], every congruence on basic algebra is fully deter-
mined by its ideal. Hence, to prove that a basic algebra A is subdirectly
irreducible, it is enough to show that it contains a nontrivial least ideal.
The set I = {(0, x) | x ∈ R+} is the kernel of the projection h(a, x) = a
(which is a homomorphismus) and hence I = (0, 0)/θh for the induced con-
gruence θh. Thus I is an ideal of A (in the sense of [21]). It remains to
show that I is the least non-singleton ideal. Assume J is an ideal of A(R)
or A(Q) such that J ⊂ I. If J is non-trivial then there exists x ∈ J such
that x 6= 0. Existence of suprema in real numbers shows that

∨
J exists in

A(R). However, A(Q) is subalgebra of A(R) and we can compute in A(R):∨
J ≤

∨
J ⊕

∨
J =

∨
x∈J

(x⊕
∨
J) =

∨
x∈J

∨
y∈J

(x⊕ y) ≤
∨
J

thus
∨
J is an idempotent element of A(R). Of course,

∨
J 6= (1, 0) thus

we have
∨
J = (0, 0) proving that J is a singleton. Hence, I is a non-trivial

least ideal and thus A(R) is subdirectly irreducible. Although
∨
J need

not belong to A(Q), the ideal I is the least non trivial ideal of A(Q) and
hence both A(Q) and A(R) are subdirectly irreducible.

Theorem 4.4. For every MV-algebra A, there exists a system of nonzero
functions {da,b | a, b ∈ A} on R or Q satisfying the conditions (Di)-(Div)
of Theorem 4.4.
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Proof. We can define
da,b(x, y) = 0

for all (a, b) 6∈ {(0, 0), (1, 0), (1, 0)}. Hence, for such (a, b) the operation
(a, x) → (b, y)) satisfies trivially the conditions (i)-(iv) of Proposition 4.1.
For (a, b) ∈ {(0, 0), (1, 0), (1, 0)} we define da,b similary as it was done by
the first author in [17], i.e.:

d1,1 : (R−)2 −→ R (resp. d1,1 : (Q−)2 −→ Q).

d1,1(x, y) :=


1
6x−

1
6y if x ≥ y > 3

2x
−1

3x+ 1
6y if 3

2x ≥ y > 2x
1
4x−

1
8y if 2x ≥ y > 18

5 x
−1

5x if 18
5 x ≥ y

d0,0 : (R+)2 −→ R (resp. d0,0 : (Q+)2 −→ Q).

d0,0(x, y) :=


1
6x−

1
6y if x ≥ y > 2

3x
−1

6x+ 1
3y if 2

3x ≥ y >
1
2x

1
8x−

1
4y if 1

2x ≥ y >
5
18x

1
5y if 5

18x ≥ y

d1,0 : R− × R+ −→ R (resp. d1,0 : Q− ×Q+ −→ Q).

d1,0(x, y) :=


−1

5x if y ≥ −12
5 x

−1
7x+ 1

7y if −12
5 x ≥ y > −x

1
7x−

1
7y if −x ≥ y > − 5

12x
1
5y if − 5

12x ≥ y

It is elemetary to check that d0,0(x, y) = d1,1(−y,−x) and d1,0(x, y) =
d1,0(−y,−x) (for example let (x, y) ∈ (R−)2 such that x ≥ y > 3

2x, then
clearly (−y,−x) ∈ (R+)2 and also −y ≤ x ≤ 2

3(−y) thus d1,1(x, y) =
1
6x−

1
6y = 1

6(−y)− 1
6(−x) = d0,0(−y,−x)) .

Conditions (i) and (iv) from Proposition 4.1 can be also checked by an
elementary computation.

Analogously we can check that d0,0(x, y) = d1,0(y − x + d0,0(x, y), y),
d1,1(x, y) = d1,1(y−x+d1,1(x, y), y) and d1,0(x, y) = d0,0(y−x+d1,0(x, y), y).
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For example let (x, y) ∈ (R−)2 such that x ≥ y > 3
2x. Then clearly

y − x + d1,1(x, y) = 5
6y −

5
6x and (5

6y −
5
6x, y) ∈ (R−)2. The inequality

y > 3
2x yields 18

5 (5
6y −

5
6x) > y. Finally we compute

d1,1(x, y) =
1

6
x− 1

6
y = −1

5
(
5

6
y − 5

6
x) = d1,1(y − x+ d1,1(x, y), y).

Corollary 4.2. For an arbirary infinite cardinal κ there exists a subdirectly
irreducible linearly ordered commutative basic algebra of cardinality κ which
is not an MV-algebra.

Proof. Of course, if κ is an infinite cardinal then, by [145], there exists an
MV-algebra A which is linearly ordered and of cardinality κ. Hence, A(Q)
is also of cardinality κ. By Theorems 4.3 and 4.4, A(Q) is subdirectly
irreducible and linearly ordered.

To prove that A(Q) is not an MV-algebra, we can show that the Ex-
change Identity (E) is violated. For the elements (1,−4), (1,−5), (1,−10) ∈
A(Q). We compute :

(1,−4)→ ((1,−5)→ (1,−10)) =

(1,−4)→ (1→ 1,−10 + 5 + d1,1(−5,−10)) =

(1,−4)→ (1,−10 + 5 +
1

4
(−5)− 1

8
(−10)) =

(1,−4)→ (1,−5) =

(1→ 1,−5 + 4 + d1,1(−4,−5)) =

(1,−5 + 4 +
1

6
(−4)− 1

6
(−5)) =

(1,−5

6
).



CHAPTER 4. NON-ASSOCIATIVE LOGICS 131

On the other side:

(1,−5)→ ((1,−4)→ (1,−10)) =

(1,−5)→ (1→ 1,−10 + 4 + d1,1(−4,−10)) =

(1,−5)→ (1,−10 + 4 +
1

4
(−4)− 1

8
(−10)) =

(1,−5)→ (1,−23

4
) =

(1→ 1,−23

4
+ 5 + d1,1(−5,−23

4
)) =

(1,−23

4
+ 5 +

1

6
(−4)− 1

6
(−23

4
)) =

(1,−5

8
).

Thus, the exchange identity is not satisfied in algebra A(Q) and hence
A(Q) is not an MV-algebra.
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4.3 States on commutative basic algebras

States on MV-algebras were introduced by Mundici [120] as finitely additive
measures of truth of propositions in the  Lukasiewicz logic and play an
important role in MV-algebraic probability theory (see [135]). Though the
definition only requires finite additivity, i.e., s(x⊕y) = s(x)+s(y) whenever
x ≤ ¬y, there is a correspondence between states on an MV-algebra A and
σ-additive regular Borel probability measures on the space H(A) ⊆ [0, 1]A

of the homomorphisms from A to the standard MV-algebra [0, 1]MV (cf.
[113], [112], [126]). The states on A form a convex compact subset of
the Tychonoff cube [0, 1]A the extreme boundary of which is just H(A).
Moreover, the states on A coincide with those [0, 1]-valued functions on
A which satisfy de Finetti’s coherence criterion with respect to H(A) (cf.
[121], [113]).

Recently, the theory of states has been extended to algebras that gener-
alize MV-algebras in the context of residuated lattices such as pseudo-MV-
algebras by Dvurečenskij [64], BL-algebras by Riečan [134] and pseudo-BL-
algebras by Georgescu [87], bounded divisible and semi-divisible residuated
lattices by Dvurečenskij and Rach̊unek [74], [75] and by Mertanen and Tu-
runen [118], and bounded pseudo-BCK-algebras, which are the residuation
subreducts of bounded residuated lattices, by Ciungu and Dvurečenskij [50].
The definition of a state for pseudo-MV-algebras is essentially the one given
by Mundici, while for the other structures the definition of a Bosbach state
by Georgescu [87] is used instead (in case of pseudo-MV-algebras, the two
concepts coincide). From the logical point of view, in all these cases we may
think of states as measures of “average degree of truth of a proposition”
(cf. [120]) in a propositional logic with associative conjunction, i.e., a logic
in which the formulas (ϕ&ψ) &χ and ϕ&(ψ&χ) are provably equivalent.

Summarizing, we adopt Mundici’s definition [120] and study states in
the setting of commutative basic algebras that are the equivalent algebraic
semantics for the non-associative fuzzy logic LCBA.
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4.3.1 States

Following [120], by a state on a commutative basic algebra A we mean a
[0, 1]-valued function which is normalized and finitely additive; more pre-
cisely, a state on A is a function s : A→ [0, 1] such that

(i) s(1) = 1 (normality),

(ii) s(a⊕ b) = s(a) + s(b) for all a, b ∈ A with a ≤ ¬b (additivity).

The kernel of a state s : A→ [0, 1] is the set

Ker(s) = {a ∈ A | s(a) = 0},

and s is said to be a faithful state if Ker(s) = {0}.
In [120], additivity is phrased in a slightly different way: s(a ⊕ b) =

s(a) + s(b) if a � b = 0. But a � b = 0 iff ¬a ⊕ ¬b = 1 iff a ≤ ¬b. The
same holds true for basic algebras, but we avoid using � in defining states
because � is not employed otherwise throughout the section.

Example 4.1. Let A be an arbitrary commutative basic algebra. Then the
direct product A× [0, 1]MV is a commutative basic algebra which is an MV-
algebra iff A is an MV-algebra. It is easily seen that the map s : (a, x) 7→ x
is a state on A × [0, 1]MV and Ker(s) = A × {0}. Clearly, we could have
taken any subalgebra of [0, 1]MV instead of [0, 1]MV .

Example 4.2. Let A be a commutative basic algebra and I an MV-ideal in
A. It is well-known that for every MV-algebra there exists a homomorphism
to the standard MV-algebra [0, 1]MV ; such a homomorphism is a state and
hence every MV-algebra admits at least one state (cf. [46], [120]). Thus if
m is a state on the MV-algebra A/I, then s : x 7→ m(x/I) is a state on A.
We have I ⊆ Ker(s), and I = Ker(s) iff m is a faithful state.

Lemma 4.8. Let A be a commutative basic algebra and s a state on it.
Then for all a, b, c ∈ A:

(i) s(0) = 0,

(ii) if a ≥ b, then s(a	 b) = s(a)− s(b) and s(a) ≥ s(b),
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(iii) s(a	 b) = s(a)− s(a ∧ b) = s(a ∨ b)− s(b),
(iv) s(a⊕ b) ≤ s(a) + s(b),

(v) s((c	 b)	 (c	 a)) ≤ s(a	 b).

Moreover, s is a faithful state if and only if, for all a, b ∈ A,

(vi) a > b implies s(a) > s(b).

Proof. (i) We have 1 = s(1) = s(1⊕0) = s(1)+s(0) = 1+s(0), so s(0) = 0.
(ii) If a ≥ b, then a = a ∨ b = (a	 b)⊕ b where a	 b = ¬b	 ¬a ≤ ¬b.

Hence s(a) = s(a	 b) + s(b). Now, since 0 ≤ s(a	 b) = s(a)− s(b), we get
s(b) ≤ s(a).

(iii) This follows directly from (ii) since a	 b = a	 (a∧ b) = (a∨ b)	 b.
(iv) We have s(a⊕ b) = s((a∧¬b)⊕ b) = s(a∧¬b) + s(b) ≤ s(a) + s(b).
(v) Since (a∨ c)	 (a∧ b) ≥ c	 (a∧ b) ≥ c	 b, c	a by Lemma 4.1 (i), it

follows (c	b)	(c	a) ≤ [(a∨c)	(a∧b)]	(c	a) and by (ii) and (iii) we get
s((c	b)	(c	a)) ≤ s([(a∨c)	(a∧b)]	(c	a)) = s((a∨c)	(a∧b))−s(c	a) =
s(a ∨ c)− s(a ∧ b)− (s(a ∨ c)− s(a)) = s(a)− s(a ∧ b) = s(a	 b).

(vi) Let s be faithful and suppose that a > b, but s(a) 6> s(b). Then by
(ii) we get s(a) = s(b) and s(a 	 b) = s(a) − s(b) = 0, whence a 	 b = 0,
so a ≤ b, a contradiction. On the other hand, if s satisfies (vi), then it is
faithful as a > 0 implies s(a) > s(0) = 0.

Proposition 4.2. Let A be a commutative basic algebra. A function
s : A→ [0, 1] is a state on A if and only if s(1) = 1 and s(a	b) = s(a)−s(b)
for all a, b ∈ A with a ≥ b.

Proof. Let s be a [0, 1]-valued function satisfying the stated conditions. If
a ≤ ¬b, then s(a⊕ b) = s(¬(¬b	 a)) = 1− (1− s(b)− s(a)) = s(a) + s(b).
Thus s is a state. For the converse see Lemma 4.8 (ii).

Proposition 4.3. Let A be a commutative basic algebra. The kernel K =
Ker(s) of every state s on A is a proper ideal of A. In the quotient algebra
A/K we have a/K ≤ b/K iff s(a) = s(a ∧ b) iff s(a ∨ b) = s(b); hence
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a/K = b/K iff s(a) = s(a ∧ b) = s(b) iff s(a) = s(a ∨ b) = s(b). Moreover,
the function ŝ : A/K → [0, 1] defined by

ŝ(a/K) = s(a)

is a faithful state on A/K.

Proof. Trivially, 0 ∈ K while 1 /∈ K. Recalling Lemma 4.4, it easily follows
by Lemma 4.8 (ii), (iv) and (v) thatK is an ideal of A. We have a/K ≤ b/K
iff a 	 b ∈ K iff s(a 	 b) = 0. By Lemma 4.8 (iii) we conclude that this is
equivalent to s(a) = s(a ∧ b) as well as to s(a ∨ b) = s(b). Consequently,
a/K = b/K iff s(a) = s(a ∧ b) = s(b) iff s(a) = s(a ∨ b) = s(b), which
at once entails that the map ŝ is well-defined. By Proposition 4.2, ŝ is
a state on A/K. Indeed, ŝ(1/K) = s(1) = 1, and if a/K ≥ b/K, then
s(a) = s(a∨b) and ŝ(a/K	b/K) = s(a	b) = s(a∨b)−s(b) = s(a)−s(b) =
ŝ(a/K) − ŝ(b/K). Actually, ŝ is a faithful state because ŝ(a/K) = 0 iff
s(a) = 0 = s(0) iff a/K = 0/K = K.

As usual, given s : A → [0, 1], for any ∅ 6= X ⊆ A we write s(X) =
{s(x) | x ∈ X}. Thus inf s(X) is inf{s(x) | x ∈ X}.

Lemma 4.9. Let A be a commutative basic algebra. For every ideal I ∈
I(A) and every state s : A → [0, 1], the function a/I 7→ inf s(a/I) is addi-
tive and monotone.

Proof. Let us assume a/I ≤ ¬b/I, i.e., a/I = (a ∧ ¬b)/I. We have

inf s(a/I) + inf s(b/I) = inf{s(a1) + s(b1) | a1 ∈ a/I, b1 ∈ b/I}.

Since s(a1 ⊕ b1) ≤ s(a1) + s(b1) and a1 ⊕ b1 ∈ (a ⊕ b)/I for all a1 ∈ a/I
and b1 ∈ b/I, every element of the set {s(a1) + s(b1) | a1 ∈ a/I, b1 ∈ b/I}
dominates some element of s(a/I ⊕ b/I) = s((a⊕ b)/I), and it follows that
inf s(a/I ⊕ b/I) ≤ inf s(a/I) + inf s(b/I).

Conversely, let x ∈ (a⊕b)/I. By Lemma 4.1 (viii) we have (x	b)⊕ (b∧
x) = x where x	b ≤ 1	b = ¬b ≤ ¬(b∧x), so that s(x) = s(x	b)+s(b∧x).
But x	b ∈ ((a⊕b)	b)/I = (a∧¬b)/I = a/I and b∧x ∈ (b∧(a⊕b))/I = b/I.
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Hence for every x ∈ (a⊕ b)/I, s(x) may be written as s(a1) + s(b1) where
a1 ∈ a/I and b1 ∈ b/I, thus s(a/I ⊕ b/I) ⊆ {s(a1) + s(b1) | a1 ∈ a/I, b1 ∈
b/I}, which yields inf s(a/I ⊕ b/I) ≥ inf s(a/I) + inf s(b/I).

Altogether, we have proved that inf s(a/I⊕b/I) = inf s(a/I)+inf s(b/I)
provided a/I ≤ ¬b/I. The monotonicity follows from the additivity because
the arguments used in the proof of Lemma 4.8 (ii) rely on additivity only.

As a corollary we obtain:

Proposition 4.4. If I is an ideal of a commutative basic algebra A and
s is a state on A such that inf s(1/I) 6= 0, then the map sI : A/I → [0, 1]
defined by

sI(a/I) =
inf s(a/I)

inf s(1/I)

is a state on A/I.

Proposition 4.5. Let A be a commutative basic algebra. Let I ∈ I(A)
be a proper non-zero ideal which is a polar in A (i.e. I = I⊥⊥). Then
for every faithful state s on A we have inf s(1/I) 6= 0 and the function sI
defined in Proposition 4.4 is a faithful state on A/I.

Proof. First, we show that

inf s(a/I) = s(a) (4.6)

for a ∈ I⊥. As a matter of fact, we show that a is the least element of a/I.
Indeed, if b ∈ a/I, then a/I = b/I, so a/I 	 b/I = I, which is equivalent
to a 	 b ∈ I. But we also have a 	 b ∈ I⊥ since a 	 b ≤ a ∈ I⊥. Hence
a	b ∈ I∩I⊥ = {0} and a	b = 0, which entails a ≤ b. Since s is monotone,
we have settled (4.6).

Second, we observe that

inf s(a/I) = 0 ⇒ a ∈ I (4.7)

for all a ∈ A. Suppose that inf s(a/I) = 0, but a /∈ I = I⊥⊥, i.e., there
exists b ∈ I⊥ such that a ∧ b 6= 0. Then a ∧ b ∈ I⊥, whence using (4.6) we
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get 0 = inf s(a/I) ≥ inf s((a ∧ b)/I) = s(a ∧ b). Since s is a faithful state,
this is possible only if a ∧ b = 0, but this is a contradiction.

Now, by (4.7) we have inf s(1/I) 6= 0 for otherwise 1 ∈ I, which would
contradict the assumption I 6= A. Hence sI is a faithful state on A/I
because Ker(sI) = {I} owing to (4.7).

Theorem 4.5. A representable commutative basic algebra which has a
faithful state is an MV-algebra.

Proof. Let A be a commutative basic algebra and s : A → [0, 1] a faithful
state on it. We aim at proving that A fulfills (4.2).

Let a = (z 	 y) 	 (z 	 x) and b = x 	 y, and suppose by way of
contradiction that the elements a, b are incomparable, i.e., a 	 b 6= 0 6=
b 	 a. Then I = (a 	 b)⊥ is a proper non-zero ideal since a 	 b /∈ I
and b 	 a ∈ I. By Proposition 4.5, the function sI is a faithful state on
the quotient algebra A/I where we have b/I ≤ a/I as b 	 a ∈ I, and
so sI(a/I 	 b/I) = sI(a/I) − sI(b/I). But sI(a/I) = sI((z/I 	 y/I) 	
(z/I 	 x/I)) ≤ sI(x/I 	 y/I) = sI(b/I) by Lemma 4.8 (v), and hence
sI(a/I	 b/I) = 0. Since sI is a faithful state, it follows that a/I	 b/I = I,
thus a	 b ∈ I. This is the desired contradiction.

We further know that s(a) ≤ s(b) by Lemma 4.8 (v). But by (vi) of the
same lemma a > b would yield s(a) > s(b), thus the only possible case is
a ≤ b, proving that A is an MV-algebra.

Corollary 4.3. Let A be a representable commutative basic algebra. For
every state s on A, Ker(s) is an MV-ideal, i.e., the quotient algebra
A/Ker(s) is an MV-algebra.

Proof. Since ŝ is a faithful state on A/Ker(s) by Proposition 4.3, it follows
by Theorem 4.5 that A/Ker(s) is an MV-algebra.

4.3.2 State-morphisms

As in MV-algebras, we define a state-morphism on a commutative basic
algebra A as a homomorphism of A to the standard MV-algebra [0, 1]MV
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(recall that the operations in [0, 1]MV are given by x⊕ y = min{1, x+ y},
¬x = 1− x and x	 y = max{0, x− y}).

Lemma 4.10. Every state-morphism is a state. A state is a state-morphism
if and only if it preserves finite suprema or, equivalently, finite infima.

Proof. Let s be a state-morphism on A. Clearly, s(1) = 1 and if a ≤ ¬b,
then s(a) ≤ s(¬b) = 1 − s(b), so s(a) + s(b) ≤ 1 and hence s(a ⊕ b) =
s(a)⊕s(b) = min{1, s(a)+s(b)} = s(a)+s(b). This shows that s is a state.

For the latter statement, if s is a state preserving finite suprema, then
s(a	 b) = s(a∨ b)− s(b) = max{s(a), s(b)}− s(b) = max{s(a)− s(b), 0} =
s(a) 	 s(b). Similarly, if s preserves finite infima, then s(a 	 b) = s(a) −
s(a∧ b) = s(a)−min{s(a), s(b)} = max{0, s(a)− s(b)} = s(a)	 s(b). Thus
s is a homomorphism.

Theorem 4.6. Let A be a commutative basic algebra. A state s : A→ [0, 1]
is a state-morphism if and only if its kernel Ker(s) is an MV-ideal which
is a maximal ideal. Every state-morphism is uniquely determined by its
kernel.

Proof. Let s be a state-morphism. Then s(A) is a subalgebra of the stan-
dard MV-algebra [0, 1]MV isomorphic to A/Ker(s), hence Ker(s) is an
MV-ideal. Since s(A) is simple (up to isomorphism, simple MV-algebras
are just the subalgebras of [0, 1]MV , cf. [46]), and since (by the Correspon-
dence Theorem, e.g. [27], Theorem 6.20) the ideal lattice I(A/Ker(s))
of A/Ker(s) is isomorphic to the interval [Ker(s),A] in the ideal lattice
I(A), it follows that Ker(s) is a maximal ideal of A.

Conversely, assume that K = Ker(s) is an MV-ideal and that it is a
maximal ideal. Then A/K is a simple MV-algebra, hence linearly ordered.
For arbitrary a, b ∈ A, if a/K ≤ b/K, then s(a) = s(a ∧ b), and if a/K ≥
b/K, then s(a∧b) = s(b). In either case we have s(a∧b) = min{s(a), s(b)},
thus by Lemma 4.10, s is a state-morphism.

For the latter claim, let h1, h2 be two state-morphisms on A with the
same kernel, say K. Then both h1(A) and h2(A) are isomorphic to A/K,
and hence h1(A) ∼= h2(A), the isomorphism being the map η : h1(a) 7→
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h2(a). However, it is known that an isomorphism between two subalgebras
of the standard MV-algebra [0, 1]MV is automatically the identity map.
Therefore h1(a) = h2(a) for all a ∈ A.

4.3.3 State space

Given a commutative basic algebra A, we let S(A) and H(A) denote the
set of states and the set of state-morphisms on A, respectively. We regard
them as subspaces of the Tychonoff cube [0, 1]A, i.e., the set of all [0, 1]-
valued functions over A equipped with the usual product topology.

Theorem 4.7. Let A be a commutative basic algebra. Then S(A) is either
empty or a convex compact subset of [0, 1]A, and H(A) is either empty or a
compact subset of [0, 1]A and S(A) contains the closure of the convex hull
of H(A). Moreover, if A is representable and S(A) 6= ∅, then the extreme
boundary ∂eS(A) of S(A) is exactly the set H(A) of state-morphisms.

Proof. S(A) is convex: It can easily be seen that S(A) is closed under
convex combinations: if s1, . . . , sn are states and λ1, . . . , λn non-negative
reals with

∑n
i=1 λi = 1, then also the function

∑n
i=1 λisi is a state on A.

S(A) is compact: Let {st | t ∈ T} be a net in S(A) which converges to
s in [0, 1]A. We have s(1) = limt∈T st(1) = 1, and if a ≤ ¬b, then s(a⊕ b) =
limt∈T st(a ⊕ b) = limt∈T (st(a) + st(b)) = limt∈T st(a) + limt∈T st(b) =
s(a) + s(b). Thus s is a state.
H(A) is compact: If {st | t ∈ T} is a net of state-morphisms converging

in [0, 1]A to s, then s(a ⊕ b) = limt∈T st(a ⊕ b) = limt∈T (st(a) ⊕ st(b)) =
limt∈T st(a) ⊕ limt∈T st(b) = s(a) ⊕ s(b) for all a, b ∈ A, so that s is a
state-morphism.

Since H(A) ⊆ S(A), it immediately follows that the closure of the
convex hull of H(A) is a subset of S(A), too.

Now, let A be a representable commutative basic algebra such that
S(A) 6= ∅. The extreme boundary ∂eS(A) consists of the extremal states,
i.e., those s ∈ S(A) which cannot be written as a positive convex combina-
tion of two states distinct from s. We have to show that s is an extremal
state iff it is a state-morphism.
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Let s ∈ ∂eS(A). By Proposition 4.3 and Corollary 4.3, we know
that A/K, where K = Ker(s), is an MV-algebra and that the function
ŝ : a/K 7→ s(a) is a state on A/K. Suppose that ŝ is a positive convex
combination of states r1, r2 on A/K, i.e., ŝ = λ1r1 +λ2r2 where λ1 +λ2 = 1
and 0 < λ1, λ2 < 1. It is easily seen that the functions si = ν ◦ ri, where
ν : a 7→ a/K is the natural homomorphism of A onto A/K, are states on A
such that ŝi = ri and s = λ1s1 +λ2s2. Then s1 = s = s2 since s is extremal.
It follows that r1 = ŝ = r2, so ŝ is an extremal state on A/K. By [120], the
extremal states on MV-algebras are precisely the state-morphisms. Hence
ŝ is a state-morphism on A/K and we conclude that s is a state-morphism
on A since s(a⊕ b) = ŝ((a⊕ b)/K) = ŝ(a/K)⊕ ŝ(b/K) = s(a)⊕ s(b).

Conversely, let h ∈ H(A) and assume that h = λ1s1 + λ2s2 for some
si ∈ S(A) and 0 < λi < 1. Then certainly Ker(h) = Ker(s1) ∩Ker(s2).
Since h is a state-morphism, Ker(h) is a maximal ideal and hence Ker(h) =
Ker(s1) = Ker(s2). Then both s1 and s2 are state-morphisms, and since
state-morphisms are uniquely determined by their kernels, it follows that
h = s1 = s2. Thus h ∈ ∂eS(A).

Since the Tychonoff cube [0, 1]A is a locally convex Hausdorff space
(i.e., the collection of all open convex subsets forms a basis) and S(A) is
a compact convex subset of [0, 1]A, by the Krein-Mil’man Theorem (which
says that a compact convex subset is the closure of the convex hull of its
set of extreme points, see e.g. [106], Theorem 4.30) we get:

Corollary 4.4. If A is a representable commutative basic algebra such that
S(A) 6= ∅, then S(A) is the closure of the convex hull of H(A).

In what follows, given a commutative basic algebra A, we denote by
MMV(A) the set of those MV-ideals of A which are maximal as ideals.
We know that a state-morphism is specified by its kernel which belongs to
MMV(A). Also conversely, to every M ∈MMV(A) there corresponds a
state-morphism. Indeed, A/M is a simple MV-algebra, so it is isomorphic
to a subalgebra of [0, 1]MV . If ι is an embedding of A/M into [0, 1]MV

and ν the natural homomorphism of A onto A/M , then h = ν ◦ ι is a
state-morphism on A and Ker(h) = M . Therefore, the map η : H(A) →
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MMV(A) defined by
η(s) = Ker(s)

is a bijection. As a consequence, for representable commutative basic alge-
bras we have: S(A) 6= ∅ iff H(A) 6= ∅ iff MMV(A) 6= ∅.

We now put a topology on MMV(A) 6= ∅ in the following standard
way. For any I ∈ I(A), let

O(I) = {M ∈MMV(A) | I *M}.

For a ∈ A and M ∈ MMV(A) we have a ∈ M iff M contains the ideal
generated by a, so we may unambiguously writeO(a) for {M ∈MMV(A) |
a /∈M}. The following facts are obvious:

(i) O(A) =MMV(A) and O(0) = ∅;
(ii) if I, J are ideals of A, then O(I ∩ J) = O(I)∩O(J) (this follows from

the fact that every maximal ideal is prime, i.e., I ⊆ M or J ⊆ M
whenever I ∩ J ⊆M);

(iii) for every family {It | t ∈ T} of ideals of A, O(
∨
t∈T It) =

⋃
t∈T O(It),

where
∨
t∈T It is the join of the ideals It in the ideal lattice I(A).

Hence T = {O(I) | I ∈ I(A)} is a topology on MMV(A); its basis is the
set {O(a) | a ∈ A} because if M ∈ O(I), then I *M and for any a ∈ I \M
we have M ∈ O(a) ⊆ O(I).

Lemma 4.11. Let A be a commutative basic algebra and M ∈MMV(A).
If a∧ b ∈M , then a ∈M or b ∈M . Consequently, O(a)∩O(b) = O(a∧ b)
for all a, b ∈ A.

Proof. Let a ∧ b ∈ M and suppose that a /∈ M . Then certainly MV (M ∪
{a}) = A since M is a maximal ideal strictly contained in MV (M ∪ {a}),
and hence, by Lemma 4.7, b ≤ x ⊕ y where x ∈ M and y ∈ N(a). Since
a ∧ b ∈ M and y = τ(a, . . . , a) for some additive term τ , applying Lemma
4.1 (v) repeatedly we obtain y ∧ b ∈ M . Consequently, b ≤ x ⊕ y yields
b = (x ⊕ y) ∧ b ≤ (x ∧ b) ⊕ (y ∧ b) ∈ M as both x ∧ b and y ∧ b belong to
M . Thus b ∈M .
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Theorem 4.8. For every commutative basic algebra A, if MMV(A) 6= ∅,
then MMV(A) equipped with the topology T is a compact Hausdorff space
homeomorphic to H(A).

Proof. Let P,Q ∈ MMV(A) be distinct, i.e., there exist a ∈ P \ Q and
b ∈ Q \ P . It is easily seen by Lemma 4.3 that a 	 b ∈ P \Q and b 	 a ∈
Q \ P . By Lemma 4.11 and owing to prelinearity (Lemma 4.1 (ix)) we
have O(a	 b) ∩ O(b	 a) = O((a	 b) ∧ (b	 a)) = O(0) = ∅, which means
that O(b 	 a) and O(a 	 b) are disjoint open neighborhoods of P and Q,
respectively. Thus MMV(A) is a Hausdorff space.

Further, recalling that η : s 7→ Ker(s) is a bijection of H(A) onto
MMV(A), in order to complete the proof we only have to show that
η is continuous. For that purpose, assume that C is a closed subset of
MMV(A), i.e., C = {M ∈ MMV(A) | I ⊆ M} for some I ∈ I(A).
For every state-morphism s ∈ H(A) we have: η(s) ∈ C iff I ⊆ Ker(s) iff
s(x) = 0 for all x ∈ I, hence

η−1(C) = {s ∈ H(A) | s(x) = 0 for all x ∈ I},

which is a closed subset of H(A). Thus η is continuous.

Finally, we show that if a representable commutative basic algebra A
admits a state, then the states on A correspond to the states on a certain
MV-algebra. We will regard two elements of A as being equivalent iff we
cannot separate them by a state, i.e., for a, b ∈ A,

a ∼ b iff s(a) = s(b) for all s ∈ S(A).

Since S(A) is the closure of the convex hull of H(A) = ∂eS(A) (see Corol-
lary 4.4), we have

a ∼ b iff s(a) = s(b) for all s ∈ H(A).

Hence ∼ is a congruence on A, the 0-class of which is

K =
⋂
{Ker(s) | s ∈ S(A)} =

⋂
{Ker(s) | s ∈ H(A)}.

Recall that a homeomorphism is affine if it preserves convex combina-
tions.
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Theorem 4.9. Let A be a representable commutative basic algebra. If
S(A) 6= ∅, then the quotient algebra A/K is an MV-algebra such that
the spaces S(A/K) and H(A/K) are affinely homeomorphic to S(A) and
H(A), respectively.

Proof. Clearly, K =
⋂
{M | M ∈ MMV(A)} is an MV-ideal, thus A/K

is an MV-algebra. Let θ be the map assigning to every s ∈ S(A) the state
ŝ ∈ S(A/K) defined as in Proposition 4.3, i.e., ŝ : a/K 7→ s(a) for all a ∈ A.
That ŝ is well-defined follows from K ⊆ Ker(s). We are going to prove that
θ : s 7→ ŝ is an affine homeomorphism of S(A) onto S(A/K). Let ν be the
natural homomorphism of A onto A/K. Then for every m ∈ S(A/K), the
composite map ν ◦m : a 7→ m(a/K) is a state on A such that ν̂ ◦m = m,
and every s ∈ S(A) can be recovered from ŝ as ν ◦ ŝ. Thus θ : s 7→ ŝ is a
bijection between S(A) and S(A/K). It is readily seen that θ also preserves
limits of nets and convex combinations, so it is an affine homeomorphism
as claimed.

4.3.4 De Finetti’s coherent maps and Borel states

Let now A be a non-empty set and V be a non-empty closed subset of
the cube [0, 1]A. A function s : A → [0, 1] is said to satisfy de Finetti’s
coherence criterion with respect to V (see [113], [121]) if for every n ∈ N,
a1, . . . , an ∈ A and λ1, . . . , λn ∈ R, there exists v ∈ V such that

n∑
i=1

λi(s(ai)− v(ai)) ≥ 0. (4.8)

This property can be interpreted in a quite natural way (see [121] for
more details): Let us think of a1, . . . , an ∈ A as certain “events”. Then the
maps v : A → [0, 1] are “valuations” assigning to each ai its “truth-value”
v(ai) ∈ [0, 1]. If we think of s(ai) ∈ [0, 1] as bookmaker’s “belief” that ai
will take place, and λi as bettor’s “stake” (the bettor pays the bookmaker∑n

i=1 λis(ai) and will receive
∑n

i=1 λiv(ai) when v(ai)’s are revealed), then
the condition (4.8) essentially says that there are no “stakes” λ1, . . . , λn
ensuring the player to win in every case.
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Generalizing the classical de Finetti’s no-Dutch-Book theorem, Mundici
[121] proved that if A is a free MV-algebra and V = H(A) is the set of
homomorphisms to the standard MV-algebra [0, 1]MV , then the coherent
maps with respect to V are precisely the states (i.e. the functions in the
closure of the convex hull of V). More generally, it was proved in [113]
that for any non-empty set A and any non-empty closed subset V of [0, 1]A

(without any algebraic requirements), a map s : A→ [0, 1] is coherent with
respect to V if and only if s belongs to the closure of the convex hull of
V. The theorem for MV-algebras (resp. for the  Lukasiewicz logic) then
follows immediately, and Corollary 4.4 entails that the results of [113] are
also applicable to representable commutative basic algebras. In particular,
we get the following:

Theorem 4.10. Let A be a representable commutative basic algebra. Then
for every function s : A→ [0, 1] the following are equivalent:

(i) s is a state;

(ii) s is coherent with respect to the set H(A) of all state-morphisms on
A;

(iii) s belongs to the closure of the convex hull of H(A), i.e., s is the limit
of a net of convex combinations of state-morphisms.

As an example of “non-associative events” illustrating that sometimes
things are commutative and associativity does not make much sense, we
can take inheritance of blood types. One’s blood type is determined by
the parents’ blood types, and this “conjunction” is commutative. This is
one of those situations mentioned in Section 1 (cf. [83]) where there is no
need to consider associativity, but if we move from parents to grandparents
and ask about the possible blood types of their grandchildren, then non-
associativity comes out. Indeed, if the grandparents are (A and 0) and
(B and 0), then the grandchildren may have any of the four blood types,
while if the grandparents were (A and B) and (0 and 0), then the type AB
would be impossible.

Finally, recalling another result from [113], we tie the states on a com-
mutative basic algebra A to the Borel probability measures on H(A). Let
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A and V be as above a non-empty set and a non-empty closed subset of
[0, 1]A, respectively. By [113], Theorem 4.2, the coherent maps with re-
spect to V coincide with the so-called Borel states on A, i.e., those maps
s : A→ [0, 1] for which there is a regular Borel probability measure µ on V
such that

s(a) =

∫
V
fa dµ (4.9)

for all a ∈ A, where fa : V → [0, 1] is given by fa(v) = v(a) for all v ∈ V.
Therefore, by Corollary 4.4, we have:

Corollary 4.5. Let A be a representable commutative basic algebra. Then
s : A→ [0, 1] is a state on A if and only if s is a Borel state, i.e., it satisfies
(4.9) for some regular Borel probability measure µ on H(A).

This is a generalization of Panti’s theorem [126] which asserts that for
any MV-algebra A, the states on A correspond to the regular Borel prob-
ability measures on the space of maximal ideals of A (which is homeomor-
phic to H(A), cf. Theorem 4.8), as well as of Kroupa’s theorem [112] which
asserts the same for semisimple MV-algebras.
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4.4 Non-associative generalization of Hájek’s BL-
algebras

4.4.1 Non-associative residuated lattices

The following lemma extends well known properties of residuated lattices
to a non-associative case.

Lemma 4.12. If A = (A;∨,∧, ·,→, 0, 1) is a non-associative residuated
lattice then for all x, y, x1, x2 ∈ A we have

(i) x ≤ y if and only if x→ y = 1,

(ii) If x1 ≤ x2 then x1 ·y ≤ x2 ·y, x2 → y ≤ x1 → y and y → x1 ≤ y → x2,

(iii) y · (x1 ∨ x2) = (y · x1) ∨ (y · x2),

(iv) y → (x1 ∧ x2) = (y → x1) ∧ (y → x2),

(v) (x1 ∨ x2)→ y = (x1 → y) ∧ (x2 → y),

(vi) (x→ y) · x ≤ x, y,

(vii) (x→ y)→ y ≥ x, y.

Proof. (i) Clearly, the adjointness property yields 1 · x ≤ y if and only if
1 ≤ x→ y.
(ii),(vi),(vii) Assume x1 ≤ x2. Then y · x2 = y · x2 yields x2 ≤ y → (y · x2)
and consequently x1 ≤ x2 ≤ y → (y · x2). Again, due to the adjointness
property we obtain y · x1 ≤ y · x2.

Further, x→ y ≤ x→ y gives (x→ y) · x ≤ y and x ≤ (x→ y)→ y.
Due to x→ y ≤ 1 and monotonicity of “·” we give (x→ y)·x ≤ 1·x = x

which verifes (vi).
As y · (x → y) ≤ y · 1 = y, we conclude y ≤ (x → y) → y which gives

(vii).
By the adjointness property, (y → x1) · y ≤ x1 ≤ x2 imply y → x1 ≤

y → x2.
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Analogously, x1 ≤ x2 ≤ (x2 → y) → y yield x1 · (x2 → y) ≤ y and
finally we obtain x2 → y ≤ x1 → y.
(iii) Due to monotonicity of “·” and x1∨x2 ≥ x1, x2 we obtain (x1∨x2)·y ≥
x1 · y, x2 · y and (x1 ∨ x2) · y ≥ (x1 · y) ∨ (x2 · y).

From (ii) we conclude x1 ≤ y → (x1 · y) ≤ y → ((x1 · y) ∨ (x2 · y))
and analogously x2 ≤ y → (x2 · y) ≤ y → ((x1 · y) ∨ (x2 · y)) which give
x1 ∨ x2 ≤ y → ((x1 · y) ∨ (x2 · y)). Applying the adjointness property gives
(x1 ∨ x2) · y ≤ (x1 · y) ∨ (x2 · y).
(iv) Clearly, x1 ∧ x2 ≤ x1, x2 implies y → (x1 ∧ x2) ≤ y → x1, y → x2 and
y → (x1 ∧ x2) ≤ (y → x1) ∧ (y → x2).

We have shown x1 ≥ y · (y → x1) ≥ y · ((y → x1) ∧ (y → x2)) and
x2 ≥ y · (y → x2) ≥ y · ((y → x1) ∧ (y → x2)). Altogether we obtain
x1 ∧ x2 ≥ y · ((y → x1) ∧ (y → x2)) and finally y → (x1 ∧ x2) ≥ (y →
x1) ∧ (y → x2).
(v) We have (x1 ∨ x2)→ y ≤ x1 → y, x2 → y which gives (x1 ∨ x2)→ y ≤
(x1 → y) ∧ (x2 → y).

The inequalities

x1 ≤ (x1 → y)→ y ≤ ((x1 → y) ∧ (x2 → y))→ y,

x2 ≤ (x2 → y)→ y ≤ ((x1 → y) ∧ (x2 → y))→ y

yield
x1 ∨ x2 ≤ ((x1 → y) ∧ (x2 → y))→ y.

Due to adjointness property we obtain

(x1 ∨ x2) · ((x1 → y) ∧ (x2 → y)) ≤ y,

and finally
(x1 → y) ∧ (x2 → y) ≤ (x1 ∨ x2)→ y.

As a corollary we obtain

Corollary 4.6. Let A = (A;∨,∧, ·,→, 0, 1) be a non-associative residuated
lattice. If x, y ∈ A then
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(i) 1→ x = x,

(ii) x→ y = (x ∨ y)→ y,

(iii) If x ∨ y = 1 then x→ y = y holds.

Proof. (i) Clearly, 1 → x = 1 · (1 → x) ≤ x holds. Conversely, 1 · x ≤ x
yields x ≤ 1→ x.

(ii) Applying Lemma 4.12(v) we compute (x∨y)→ y = (x→ y)∧(y →
y) = (x→ y) ∧ 1 = x→ y.

(iii) If x ∨ y = 1 then x→ y = (x ∨ y)→ y = 1→ y = y.

We remark that the non-associative residuated lattice A is 1-regular if
and only if for any congruences θ1, θ2 ∈ Con A is 1/θ1 = 1/θ2 ⇐⇒ θ1 = θ2

(see [34]).

Theorem 4.11. The class of all non-associative residuated lattices forms
an arithmetical variety. Moreover, the variety is 1-regular.

Proof. To show that the class of all non-associative residuated lattices forms
a variety we replace (A3) of Definition 5.3 (which is in fact a couple of
quasi-identities) by the following identities (of course, the inequalities can
be expressed by identities as we have a lattice structure) :

(M1) x→ y ≤ x→ (y ∨ z),

(M2) x ≤ y → (x · y),

(M3) x · (y ∨ z) = (x · y) ∨ (x · z)

(M4) x · (x→ y) ≤ y.

It is easy to show (due to Lemma 4.12) that (M1)-(M4) hold in non-asso-
ciative residuated lattices. Conversely, we will show that (M1)-(M4) yield
the adjointness property

Assume x · y ≤ z. Then the equality (x · y) ∨ z = z holds and thus
y → ((x · y) ∨ z) = y → z. Applying to (M1) and (M2) we compute
y ≤ y → (x · y) ≤ y → ((x · y) ∨ z) = y → z.
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Conversely, if x ≤ y → z hold then (M3) and (M4) yield x · y ≤
(x · y) ∨ ((y → z) · y) = (x ∨ (y → z)) · y = (y → z) · y ≤ z.

To prove the arithmeticity, it is enough to find a Pixley term m(x, y, z),
i.e. a term verifying the identities m(y, y, x) = m(x, y, x) = m(x, y, y) = x.
One can easily check that term m(x, y, z) := (x·((x∧y)→ z))∨(z·((y∧z)→
x)) is just the Pixley term for the variety of all non-associative residuated
lattices.

It is obvious that x → y ∧ y → x = 1 if and only if x = y. This fact
yields 1-regularity of the variety (see [34]).

4.4.2 Congruences and filters

In this section we describe congruence kernels (called filters) in the variety
of non-associative residuated lattices. In what follows, we need the unary
terms

αab (x) := (a · b)→ (a · (b · x)),

βab (x) := b→ (a→ ((a · b) · x)).

The following lemma justifies their importance in non-associtive residuated
lattices.

Lemma 4.13. If A = (A;∨,∧, ·,→, 0, 1) is a non-associative residuated
lattice then for all a, b, c ∈ A we have:

(i) (a · b) · αab (x) ≤ a · (b · x),

(ii) a · (b · βab (x)) ≤ (a · b) · x.

Proof. Due to Lemma 4.12(vi) we obtain

(a · b) · αab (x) = (a · b) · ((a · b)→ (a · (b · x))) ≤ a · (b · x).

Analogously, we compute

a·(b·βab (x)) = a·(b·(b→ (a→ ((a·b)·x)))) ≤ a·(a→ ((a·b)·x)) ≤ (a·b)·x.
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Definition 4.1. Let A = (A;∨,∧, ·,→, 0, 1) be a non-associative residuated
lattice. A non-empty subset F ⊆ A is called a filter of the non-associative
residuated lattice A = (A;∨,∧, ·,→, 0, 1) if it satisfies:

(F1) If x ∈ F and y ∈ A such that x ≤ y then y ∈ F .

(F2) x · y ∈ F for all x, y ∈ F .

(F2) If a, b ∈ A and x ∈ F then αab (x), βab (x) ∈ F .

Clearly, due to Corollary 4.6 we obtain αab (1) = βab (1) = 1 for all a, b ∈
A. Thus, it can be easily proved that for any non-associative residuated
lattice A = (A;∨,∧, ·,→, 0, 1) and any congruence θ on A, the class 1/θ is
a filter (in the sense of previous definition). Conversely, we can state:

Theorem 4.12. Let A = (A;∨,∧, ·,→, 0, 1) be a non-associative residuated
lattice and let F be a filter. Then the relation

Θ(F ) = {(x, y) ∈ A2 | x→ y, y → x ∈ F}

is a congruence on A. Moreover, 1/Θ(F ) = F .

Proof. Reflexivity and symmetry. Clearly, x → x = 1 thus (x, x) ∈ Θ(F )
for all x ∈ A. Symmetry is easily seen by definition.

Transitivity. If x → y, y → z ∈ F then by Definition 4.1 we obtain
(x→ y) ·βxx→y(y → z) ∈ F . Moreover, Lemma 4.13(ii) shows that x · ((x→
y) · βxx→y(y → z)) ≤ (x · (x → y)) · (y → z) ≤ y · (y → z) ≤ z. Due to
adjointness property we obtain (x→ y) · βxx→y(y → z) ≤ x→ z and finally
x→ z ∈ F .

We have proved that x → y, y → z ∈ F yields x → z ∈ F . Similarly,
we can prove z → x ∈ F which gives transitivity of Θ(F ).

Further, let (x1, y1), (x2, y2) ∈ Θ(F ), thus x1 → y1, x2 → y2 ∈ F . We
prove the compatibility of Θ(F ) with respect to ∧,∨, · and →:

Compatibility of ∧. We have (x1 ∧ x2) → (y1 ∧ y2) = ((x1 ∧ x2) →
y1)∧ ((x1 ∧x2)→ y2) ≥ (x1 → y1)∧ (x2 → y2). Clearly, (x1 → y1)∧ (x2 →
y2) ∈ F and consequently (x1 ∧ x2)→ (y1 ∧ y2) ∈ F . Analogously, we can
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prove that (y1 ∧ y2) → (x1 ∧ x2) ∈ F and thus (x1 ∧ x2, y1 ∧ y2) ∈ Θ(F )
holds.

Compatibility of ∨. We compute (x1 ∨ x2) → (y1 ∨ y2) = (x1 → (y1 ∨
y2))∧ (x2 → (y1∨y2)) ≥ (x1 → y1)∧ (x2 → y2). Clearly, (x1 → y1)∧ (x2 →
y2) ∈ F and thus also (x1 ∨ x2) → (y1 ∨ y2) ∈ F . Similarly, we prove
(y1 ∨ y2)→ (x1 ∨ x2) ∈ F which verifies (x1 ∨ x2, y1 ∨ y2) ∈ Θ(F ).

Compatibility of ·. We have

αx1x2((x2 → y2) · βx2x2→y2(βx1y2 (αy2x1(x1 → y1)))) ∈ F.

Due to Lemma 4.13 we compute

(x1 · x2) · αx1x2((x2 → y2) · βx2x2→y2(βx1y2 (αy2x1(x1 → y1))))

≤ x1 · (x2 · ((x2 → y2) · βx2x2→y2(βx1y2 (αy2x1(x1 → y1)))))

≤ x1 · ((x2 · (x2 → y2))βx1y2 (αy2x1(x1 → y1)))

≤ x1 · (y2 · βx1y2 (αy2x1(x1 → y1)))

≤ (x1 · y2) · αy2x1(x1 → y1)

≤ y2 · (x1 · (x1 → y1))

≤ y1 · y2.

The last inequality shows that

αx1x2((x2 → y2) · βx2x2→y2(βx1y2 (αy2x1(x1 → y1)))) ≤ (x1 · x2)→ (y1 · y2)

and verifies (x1 · x2) → (y1 · y2) ∈ F . Analogously, we prove that also
(y1 · y2)→ (x1 · x2) ∈ F which shows (x1 · x2, y1 · y2) ∈ Θ(F ).

Compatibility of →. The proof of the last part we split to three steps.

• We will prove that (x, y) ∈ Θ(F ) yields (z → x, z → y) ∈ Θ(F ).
Indeed, if x → y ∈ F then also βzz→x(x→ y) ∈ F . Applying Lemma
2(ii) we obtain

z · ((z → x) ·βzz→x(x→ y)) ≤ (z · (z → x)) · (x→ y) ≤ x · (x→ y) ≤ y.
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Due to adjointness property we conclude

βzz→x(x→ y) ≤ (z → x)→ (z → y)

and (z → x)→ (z → y) ∈ F . Analogously, we prove that (z → y)→
(z → x) ∈ F and hence (z → x, z → y) ∈ Θ(F ).

• We will prove that (x, y) ∈ Θ(F ) yields (x → z, y → z) ∈ Θ(F ). As
above, x→ y ∈ F gives βxy→z(α

y→z
x (x→ y)) ∈ F and

x · ((y → z) · βxy→z(αy→zx (x→ y))) ≤ (x · (y → z)) · αy→zx (x→ y)

≤ (y → z) · (x · (x→ y))

≤ (y → z) · y
≤ z.

By using of adjointness property we obtain

βxy→z(α
y→z
x (x→ y)) ≤ (y → z)→ (x→ z).

Thus (y → z)→ (x→ z) ∈ F and analogously (x→ z)→ (y → z) ∈
F which gives (x→ z, y → z) ∈ Θ(F ).

Due to the above claims, we have (x1 → x2, y1 → x2), (y1 → x2, y1 →
y2) ∈ Θ(F ). Finally, transitivity of Θ(F ) yields (x1 → x2, y1 → y2) ∈
Θ(F ).

We have seen that the variety of all non-associative residuated lattices
is 1-regular. One can easily prove that the correspondences F 7−→ Θ(F )
and Θ 7−→ 1/Θ between filters and congruences are mutually inverse.

4.4.3 Representable non-associative residuated lattices

Let us denote by < the sub-variety of the variety of non-associative resid-
uated lattices generated just by its linearly ordered members and called it
representable.
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In what follows we need the following notation: for any M ⊆ A denote
M⊥ = {x ∈ A | x ∨ y = 1 (for all y ∈ M)}. Moreover, we introduce the
identities

(x→ y) ∨ αab (y → x) = 1 (α-prelinearity),

(x→ y) ∨ βab (y → x) = 1 (β-prelinearity).

Lemma 4.14. Let A ∈ < be a representable non-associative residuated
lattice. Then for all x, y, z ∈ A we have

(i) x · (y ∧ z) = (x · y) ∧ (x · z),

(ii) x→ (y ∨ z) = (x→ y) ∨ (x→ z),

(iii) (x ∧ y)→ z = (x→ z) ∨ (y → z).

Proof. Since A is representable, it suffices to prove that (i)-(iii) are valid
for all linearly ordered members. So assume that A = (A;∨,∧, ·,→, 0, 1) is
linearly ordered non-associative residuatted lattice. If x, y, z ∈ A then due
to linearity we may assume y ≤ z. Then due to Lemma 4.12 we obtain the
inequalities x · y ≤ x · z, x → y ≤ x → z and y → x ≤ z → x. Altogether,
we obtain

x · (y ∧ z) = x · y = (x · y) ∧ (x · z),

x→ (y ∨ z) = x→ z = (x→ y) ∨ (x→ z),

(x ∧ y)→ z = (x→ z) ∨ (y → z).

Lemma 4.15. Every non-associative residuated lattice with the divisibility
law satisfies the Riesz decomposition property, i.e. given x, y, z ∈ A with
x · y ≤ z then there are the elements x′ ≥ x and y′ ≥ y such that x′ · y′ = z
holds.
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Proof. Denote x′ = y → z and y′ = (y → z) → z. Adjointness property
and Lemma 4.12 yield x′ ≥ x and y′ ≥ y. Due to divisibility we obtain

x′ · y′ = (y → z) · ((y → z)→ z) = (y → z) ∧ z = z.

Lemma 4.16. The following conditions are equivalent:

(i) A ∈ <

(ii) A is a non-associative residuated lattice with α-prelinearity and β-
prelinearity.

(iii) A is a non-associative residuated lattice with prelinearity and satis-
fying the quasi-identities

x ∨ y = 1 =⇒ x ∨ αab (y) = 1 and x ∨ βab (y) = 1 (P )

(iv) A is non-associative residuated lattice with prelinearity and, for all
M ⊆ A, the set M⊥ is a filter of A.

(v) A is a subdirect product of linearly ordered non-associative residuated
lattices.

Proof. (i) ⇒ (ii). Again, it suffices to verify (ii) for linearly ordered non-
associative residuated lattices. Clearly, in this case we have for any x, y ∈ A
either x ≤ y or y ≤ x, thus x→ y = 1 or y → x = 1. Evidently, A satisfies
prelinearity. As αab (1) = 1 = βab (1) for all a, b ∈ A, A verifies α-prelinearity
and β-prelinearity.

(ii) ⇒ (iii). Of course, α1
1(y → x) = x → y and consequently α-

prelinearity yields prelinearity. If x ∨ y = 1 holds, then x ∨ y = 1, hence
x → y = y, y → x = x. Applying α-prelinerity we obtain 1 = (y →
x)∨ αab (x→ y) = x∨ αab (y). This shows x∨ αab (y) = 1. Analogously it can
be proved x ∨ βab (y) = 1.

(iii) ⇒ (iv). The set M⊥ is evidently an order filter on A. If x, y ∈M⊥
then we have x ∨ m = y ∨ m = 1 for all m ∈ M , thus (x · y) ∨ m =
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(x·y)∨(x·m)∨m = x·(y∨m)∨m = (x·1)∨m = 1. Altogether, x·y belongs
to M⊥ and M⊥ is closed on products. Finally, assume x ∈ M⊥, a, b ∈ A
and m ∈ M . Then m ∨ x = 1 and due to (iii) we obtain m ∨ αab (x) = 1
and m ∨ βab (x) = 1. This yields αab (x), βab (x) ∈ M⊥ and shows that M⊥ is
a filter of A.

(iv) ⇒ (v). First let B be a subdirectly irreducible algebra which sat-
isfies (iv). Thus M⊥ is a filter of B for all M ⊆ B. We shall show that
B is linearly ordered. Assume to the contrary that there are x, y ∈ B
with x ‖ y, i.e. x → y 6= 1 and y → x 6= 1. Applying prelinearity of B
we have (x → y) ∨ (y → x) = 1. Thus the sets {x → y}⊥, {x → y}⊥⊥
are filters of B. Clearly, both are non-trivial since y → x ∈ {x → y}⊥,
x → y 6∈ {x → y}⊥, x → y ∈ {x → y}⊥⊥ and y → x 6∈ {x → y}⊥⊥.
Moreover, {x → y}⊥ ∩ {x → y}⊥⊥ = {1}. Due to 1-regularity of the vari-
ety we obtain Θ({x → y}⊥) ∩ Θ({x → y}⊥⊥) = ∆ which shows subdirect
reducibility of B, a contradiction.

We have proved that any subdirectly irreducible algebra with (iv) is
linearly ordered and since the class of those algebras forms a variety, any
algebra A with it (iv) is subdirect product of chains.

(v) ⇒ (i). Any subdirect product of linearly ordered algebras belongs
to <.

Corollary 4.7. A non-associative residuated lattice A = (A;∨,∧, ·,→, 0, 1)
is representable if it satisfies α-prelinearity and β-prelinearity.

Definition 4.2. An algebra A ∈ < is called a non-associative BL algebra
(naBL algebra briefly) if it satisfies divisibility.

Theorem 4.13. A non-associative residuated lattice is an naBL algebra
if it satisfies divisibility, α-prelinearity and β-prelinearity.

Proof. Directly follows from Lemma 4.16.

Lemma 4.17. Every naBL algebra A ∈ < satisfies the identities a·(b·x) =
(a · b) · αab (x) and (a · b) · x = a · (b · βab (x)) for a, b, x ∈ A.
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Proof. Using Lemma 4.14 and divisibility we compute (a · b) · αab (x) =
(a · b) · ((a · b) → (a · (b · x))) = (a · b) ∧ (a · (b · x)) = a · (b · x). Similarly,
a · (b ·βab (x)) = a · (b · (b→ (a→ ((a · b) ·x)))) = a · (b∧ (a→ ((a · b) ·x))) =
(a · b) ∧ (a · (a→ ((a · b) · x))) = (a · b) ∧ a ∧ ((a · b) · x) = (a · b) · x.

Theorem 4.14. Let A = (A;∨,∧, ·,→, 0, 1) be a an naBL-algebra. Let
F ⊆ A be a non-empty subset which is closed on upper bounds and on the
product. Then F is a filter of A if and only if a · (b · F ) = (a · b) · F for all
a, b ∈ A.

Proof. Let F be a filter of A. If f ∈ a · (b · F ) then there is x ∈ F
such that f = a · (b · x) = (a · b) · αab (x). As αab (x) ∈ F , we conclude
f ∈ (a · b) · F . Conversely, any f ∈ (a · b) · F can be written in the form
f = (a · b) · x = a · (b · βab (x)), where x ∈ F , and thus also βab (x) ∈ F .
Altogether, we obtain f ∈ a · (b · F ).

Assume that the equality a · (b · F ) = (a · b) · F holds. For all a, b ∈ A
and x ∈ F there is x′ ∈ F such that a · (b · x) = (a · b) · x′. Thus x′ ≤
(a · b) → (a · (b · x)) = αab (x) which yields αab (x) ∈ F . Analogously, for all
a, b ∈ A and x ∈ F there is x′ ∈ F such that (a · b) · x = a · (b · x′), which
gives x′ ≤ b→ (a→ ((a · b) · x)) = βab (x). We have proved βab (x) ∈ F .

Definition 4.3. A binary operation ’∗’ on the interval [0, 1] of reals is said
to be a non-associative t-norm (nat-norm briefly) if

(nat1) ([0, 1]; ∗, 1) is a commutative groupoid with the neutral element
1.

(nat2) The operation ∗ is continuous as a function, in the usual interval
topology on [0, 1]2.

(nat3) If x, y, z ∈ [0, 1] are such that x ≤ y then x · z ≤ y · z.

Theorem 4.15. For any nat-norm there is a unique ’→∗’ satisfying the
adjointness property, i.e., x ∗ y ≤ z if and only if x ≤ y →∗ z. Moreover,
an algebra ([0, 1],∨,∧, ∗,→∗, 0, 1), where x ∨ y = max{x, y} and x ∧ y =
min{x, y}, is an naBL algebra.
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Proof. At first we prove that the operation ’→∗’ is correctly defined. For
any x ∈ [0, 1] consider the function φx : [0, 1] −→ [0, 1] defined by φx(y) =
x ∗ y. The continuity of ’∗’ yields the continuity of φx. Denote M = {z ∈
[0, 1] | z ∗ x ≤ y} = {z ∈ [0, 1] | φx(z) ≤ y}. Then due to the continuity of
φx we obtain y ≥

∨
z∈M (φx(z)) = φx(

∨
M) which gives

∨
M ∈ M . Thus

there is max{z ∈ [0, 1] | z ∗ x ≤ y} =
∨
{z ∈ [0, 1] | z ∗ x ≤ y}. We put

x→∗ y := max{z ∈ [0, 1] | z ∗ x ≤ y}.
If x ∗ y ≤ z then x ≤ max{a ∈ [0, 1] | a ∗ y ≤ z} = y →∗ z. Conversely,

if x ≤ y →∗ z = max{a ∈ [0, 1] | a ∗ y ≤ z} then due to continuity of ’∗’ we
have x∗y ≤ max{a ∈ [0, 1] | a∗y ≤ z}∗y = max{a∗y ∈ [0, 1] | a∗y ≤ z} ≤ z.
This proves adjointness condition. If there is another operation ’→o’ with
the adjointness condition x ∗ y ≤ z if and only if x ≤ y →o z, then clearly
a ≤ x→∗ y if and only if a ≤ x→o y and thus →∗=→o.

We have proved that the algebra ([0, 1];∨,∧, ∗,→∗, 0, 1) is a linearly or-
dered non-associative residuated groupoid. Finally, we prove the divisibil-
ity. Take x, y ∈ [0, 1] with y ≤ x. Then clearly φx(1) = x ≥ y ≥ 0 = φx(0)
and the continuity and monotonicity of φx yield the existence of a ∈ [0, 1]
such that a∗x = φx(a) = y. Now a ≤ x→∗ y, and y = a∗x ≤ (x→∗ y) ≤ y.
Then (x →∗ y) ∗ x = y = x ∧ y. Finally, if x ≤ y then clearly x →∗ y = 1
and (x→∗ y) ∗ x = 1 ∗ x = x = x ∧ y.

4.4.4 The main theorem

The class of all naBL algebras will be denoted by naBL and denote by naT
the class of all naBL algebras induced just by nat norms. In what follows
we show that naT is the generating class for the variety naBL.

Theorem 4.16. (main theorem) naBL = IPSSPU(naT ).

Proof. Take any linearly ordered naBL algebra A = (A;∨,∧, ·,→, 0, 1).
We prove that A fulfils general finite embedding property for the class naT .
Let X ⊆ A be any finite set such that 0, 1 ∈ X. We put X ·X = {x ·y | x ∈
X, y ∈ X}. Clearly, 1 ∈ X yields the inequality X ⊆ X ·X. Finiteness of X
yields finiteness of X ·X add thus we may assume that X ·X = {x0, · · · , xn}
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and X = {y0, · · · , ym} where 0 = x0 < x1 < · · · < xn = 1 and 0 = y0 <
y1 < · · · < ym. Introduce the mapping f : X · X −→ [0, 1] by f(xi) = i

n .
The mapping f is a lattice embedding. For any yi, yj ∈ X the product
yi · yj belongs to X ·X. Consequently, for any yi, yj ∈ {y0, · · · , yn−1}, we
can define the function ϕ[yi, yj ] : R2 −→ R by

ϕ[yi, yj ](x, y) =

f(yi · yj) + f(yi+1 · yj+1)− f(yi+1 · yj)− f(yi · yj+1)

(f(yi)− f(yi+1))(f(yj)− f(yj+1))
(x−f(yi))(y−f(yj))+

f(yi · yj)− f(yi+1 · yj)
f(yi)− f(yi+1)

(x− f(yi))+

f(yi · yj)− f(yi · yj+1)

f(yj)− f(yj+1)
(y − f(yj)) + f(yi · yj).

The graph of the function ϕ[yi, yj ] formes a hypar incident with the points
(f(yi), f(yj), f(yi · yj)), (f(yi+1), f(yj), f(yi+1 · yj)), (f(yi), f(yj+1), f(yi ·
yj+1)) and (f(yi+1), f(yj+1), f(yi+1 · yj+1)).

Clearly, the commutativity of ’·’ induces

ϕ[yi, yj ](x, y) = ϕ[yj , yi](y, x). (I)

Moreover, one can easily check that

ϕ[yi, yj ](x, f(yj)) = ϕ[yi, yj−1](x, f(yj)). (II)

Point out that ym = 1 and thus f(ym) = 1. This yield

ϕ[yi, ym−1](x, f(ym)) = ϕ[yi, ym−1](x, 1) = x. (III)

Also the equality

ϕ[yi, yj ](f(yi), f(yj)) = f(yi · yj) (IV )

can be easily verified.
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The interval [0, 1] of reals can be splitted to the subintervals I1 =
[f(y0), f(y1)], I2 = [f(y1), f(y2)], · · · , Im = [f(ym−1), 1].

Further, introduce the operation ’∗’ such that for any x ∈ Ii and y ∈ Ij
we put

x ∗ y = ϕ[yi, yj ](x, y).

The condition (I) yields the commutativity of ’∗’. Clearly, commutativity
of ’∗’ and (II) prove that the functions ϕ[yi, yj ] have the same value on
the common border of any two intervals Ii × Ij and Ii+1 × Ij (or Ii × Ij
and Ii × Ij+1). Consequently, the function ’∗’ is also continuous as it is
continuously glued by hypars. Now we prove the following claim:

Claim 1. The function ϕ[yi, yj ](x, y) for any yi, yj ∈ {y0, · · · , yn−1} and
for a fixed x ∈ Ii is non-decreasing (thus if y1, y2 ∈ R such that y1 ≤ y2

then ϕ[yi, yj ](x, y1) ≤ ϕ[yi, yj ](x, y2)).

Proof. For any yi, yj ∈ {y0, · · · , yn−1} and any fixed x ∈ Ii define the
function

g(y) := ϕ[yi, yj ](x, y).

Evidently, g is linear the angular coefficient

C =
f(yi · yj) + f(yi+1 · yj+1)− f(yi+1 · yj)− f(yi · yj+1)

(f(yi)− f(yi+1))(f(yj)− f(yj+1))
(x− f(yi))

+
f(yi · yj)− f(yi+1 · yj)

f(yi)− f(yi+1)
.

Putting a := f(yi · yj) − f(yi · yj+1), b := f(yi+1 · yj+1) − f(yi+1 · yj)
and c := x−f(yi)

f(yi)−f(y−+1) we have

C =
1

f(yj)− f(yj+1)
(bc+ a(c+ 1)).

Moreover, we obtain

• yi · yj ≤ yi · yj+1 yield a ≤ 0,

• yi+1 · yj+1 ≥ yi+1 · yj yield b ≥ 0,
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• x ∈ Ii yield f(yi) ≤ x ≤ f(yi+1) and thus 0 ≥ c ≥ −1 (and 0 ≤
c+ 1 ≤ 1).

• yj < yj+1 yield 1
f(yj)−f(yj+1) < 0

Previous arguments show that C ≥ 0 and thus the function g is non-
decreasing.

Claim 1 implies the monotonicity of ’∗’. Further, 0 ∗ 0 = ϕ[0, 0](0, 0) =
0. Finally, due to (III) we obtain x ∗ 1 = ϕ[yi, ym−1](x, 1) = x for any
x ∈ Ii. Thus 1 is a neutral element of ’∗’and its monotonicity show that
0 = 0 ∗ 0 ≤ x ∗ y ≤ 1 ∗ 1 = 1. Altogether, ’∗’ is an operation on the interval
[0, 1] and which is the nat norm.

Due to Theorem 4.15 we have a naBL algebra ([0, 1],∨,∧, ∗,→∗, 0, 1)
which belongs to the class naT .

Finally, we prove that the mapping f : X −→ [0, 1] is an embedding
from the partial algebra A|X to ([0, 1];∨,∧, ∗,→∗, 0, 1). The mapping f is
injective and monotone, thus it is a lattice embedding with f(0) = 0 and
f(1) = 1.

Take any yi, yj ∈ X. Then f(yi) ∗ f(yj) = ϕ[yi, yj ](f(yi), f(yj)) =
f(yi · yj). Thus the mapping f preserves the operation ’∗’. It suffices to
show that f preserves also →:

Claim 2. Let yi, yj ∈ X be such that yi → yj ∈ X. Then f(yi → yj) =
f(yi)→∗ f(yj).

Proof. If yi ≤ yj then f(yi → yj) = f(1) = 1 = f(yi)→∗ f(yj).
Assume further yi > yj . Due to yi → yj ∈ X we obtain that yi → yj =

yk 6= 1 for some yk ∈ X.
As we have proved before, we obtain f(yi) ∗ f(yi → yj) = f(yi · (yi →

yj)) = f(yi ∧ yj) = f(yj). Thus f(yi → yj) ≤ f(yi)→∗ f(yj).
We prove that yi ·yk < yi ·yk+1 (in case yi ·yk+1 ≤ yi ·yk = yi ·(yi → yj) =

yi ∧ yj = yj we would get yk+1 ≤ yi → yj = yk, which is contradiction).
The function h(x) = f(yi)∗x is linear on the interval Ik+1 and h(f(yk)) =

f(yi)∗f(yk) = f(yi ·yk) < f(yi ·yk+1) = f(yi)∗f(yk+1) = h(f(yk+1)), show-
ing that it is strictly increasing on it. Note that Ik+1 = [f(yk), f(yk+1)] and
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altogether we obtain for any x ∈ [0, 1] the property

f(yk) < x implies h(f(yk)) < h(x). (∗)

Finally, assume by contradiction the inequality f(yk) = f(yi → yj) <
f(yi) →∗ f(yj). The condition (∗) yields h(f(yk)) < h(f(yi) →∗ f(yj))
which gives f(yj) = f(yi∧yj) = f(yi·(yi → yj)) = f(yi·yk) = f(yi)∗f(yk) =
h(f(yk)) < h(f(yi)→∗ f(yj)) = f(yi) ∗ (f(yi)→∗ f(yj)) = f(yi) ∧ f(yj) =
f(yj), a contradiction.

Altogether we have shown that A (being linearly ordered) satisfies
general finite embedding property for the class naT . By Theorem 1.3
we conclude that any linearly ordered naBL algebra belongs to the class
ISPU(naT ) and since any subdirectly irreducible naBL algebra is linearly
ordered (see Theorem 4.16), the proof is finished.

Moreover, the main theorem has some important corollaries:

Corollary 4.8. Any subdirectly irreducible naBL algebra belongs to the
class ISPU(naT ).

Denoting for a class X of algebras of the same type V(X ) the variety
generated by X and QV(X ) the quasivariety generated by X , we have

Corollary 4.9. naBL = V(naT ) = QV(naT ).

Proof. The proof follows from the previous corollary and the fact that va-
rieties and quasivarieties are closed on direct products, subalgebras and
ultraproducts.



Chapter 5

State morphisms on algebras

Recently, Flaminio and Montagna in [82] presented an algebraizable logic
containing probabilistic reasoning, and its equivalent algebraic semantic is
the variety of state MV-algebras. We recall that a state MV-algebra is an
MV-algebra whose language is extended adding an operator, τ (called also
an internal state), whose properties are inspired by the ones of states. The
analogues of extremal states are state-morphism operators, introduced in
[53]. By definition, it is an idempotent endomorphism on an MV-algebra.

State MV-algebras generalize, for example, Hájek’s approach, [97], to
fuzzy logic with modality Pr (interpreted as probably) which has the fol-
lowing semantic interpretation: The probability of an event a is presented
as the truth value of Pr(a). On the other hand, if s is a state, then s(a) is
interpreted as averaging of appearing the many valued event a.

We note that if (M, τ) is a state MV-algebra, assuming that the range
τ(M) is a simple MV-algebra, we see that it is a subalgebra of the real
interval [0, 1] and therefore, τ can be regarded as a standard state on M.
On the other hand, every MV-algebra M can be embedded into the tensor
product [0, 1]⊗M, therefore, given a state s on M, we define an operator
τs on [0, 1] ⊗M via τs(t ⊗ a) := t · s(a), [82, Thm 5.3]. Then due to [53,
Thm 3.2], τs is a state-operator that is a state-morphism operator iff s is
an extremal state. Thus, there is a natural correspondence between the

162
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notion of a state and an extremal state on one side, and a state-operator
and a state-morphism operator on the other side.

Subdirectly irreducible state-morphism MV-algebras were described in
[53, 62] and this was extended also for state-morphism BL-algebras in [65].
A complete description of both subdirectly irreducible state MV-algebras as
well as subdirectly irreducible state-morphism MV-algebras can be found
in [72]. In [61], it was shown that if (M, τ) is a state MV-algebra whose
image τ(M) belongs to the variety generated by the L1, . . . , Ln, where
Li := {0, 1/i, . . . , i/i}, then τ has to be a state-morphism operator. The
same is true if M is linearly ordered, [53]. Recently, in [72], we have shown
that the unit square [0, 1]2 with the diagonal operator generates the whole
variety of state-morphism MV-algebras; it answered in positive an open
problem posed in [53]. In addition, there was shown that in contrast to
MV-algebras, the lattice of subvarieties is uncountable. Moreover, it was
shown that every subdirectly irreducible state-morphism MV-algebra can
be embedded into some diagonal one.

We continue in the study of state BL-algebras and state-morphism BL-
algebras. Because the methods developed in [72] are so general that, it is
possible to study more general structures than MV-algebras or BL-algebras
under a common umbrella. Hence, we introduce state-morphism algebras
(A, τ), where the algebra A is an arbitrary algebra of type F and τ is an
idempotent endomorphism of A, i.e., a retract morphism τ : A → τ(A).
Then general results applied to special types of algebras give interesting
new results.

The main goals are:
(1) Characterizations of subdirectly irreducible state BL-algebras and

state-morphism BL-algebras.
(2) Showing that every subdirectly state-morphism algebra can be em-

bedded into some diagonal one D(B) := (B×B, τB), where τ(a, b) = (a, a),
a, b ∈ B, which is also subdirectly irreducible.

(3) We show that if K is a generator of some variety V of algebras of type
F, then the system of diagonal state-morphism algebras {D(B) | B ∈ K}
is a generator of the variety of state-morphism algebras whose F -reduct
belongs to V.
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(4) We exhibit cases when the Congruence Extension Property holds
for a variety of state-morphism algebras.

(5) In particular, a generator of the variety of state-morphism BL-
algebras is the class of all BL-algebras of the real interval [0, 1] equipped
with a continuous t-norm. Similarly, a generator of the variety of state-
morphism MTL-algebras is the class of all MTL-algebras of the real interval
equipped with a left-continuous t-norm, similarly for non-associative BL-
algebras one is the set of all non-associative BL-algebras of the real interval
[0, 1] equipped with a non-associative t-norm, and a generator of the variety
of state-morphism pseudo MV-algebras is any pseudo MV-algebra Γ(G, u),
where (G, u) is a doubly transitive unital `-group.

5.1 Subdirectly Irreducible State BL-algebras

In this section, we define state BL-algebras and state-morphism BL-algebras
and we present a complete description of their subdirectly irreducible alge-
bras. These results generalize those from [53, 62, 65, 72].

Let M = (M ;∧,∨,�,→, 0, 1) be a BL-algebra. For any a ∈ M, we
define a complement a− := a → 0. Then a ≤ a−− for any a ∈ M and a
BL-algebra is an MV-algebra iff a−− = a for any a ∈M.

A non-empty set F ⊆ M is called a filter of M (or a BL-filter of M) if
for every x, y ∈ M : (1) x, y ∈ F implies x � y ∈ F, and (2) x ∈ F, x ≤ y
implies y ∈ F. A filter F 6= M is called a maximal filter if it is not strictly
contained in any other filter F ′ 6= M. A BL-algebra is called local if it has
a unique maximal filter.

We denote by Rad1(M) the intersection of all maximal filters of M.
Let M be a BL-algebra. A mapping τ : M → M such that, for all

x, y ∈M, we have

(1)BL τ(0) = 0;

(2)BL τ(x→ y) = τ(x)→ τ(x ∧ y);

(3)BL τ(x� y) = τ(x)� τ(x→ (x� y));

(4)BL τ(τ(x)� τ(y)) = τ(x)� τ(y);
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(5)BL τ(τ(x)→ τ(y)) = τ(x)→ τ(y)

is said to be a state-operator on M, and the pair (M, τ) is said to be a state
BL-algebra, or more precisely, a BL-algebra with internal state.

If τ : M → M is a BL-endomorphism such that τ ◦ τ = τ, then τ is a
state-operator on M and it is said to be a state-morphism operator and the
couple (M, τ) is said to be a state-morphism BL-algebra.

A filter F of a BL-algebra M is said to be a τ -filter if τ(F ) ⊆ F. If τ is
a state-operator on M, we denote by

Ker(τ) = {a ∈M | τ(a) = 1}.

then Ker(τ) is a τ -filter. A state-operator τ is said to be faithful if Ker(τ) =
{1}.

We recall that there is a one-to-one relation between congruences and
τ -filters on a state BL-algebra (M, τ) as follows. If F is a τ -filter, then the
relation ∼F given by x ∼F y iff x → y, y → x ∈ F is a congruence of the
BL-algebra M and ∼F is also a congruence of the state BL-algebra (M, τ).

Conversely, let ∼ be a congruence of state BL-algebra (M, τ) and set
F∼ := {x ∈ M | x ∼ 1}. Then F∼ is a τ -filter of (M, τ) and ∼F∼=∼ and
F = F∼F .

By [51, Lemma 3.5(k)], (τ(M), τ) is a subalgebra of (M, τ), τ on τ(M)
is the identity, and hence, (Ker(τ);→, 0, 1) is a subhoop of M. We say that
two subhoops, A and B, of a BL-algebra M have the disjunction property
if for all x ∈ A and y ∈ B, if x ∨ y = 1, then either x = 1 or y = 1.

Nevertheless a subdirectly irreducible state BL-algebra (M, τ) is not
necessarily linearly ordered, according to [51, Thm 5.5], τ(M) is always
linearly ordered.

We note that according to [51, Prop 3.13], if M is an MV-algebra, then
the notion of a state MV-algebra coincides with the notion of a state BL-
algebra.

The following three characterizations were originally proved in [72] for
state MV-algebras. Here we show that the original proofs from [72] slightly
improved work also for state BL-algebras.
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Lemma 5.1. Suppose that (M, τ) is a state BL-algebra. Then:

(1) If τ is faithful, then (M, τ) is a subdirectly irreducible state BL-algebra
if and only if τ(M) is a subdirectly irreducible BL-algebra.

Now let (M, τ) be subdirectly irreducible. Then:

(2) Ker(τ) is (either trivial or) a subdirectly irreducible hoop.

(3) Ker(τ) and τ(M) have the disjunction property.

Proof. (1) Suppose τ is faithful. Let F denote the least nontrivial τ -filter
of (M, τ). There are two cases: (i) If τ(M) ∩ F 6= {1}, then τ(M) ∩ F is
the least nontrivial filter of τ(M) and τ(M) is subdirectly irreducible. (ii)
If τ(M) ∩ F = {1}, then for all x ∈ F , τ(x) = 1 because τ(x) ∈ τ(M) ∩ F
and F ⊆ Ker(τ) = {1} is the trivial filter, a contradiction. Therefore, only
the first case is possible and τ(M) is subdirectly irreducible.

Conversely, let τ(M) be subdirectly irreducible and let G be the least
nontrivial filter of τ(M). Then the τ -filter F of (M, τ) generated by G is the
least nontrivial τ -filter of (M, τ). Indeed, if K is another nontrivial τ -filter
of (M, τ), then K ∩ τ(M) ⊇ F ∩ τ(M) = G. Then K contains the τ -filter
generated by G, that is F ⊆ K which proves F is the least and (M, τ) is
subdirectly irreducible.

Now let (M, τ) be subdirectly irreducible and let F denote the least
nontrivial filter of (M, τ).

(2) Suppose that τ is not faithful. Then Ker(τ) is a nontrivial τ -filter. If
(M, τ) is subdirectly irreducible, it has a least nontrivial τ -filter, F say. So,
F ⊆ Ker(τ), and hence F is the least nontrivial filter of the hoop Ker(τ).
Hence, Ker(τ) is a subdirectly irreducible hoop.

(3) Suppose, by way of contradiction, that for some x ∈ Ker(τ) and
y = τ(y) ∈ τ(M) one has x < 1, y < 1 and x ∨ y = 1. It is easy to see that
the BL-filters generated by x and by y, respectively, are τ -filters. Therefore
they both contain F . Hence, the intersection of these filters contains F .
Now let c < 1 be in F . Then there is a natural number n such that xn ≤ c
and yn ≤ c. It follows that 1 = (x∨ y)n = xn ∨ yn ≤ c, a contradiction.
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Lemma 5.2. If (M, τ) is a subdirectly irreducible state BL-algebra, then
τ(M) and Ker(τ) are linearly ordered.

Proof. According to [51, Thm 5.5], τ(M) is always linearly ordered. On the
other hand, by Lemma 5.1, Ker(τ) is either a trivial hoop or a subdirectly
irreducible hoop, and hence it is linearly ordered.

Theorem 5.1. Let (M, τ) be a state BL-algebra satisfying conditions (1),
(2) and (3) in Lemma 5.1. Then (M, τ) is subdirectly irreducible.

Proof. Suppose first that τ is faithful and that τ(M) is subdirectly irre-
ducible. Let F0 be the least nontrivial filter of τ(M) and let F be the
BL-filter of M generated by F0. Then F is a τ -filter. Indeed, if x ∈ F , then
there is τ(a) ∈ F0 and a natural number n such that τ(a)n ≤ x. It follows
that τ(x) ≥ τ(τ(a)n) = τ(a)n, and τ(x) ∈ F .

We assert that F is the least nontrivial τ -filter of (M, τ). First of all,
τ(M), being a subdirectly irreducible BL-algebra, is linearly ordered. Now
in order to prove that F is the least nontrivial τ -filter of (M, τ), it suffices
to prove that every τ -filter G not containing F is trivial. Now let c < 1 in
F\G. Then since Ker(τ) = {1}, τ(c) < 1. Next, let d ∈ G. Then τ(d) ∈ G,
and for every n it cannot be τ(d)n ≤ τ(c), otherwise τ(c) ∈ G. Hence, for
every n, τ(c) < τ(d)n, and hence τ(c) does not belong to the τ -filter of
τ(M) generated by τ(d). By the minimality of F in τ(M), τ(d) = 1 and
since τ is faithful, we conclude that d = 1 and G is trivial, as desired.

Now suppose that Ker(τ) is nontrivial. By condition (2), Ker(τ) is
subdirectly irreducible. Thus, let F be the least nontrivial filter of Ker(τ).
Then F is a non trivial τ -filter, and we have to prove that F is the least
nontrivial τ -filter of (M, τ). Let G be any non trivial τ -filter of (M, τ). If
G ⊆ Ker(τ), then it contains the least filter, F , of Ker(τ), and F ⊆ G.
Otherwise, G contains some x /∈ Ker(τ), and hence it contains τ(x) < 1.
Now by the disjunction property, for all y < 1 in Ker(τ), τ(x) ∨ y < 1 and
τ(x) ∨ y ∈ Ker(τ) ∩ G. Thus, G contains the filter generated by τ(x) ∨ y,
which is a non trivial filter of the hoop Ker(τ), and hence it contains F ,
the least nontrivial filter of Ker(τ). This proves the claim.
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By [72, Thm 3.5], conditions (1), (2), and (3) from Lemma 5.1 are
independent ones even for state BL-algebras. In addition, Theorem 5.1
gives a characterization of subdirectly irreducible state BL-algebras. If
(M, τ) is a state-morphism BL-algebra, combining [65, Thm 4.5] we can
say more about subdirectly irreducible state-morphism BL-algebras. The
following examples are from [65].

Example 5.1. Let M be a BL-algebra. On M×M we define two operators,
τ1 and τ2, as follows

τ1(a, b) = (a, a), τ2(a, b) = (b, b), (a, b) ∈M ×M. (2.0)

Then τ1 and τ2 are two state-morphism operators on M ×M. Moreover,
(M×M, τ1) and (M×M, τ2) are isomorphic state BL-algebras under the
isomorphism (a, b) 7→ (b, a).

We say that an element a ∈ M is Boolean if a−− = a and a � a = a.
Let B(M) be the set of Boolean elements. Then 0, 1 ∈ B(M), B(M) is a
subset of the MV-skeleton MV(M) := {x ∈M | x−− = x}, and a ∈ B(M)
implies a− ∈ B(M). We recall that according to [143, Thm 2], MV(M) is
an MV-algebra, therefore, B(M) is a Boolean subalgebra of MV(M).

Example 5.2. Let B be a local MV-algebra such that Rad1(B) 6= {1} is
a unique nontrivial filter of B. Let M be a subalgebra of B × B that is
generated by Rad1(B) × Rad1(B), that is M = (Rad1(B) × Rad1(B)) ∪
(Rad1(B) × Rad1(B))−. Let τ(x, y) := (x, x) for all x, y ∈ M. Then τ is a
state-morphism operator on M, Ker(τ) = {1} × Rad1(B) ⊂ Rad1(M) =
Rad1(B)×Rad1(B), M has no Boolean nontrivial elements, and (M, τ) is
a subdirectly irreducible state-morphism MV-algebra that is not linear.

Example 5.3. Let A be a linear nontrivial BL-algebra and B a nontrivial
subdirectly irreducible BL-algebra with the smallest nontrivial BL-filter FB
and let h : A→ B be a BL-homomorphism. On M = A×B we define a
mapping τh : M →M by

τh(a, b) = (a, h(a)), (a, b) ∈M. (2.2)
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If we set y = (0, 1) and y− = (1, 0), then y and y− are unique nontrivial
Boolean elements.

Then τh is a state-morphism operator on M and (M, τh) is a subdirectly
irreducible state-morphism BL-algebra iff Ker(h) = {a ∈ A | h(a) = 1} =
{1}. In such a case, Ker(τh) = {1} × B and F := {1} × FB is the least
nontrivial state-morphism filter on M.

Now we present the main result on the complete characterization of
subdirectly irreducible state-morphism BL-algebras which is a combination
of [65, Thm 4.5] and Theorem 5.1.

Theorem 5.2. A state-morphism BL-algebra (M, τ) is subdirectly irre-
ducible if and only if one of the following three possibilities holds.

(i) M is linear, τ = IdM is the identity on M, and the BL-reduct M is
a subdirectly irreducible BL-algebra.

(ii) The state-morphism operator τ is not faithful, M has no nontriv-
ial Boolean elements, and the BL-reduct M of (M, τ) is a local BL-
algebra, Ker(τ) is a subdirectly irreducible irreducible hoop, and Ker(τ)
and τ(M) have the disjunction property.

Moreover, M is linearly ordered if and only if Rad1(M) is linearly
ordered, and in such a case, M is a subdirectly irreducible BL-algebra
such that if F is the smallest nontrivial τ -filter for (M, τ), then F is
the smallest nontrivial BL-filter for M.

If Rad1(M) = Ker(τ), then M is linearly ordered.

(iii) The state-morphism operator τ is not faithful, M has a nontrivial
Boolean element. There are a linearly ordered BL-algebra A, a subdi-
rectly irreducible BL-algebra B, and an injective BL-homomorphism
h : A → B such that (M, τ) is isomorphic as a state-morphism
BL-algebra with the state-morphism BL-algebra (A × B, τh), where
τh(x, y) = (x, h(x)) for any (x, y) ∈ A×B.

Proof. It follows from [65, Thm 4.5] and Theorem 5.1.
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If t is continuous t-norm we define x�ty = t(x, y) and x→t y = sup{z ∈
[0, 1] | t(z, x) ≤ y} for x, y ∈ [0, 1], then It := ([0, 1]; min,max,�t,→t, 0, 1)
is a BL-algebra. Moreover, according to [47, Thm 5.2], the variety of all
BL-algebras is generated by all It with a continuous t-norm t. Let T denote
the system of all BL-algebras It, where t is any continuous t-norm.

The proof of the following result will follow from Theorem 5.11.

Theorem 5.3. The variety of all state-morphism BL-algebras is generated
by the system {D(It) | t ∈ T }.

5.2 General State-Morphism Algebras

In this section, we generalize the notion of state-morphism BL-algebras to
an arbitrary variety of algebras of some type. It is interesting that many
results known only for state-morphism MV-algebras or state-morphism BL-
algebras have a very general presentation as state-morphism algebras. The
main result of this section, Theorem 5.5, says that every subdirectly irre-
ducible state-morphism algebra can be embedded into some diagonal one.

Let A be any algebra of type F and let Con A be the lattice of congru-
ences on A with the least congruence ∆A. An endomorphisms τ : A −→ A
satisfying τ ◦ τ = τ is said to be a state-morphism on A and a couple
(A, τ) is said to be a state-morphism algebra or an algebra with internal
state-morphism. Clearly, if K is a variety of algebras of type F , then the
class Kτ of all state-morphism algebras (A, τ), where A ∈ K and τ is any
state-morphism on A, forms a variety, too.

In the rest of the section, we will assume that A is an arbitrary algebra
with a fixed type F ; if A is of a specific type, it will be said that and
specified.

Definition 5.1. Let B ∈ K. Then an algebra D(D) := (B × B, τB),
where τB is defined by τB(x, y) = (x, x), x, y ∈ B, is a state-morphism
algebra (more precisely (B × B, τB) ∈ Kτ ); we call τB also a diagonal
state-operator. If a state-morphism algebra (C, τ) can be embedded into
some diagonal state-morphism algebra, (B ×B, τB), (C, τ) is said to be a
subdiagonal state-morphism algebra, or, more precisely, B-subdiagonal.



CHAPTER 5. STATE MORPHISMS ON ALGEBRAS 171

Let (A, τ) be a state-morphism algebra. We introduce the following
sets:

θτ = {(x, y) ∈ A×A | τ(x) = τ(y)}, (3.1)

τ(A) = {τ(x) | x ∈ A}.

The subalgebra which is an image of A by τ is denoted by τ(A) and thus
τ(A) ∈ K and (τ(A), Idτ(A)) ∈ Kτ , where Idτ(A) is the identity on τ(A);
we have also τ |τ(A) = Idτ(A).

If φ ∈ Con τ(A), we define

θφ := {(x, y) ∈ A×A | (τ(x), τ(y)) ∈ φ}. (3.2)

Finally, if φ ⊆ A2 then the congruence on A generated by φ is denoted
by Θ(φ) and the congruence on (A, τ) generated by φ is denoted by Θτ (φ).
Clearly Con (A, τ) ⊆ Con A and also Θ(φ) ⊆ Θτ (φ).

Lemma 5.3. Let (A, τ) be a state-morphism algebra. For any φ ∈ Con τ(A),
we have θφ ∈ Con (A, τ), and θφ∩ τ(A)2 = φ. In addition, θτ ∈ Con (A, τ),
φ ⊆ θφ, and Θτ (φ) ⊆ θφ.

Proof. Clearly, θφ is reflexive and symmetric. Moreover, if (x, y), (y, z) ∈
θφ, then

(
τ(x), τ(y)

)
,
(
τ(y), τ(z)

)
∈ φ and thus

(
τ(x), τ(z)

)
∈ φ which gives

(x, z) ∈ θφ.
Let fA be an n-ary operation on A and let x1, . . . , xn, y1, . . . , yn ∈ A be

such that (xi, yi) ∈ θφ for any i = 1, . . . , n. Then
(
τ(xi), τ(yi)

)
∈ φ holds

for any i = 1, . . . , n. Due to φ ∈ Con τ(A), we obtain(
f τ(A)(τ(x1), . . . , τ(xn)), f τ(A)(τ(y1), . . . , τ(yn))

)
∈ φ.

Because τ is an endomorphism,

τ(fA(x1, . . . , xn)) = f τ(A)(τ(x1), . . . , τ(xn))

and
τ(fA(y1, . . . , yn)) = f τ(A)(τ(y1), . . . , τ(yn))
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which gives (
τ(fA(x1, . . . , xn)), τ(fA(y1, . . . , yn))

)
∈ φ

and finally also (
fA(x1, . . . , xn), fA(y1, . . . , yn)

)
∈ θφ.

Moreover, take an arbitrary (x, y) ∈ θφ. Then
(
τ(τ(x)), τ(τ(y))

)
=(

τ(x), τ(y)
)
∈ φ which gives

(
τ(x), τ(y)

)
∈ θφ.

Hence, θφ ∈ Con (A, τ) and if φ = ∆τ(A), then θφ = θτ .
It is clear that θφ ∩ τ(A)2 ⊇ φ. Now let (x, y) ∈ θφ ∩ τ(A)2. Then x, y ∈

τ(A), (τ(x), τ(y)) ∈ φ ⊆ τ(A)2, so that x = τ(x) ∈ τ(A), y = τ(y) ∈ τ(A),
and consequently, (x, y) ∈ φ.

It is evident that θτ is a congruence on (A, τ).
Finally, if (x, y) ∈ φ then τ(x) = x and τ(y) = y which gives(

τ(x), τ(y)
)

= (x, y) ∈ φ.

Thus (x, y) ∈ θφ which finishes the proof that φ ⊆ θφ and Θτ (φ) ⊆ θφ.

Lemma 5.4. Let θ ∈ Con A be such that θ ⊆ θτ . Then θ ∈ Con (A, τ)
holds.

Moreover, if x, y ∈ A are such that (x, y) ∈ θτ , then Θ(x, y) = Θτ (x, y).

Proof. If (x, y) ∈ θ ⊆ θτ , then τ(x) = τ(y) and thus
(
τ(x), τ(y)

)
=(

τ(x), τ(x)
)
∈ θ proves that θ ∈ Con (A, τ).

Moreover, if (x, y) ∈ θτ , then Θ(x, y) ⊆ θτ . Due to the first part of
Lemma, we obtain Θ(x, y) ∈ Con (A, τ) and thus Θτ (x, y) ⊆ Θ(x, y) holds.
The second inclusion is trivial.

Lemma 5.5. If x, y ∈ τ(A), then Θ(x, y) = Θτ (x, y). Consequently, Θ(φ) =
Θτ (φ) whenever φ ⊆ τ(A)2.

Proof. Let us denote by φ the congruence on τ(A) generated by (x, y).
Clearly we obtain the chain of inclusions φ ⊆ Θ(x, y) ⊆ Θ(φ) ⊆ θφ (because
(x, y) ∈ φ and φ ⊆ θφ, see Lemma 5.3).
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Assume (a, b) ∈ Θ(x, y), then (a, b) ∈ θφ and thus (τ(a), τ(b)) ∈ φ ⊆
Θ(x, y). Thus Θ(x, y) ∈ Con (A, τ) and Θτ (x, y) ⊆ Θ(x, y) holds. The
second inclusion is trivial.

Finally, let φ ⊆ τ(A)2. By [27, Thm 5.3], the both congruence lattices
of A and (A, τ) are complete sublattices of the lattice of equivalencies on
A, and therefore, they have the same infinite suprema. Hence, by the first
part of the lemma,

Θ(φ) =
∨

(x,y)∈φ

Θ(x, y) =
∨

(x,y)∈φ

Θτ (x, y) = Θτ (φ).

Remark 5.1. By Lemma 5.3, if φ is a congruence on τ(A), then θφ is
an extension of φ on (A, τ) and Θ(φ) = Θτ (φ) ⊆ θφ. There is a natural
question whether Θ(φ) = θφ ? The answer is positive if and only if τ is the
identity on A. Indeed, if τ is the identity on A, the statement is evident,
in the opposite case, we have θ∆τ(A)

= θτ 6= ∆A = Θ(∆τ(A)).

Theorem 5.4. Let (A, τ) be a subdirectly irreducible state-morphism alge-
bra such that A is subdirectly reducible. Then there is a subdirectly irre-
ducible algebra B such that (A, τ) is B-subdiagonal.

Proof. First, if θτ = ∆A, then for any x ∈ A, the equality τ(x) = x holds
and thus Con A = Con (A, τ) which is absurd because A is subdirectly
irreducible and (A, τ) is not subdirectly irreducible.

The subdirect irreducibility of (A, τ) implies that there is a least proper
congruence θmin ∈ Con (A, τ). Moreover, due to Lemma 5.4, the congru-
ence θmin is also a least proper congruence θ on A with θ ⊆ θτ and thus
θmin is an atom in Con A. Let us denote

θ⊥τ = {θ ∈ Con A | θ ∩ θτ = ∆A}.

First, we prove that there exists proper θ ∈ θ⊥τ . The subdirect reducibility
of A shows that there exists proper θ ∈ Con A with θmin 6⊆ θ. Hence,
θτ ∩ θ = ∆A holds (because if θτ ∩ θ 6= ∆A, then θτ ∩ θ is a proper
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congruence contained in θτ and minimality of θmin yields θmin ⊆ θ∩ θτ ⊆ θ,
which is absurd).

Moreover, let us have θn ∈ θ⊥τ for any n ∈ N with θn ⊆ θn+1, then
clearly

∨
n∈N θn =

⋃
n∈N θn ∈ θ⊥τ . Due to Zorn’s Lemma, there is maximal

θ∗ ∈ θ⊥τ .
We have proved that both θτ and θ∗ are proper congruences on A with

θτ ∩ θ∗ = ∆A. By the Birkhoff Theorem about subdirect reducibility, A
is a subdirect product of two algebras A/θτ and A/θ∗ with an embedding
h : A −→ A/θτ ×A/θ∗ defined by h(x) = (x/θτ , x/θ

∗).
Now we define the mapping ψ : A/θτ −→ A/θ∗ by ψ(x/θτ ) = τ(x)/θ∗.

Clearly ψ is well-defined because x/θτ = y/θτ yields τ(x) = τ(y) and thus
ψ(x/θτ ) = τ(x)/θ∗ = τ(y)/θ∗ = ψ(y/θτ ). Let us suppose that ψ(x/θτ ) =
ψ(y/θτ ). Then τ(x)/θ∗ = τ(y)/θ∗ and

(
τ(x), τ(y)

)
∈ θ∗. Hence, we ob-

tain Θ(τ(x), τ(y)) ⊆ θ∗ holds. Finally, if τ(x) 6= τ(y) (thus Θ(τ(x), τ(y))
is a proper congruence), then τ(x), τ(y) ∈ τ(A) and Lemma 5.5 yields
Θ(τ(x), τ(y)) ∈ Con (A, τ) and thus θmin ⊆ Θ(τ(x), τ(y)) ⊆ θ∗ which is
absurd (θmin ⊆ θτ ∩ θ∗ = ∆A). Therefore, the mapping ψ is injective.

We shall prove that ψ is a homomorphism (and thus an embedding). If
fA is an n-ary operation and x1/θτ , . . . , xn/θτ ∈ A/θτ , then

ψ(fA/θτ (x1/θτ , . . . , xn/θτ )) = ψ(fA(x1, . . . , xn)/θτ )

= τ(fA(x1, . . . , xn))/θ∗

= fA(τ(x1), . . . , τ(xn))/θ∗

= fA/θ
∗
(τ(x1)/θ∗, . . . , τ(xn)/θ∗)

= fA/θ
∗
(ψ(x1/θτ ), . . . , ψ(xn/θτ )).

Now we prove that A is A/θ∗-diagonal. Let g : A −→ (A/θ∗)2 be
defined via g(x) = (ψ(x/θτ ), x/θ∗) = (τ(x)/θ∗, x/θ∗). Because the mapping
g is the composition of two functions h and ψ which are embeddings, g is
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also an embedding of A into (A/θ∗)2. Now we can compute:

g(τ(x)) =
(
τ(τ(x))/θ∗, τ(x)/θ∗

)
=

(
τ(x)/θ∗, τ(x)/θ∗

)
= τA/θ∗(τ(x)/θ∗, x/θ∗)

= τA/θ∗(g(x)),

where τA/θ∗ is the diagonal state-morphism on the product A/θ∗ ×A/θ∗.
Therefore, g : (A, τ) −→ (A/θ∗×A/θ∗, τA/θ∗) is an embedding and (A, τ)
is A/θ∗-diagonal.

Finally, we prove the subdirect irreducibility of A/θ∗. Of course, θmin∩
θ∗ = ∆A yields θmin 6⊆ θ∗ and thus θ∗ ⊂ θ∗ ∨ θmin. Moreover, if θ∗ ⊂ θ,
from maximality of θ∗ we obtain θ ∩ θτ 6= ∆A and thus θmin ⊆ θτ ∩ θ.
Finally, θmin ∨ θ∗ ⊆ (θτ ∩ θ) ∨ θ∗ ⊆ (θτ ∩ θ) ∨ θ = θ holds. Hence, for any
congruence θ ∈ Con A, the inequality θ∗ ⊂ θ∗ ∩ θmin ⊆ θ holds. Due to the
Birkhoff’s Theorem and the Second Homomorphism Theorem, an algebra
A/θ∗ is subdirectly irreducible.

Theorem 5.4 can be extended as follows.

Theorem 5.5. For every subdirectly irreducible state-morphism algebra
(A, τ), there is a subdirectly irreducible algebra B such that (A, τ) is B-
subdiagonal.

Proof. There are two cases: (1) (A, τ) and A are subdirectly irreducible,
and (2) (A, τ) is a subdirectly irreducible state-morphism algebra and A is
a subdirectly reducible algebra

(1) Assume that (A, τ) and A are subdirectly irreducible. Define two
state-morphism algebras (τ(A)×A, τ1) and (A×A, τ2), where τ1(a, b) =
(a, a), (a, b) ∈ τ(A) × A, and τ2(a, b) = (a, a), a, b ∈ A. Then the first one
is a subalgebra of the second one.

Define a mapping φ : A→ τ(A)×A defined by φ(a) = (τ(a), a), a ∈ A.
Then φ is injective because if φ(a) = φ(b) then (τ(a), a) = (τ(b), b) and
a = b. We show that φ is a homomorphism. Let fA be an n-ary operation
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on A and let a1, . . . , an ∈ A. Then

φ(fA(a1, . . . , an)) =
(
τ(fA(a1, . . . , an)), fA(a1, . . . , an)

)
=

(
fA(τ(a1), . . . , τ(an)), fA(a1, . . . , an)

)
= f τ(A)×A((τ(a1), a1), . . . , (τ(an), an)

)
= f τ(A)×A(φ(a1), . . . , φ(an)).

Since φ : A → τ(A) × A ⊆ A × A, φ can be assumed also as an
injective homomorphism from the state-morphism algebra (A, τ) into the
state-morphism algebra D(B), where B := A is a subdirectly irreducible
algebra.

(2) This case was proved in Theorem 5.4.

For example, a state-morphism algebra (A, IdA), where IdA is the iden-
tity on A, is subdirectly irreducible if and only if A is subdirectly irre-
ducible. Therefore, (A, IdA) can be embedded into (A×A, τA) under the
mapping a 7→ (a, a), a ∈ A. Consequently, every subdirectly irreducible
state-morphism algebra (A, IdA) is A-subdiagonal with A subdirectly irre-
ducible.

We note that in the same way as in [72, Lemma 6.1], it is possible to
show that the class of subdiagonal state-morphism algebras is closed under
subalgebras and ultraproducts, and not closed under homomorphic images,
see [72, Lemma 6.6].

5.3 Varieties of State-Morphism Algebras

In this section, we study varieties of state-morphism algebras and their
generators. It is interesting to note that some similar results proved for
state-morphism MV-algebras in [72] can be obtained in an analogous way
also for a general variety of algebras.

Let τ be a state-morphism operator on an algebra A. We set

Ker(τ) := {(x, y) ∈ A×A | τ(x) = τ(y)},
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the kernel of τ. We say that τ is faithful if Ker(τ) = ∆A. It is evident that
τ is faithful iff τ(x) = x for each x ∈ A. In addition, τ is faithful iff τ is
injective.

For every classK of same type algebras, we set D(K) = {D(A) | A ∈ K} ,
where D(A) = (A×A, τA).

As usual, given a class K of algebras of the same type, I(K), H(K), S(K)
and P(K) and PU(K) will denote the class of isomorphic images, of homo-
morphic images, of subalgebras, of direct products and of ultraproducts
of algebras from K, respectively. Moreover, V(K) will denote the variety
generated by K.

Lemma 5.6. (1) Let K be a class of algebras of the same type F . Then
VD(K) ⊆ V(K)τ .
(2) Let V be any variety. Then Vτ = ISD(V).

Proof. (1) If D(A) ∈ D(K) (thus A ∈ K), then the F -reduct of the algebra
D(A) is the algebra A × A which belongs to the variety V(K). Due to
definition of V(K)τ , we obtain also D(A) ∈ V(K)τ . We have proved that
D(K) ⊆ V(K)τ . Because V(K)τ is a variety then also VD(K) ⊆ V(K)τ

(2) Let (A, τ) ∈ Vτ . As we have seen in the proof of Theorem 5.5, the
map φ : a 7→ (τ(a), a) is an injective homomorphism of (A, τ) into D(A).
Hence, φ is compatible with τ , and (A, τ) ∈ ISD(V). Conversely, the F -
reduct of any algebra in D(V) is in V, (being a direct product of algebras
in V), and hence the F -reduct of any member of ISD(V) is in IS(V) = V.
Hence, any member of ISD(V) is in Vτ .

Lemma 5.7. Let K be a class of algebras of the same type F . Then:
(1) DH(K) ⊆ HD(K).
(2) DS(K) ⊆ ISD(K).
(3) DP(K) ⊆ IPD(K).
(4) VD(K) = ISD(V(K)).

Proof. (1) Let D(C) ∈ DH(K). Then there are A ∈ K and a homomor-
phism h from A onto C. Let for all a, b ∈ A, h∗(a, b) = (h(a), h(b)). We
claim that h∗ is a homomorphism from D(A) onto D(C). That h∗ is a
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homomorphism is clear. We verify that h∗ is compatible with τA. We
have h∗(τA(a, b)) = h∗(a, a) = (h(a), h(a)) = τC(h(a), h(b)) = τC(h∗(a, b)).
Finally, since h is onto, given (c, d) ∈ C × C, there are a, b ∈ A such
that h(a) = c and h(b) = d. Hence, h∗(a, b) = (c, d), h∗ is onto, and
D(C) ∈ HD(K).

(2) It is trivial.
(3) Let A =

∏
i∈I(Ai) ∈ P(K), where each Ai is in K. Then the map

Φ :
(
(ai : i ∈ I), (bi : i ∈ I)

)
7→
(
(ai, bi

)
: i ∈ I)

is an isomorphism from D(A) onto
∏
i∈I D(Ai). Indeed, it is clear that Φ is

an F -isomorphism. Moreover, denoting the state-morphism of
∏
i∈I D(Ai)

by τ∗, we get:

Φ
(
τA
(
(ai : i ∈ I), (bi : i ∈ I)

))
= Φ

(
(ai : i ∈ I), (ai : i ∈ I)

)
=

=
(
(ai, ai) : i ∈ I

)
=
(
τAi(ai, bi) : i ∈ I

)
= τ∗

(
Φ
(
(ai : i ∈ I), (bi : i ∈ I)

))
,

and hence Φ is an isomorphism.
(4) By (1), (2) and (3), DV(K) = DHSP(K) ⊆ HSPD(K) = VD(K),

and hence ISDV(K) ⊆ ISVD(K) = VD(K). Conversely, by Lemma 5.6(1),
VD(K) ⊆ V(K)τ , and by Lemma 5.6(2), V(K)τ = ISDV(K). This proves
the claim.

Theorem 5.6. (1) For every class K of algebras of the same type F,
V(D(K)) = V(K)τ .

(2) Let K1 and K2 be two classes of same type algebras. Then V(D(K1)) =
V(D(K2)) if and only if V(K1) = V(K2).

Proof. (1) By Lemma 5.7(4), VD(K) = ISD(V(K)). Moreover, by Lemma
5.6(2), V(K)τ = ISDV(K). Hence, V(D(K)) = V(K)τ .

(2) We have V(D(K1)) = V(K1)τ and V(D(K2)) = V(K2)τ . Clearly,
V(K1) = V(K2) implies V(K1)τ = V(K2)τ , and hence V(D(K1)) = V(D(K2)).
Conversely, V(D(K1)) = V(D(K2)) implies V(K1)τ = V(K2)τ . But any al-
gebra A ∈ V(K1) is the F -reduct of a state-morphism algebra in V(K1)τ ,
namely of (A, IdA).

It follows that, if V(K1)τ = V(K2)τ , then the classes of F -reducts of
V(K1)τ and of V(K2)τ coincide, and hence V(K1) = V(K2).
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As a direct corollary of Theorem 5.6, we have:

Theorem 5.7. If a system K of algebras of the same type F generates the
whole variety V(F ) of all algebras of type F, then the variety V(F )τ of all
state-morphism algebras (A, τ), where A ∈ V(F ), is generated by the class
{D(A) | A ∈ K}.

Some applications of the latter theorem for different varieties of algebras
will be done in Section 5.

Theorem 5.8. If A is a subdirectly irreducible algebra, then any state-
morphism algebra (A, τ) is subdirectly irreducible.

Proof. Let A be a subdirectly irreducible algebra and let τ be a state-
morphism operator on A. If τ is the identity on A, then Con A = Con (A, τ)
and, consequently, (A, τ) is subdirectly irreducible. If τ is not the iden-
tity on A, then θτ , defined by (3.1), is a nontrivial congruence on A, and
thus θmin ⊆ θτ , where θmin ∈ Con A is the least nontrivial congruence.
Hence, θmin belongs to the set Con (A, τ), see Lemma 5.4. Therefore,
Con (A, τ) ⊆ Con A yields the subdirect irreducibility of the algebra (A, τ),
more precisely, θmin is also the least proper congruence in Con (A, τ).

We remind the following Mal’cev Theorem, [27, Lemma 3.1].

Theorem 5.9. Let A be an algebra and φ ⊆ A2. Then (a, b) ∈ Θ(φ) if and
only if there exist two finite sequences of terms t1(x1, x), . . . , tn(xn, x) and
pairs (a1, b1), . . . , (an, bn) ∈ φ with

a = t1(x1, a1), ti(xi, bi) = ti+1(xi+1, ai+1) and tn(xn, bn) = b

for some x1, . . . , xn ∈ A.

We say that an algebra B has the Congruence Extension Property (CEP
for short) if, for any algebra A such that B is a subalgebra of A and for
any congruence θ ∈ Con B, there is a congruence φ ∈ Con A such that
θ = (B × B) ∩ φ. A variety K has the CEP if every algebra in K has the
CEP. For example, the variety of MV-algebra, or the variety of BL-algebras
or the variety of state-morphism MV-algebras (see [72, Lemma 6.1]) satisfies
the CEP.
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Theorem 5.10. A variety Vτ satisfy the CEP if and only if V satisfies the
CEP.

Proof. Let us have a variety V with the CEP. If A ∈ V is such that (A, τ)
is an algebra with state-morphism, for any subalgebra (B, τ) ⊆ (A, τ) and
any φ ∈ Con (B, τ), the condition φ = B2 ∩Θ(φ) holds.

Now we prove Θ(φ) = Θτ (φ). To show that, assume (a, b) ∈ Θ(φ).
Mal’cev’s Theorem shows the existence of finite sequences of terms

t1(x1, x), . . . , tn(xn, x)

and pairs (a1, b1), . . . , (an, bn) ∈ φ with

a = t1(x1, a1), ti(xi, bi) = ti+1(xi+1, ai+1) and tn(xn, bn) = b

for some x1, . . . , xn ∈ A. Because τ is an endomorphism, we obtain also
equalities

τ(a) = t1(τ(x1), τ(a1)), ti(τ(xi), τ(bi)) = ti+1(τ(xi+1), τ(ai+1))

and
tn(τ(xn), τ(bn)) = τ(b).

We have assumed that φ ∈ Con (B, τ), thus (ai, bi) ∈ φ yields (τ(ai), τ(bi)) ∈
φ for any i = 1, . . . , n. Now, we have obtained (τ(a), τ(b)) ∈ Θ(φ). In other
words, Θ(φ) ∈ Con (A, τ) and thus Θ(φ) = Θτ (φ).

If Vτ has the CEP, then for any A ∈ V, we have Con A = Con (A, IdA).
Clearly, the CEP on (A, IdA) yields the CEP on A.

5.4 Applications to Special Types of Algebras

In this section, we apply a general result concerning generators of some
varieties of state-morphism algebras, Theorem 5.6, to the variety of state-
morphism BL-algebras, state-morphism MTL-algebras, state-morphism non-
associative BL-algebras, and state-morphism pseudo MV-algebras, when we
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use different systems of t-norms on the real interval [0, 1] and a special type
of pseudo MV-algebras, respectively.

Algebras for which the logic MTL is sound are called MTL-algebras.
They can be characterized as prelinear commutative bounded integral resid-
uated lattices. In more detail, according to [77], an algebraic structure
A = (A;∧,∨, ∗,→, 0, 1) of type 〈2, 2, 2, 2, 0, 0〉 is an MTL-algebra if it sat-
isfies conditions (BL1), (BL2), (BL3) and (BL5) from Definition 1.4.

If t is any continuous t-norm on [0, 1], we define two binary operations
∗t →t on [0, 1] via x ∗t y = t(x, y) and x→t y = sup{z ∈ [0, 1] | t(z, x) ≤ y}
for x, y ∈ [0, 1], then It = ([0, 1]; min,max, ∗t,→t, 0, 1) is an example of an
MTL-algebra. An MTL-algebra It is a BL-algebra iff t is continuous.

Due to [77], the class Tlc, which denotes the system of all BL-algebras It,
where t is a continuous t-norm on the interval [0, 1], generates the variety
of MTL-algebras. This result was strengthened in [144] who introduced
the class of regular continuous t-norms which is strictly smaller than the
class of continuous t-norms, but they generate the variety of MTL-algebras.
Finally, we recall that a noncommutative generalization of MV-algebras was
introduced in [88] as pseudo MV-algebras or in [133] as generalized MV-
algebras. According to [65], every pseudo MV-algebra (M ;⊕,− ,∼ , 0, 1) of
type 〈2, 1, 1, 0, 0〉 is an interval in a unital `-group (G, u) with strong unit u,
i.e. M ∼= Γ(G, u) := [0, u], where x⊕y = (x+y)∧, x− = u−x, x∼ = −x+u,
0 = 0, and 1 = u. If (G, u) is double transitive (for definitions and details
see [71]), then Γ(G, u) generates the variety of pseudo MV-algebras, [71,
Thm 4.8]. For example, if Aut(R) is the set of all automorphisms of the
real line R preserving the natural order in R and u(t) := t + 1, t ∈ R,
let Autu(R) = {g ∈ Aut(R) | g ≤ nu for some integer n ≥ 1}. Then
Γ(Autu(R), u) is double transitive and it generates the variety of pseudo
MV-algebras, see [71, Ex 5.3].

Now we apply the general statement, Theorem 5.7, on generators to
different types of state-morphism algebras. We recall that T was defined
as the class of all BL-algebras It, where t is a continuous t-norm on [0, 1].

Theorem 5.11. (1) The variety of all state-morphism MV-algebras is gen-
erated by the diagonal state-morphism MV-algebra D([0, 1]MV ).
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(2) The variety of all state-morphism BL-algebras is generated by the
class {D(It) | It ∈ T }.

(3) The variety of all state-morphism MTL-algebras is generated by the
class {D(It) | It ∈ Tlc}.

(4) The variety of all state-morphism naBL-algebras is generated by the
class {D(Inat ) | It ∈ naT }.

(5) If a unital `-group (G, u) is double transitive, then D(Γ(G, u)) gen-
erates the variety of state-morphism pseudo MV-algebras.

Proof. (1) It follows from the fact that the MV-algebra of the real interval
[0, 1] generates the variety of MV-algebras, see e.g. [46, Prop 8.1.1], and
then apply Theorem 5.7.

(2) The statement follows from the fact that V(T ) is by [47, Thm 5.2]
the variety BL of all BL-algebras. Now it suffices to apply Theorem 5.7.

(3) By [77], the class Tlc of all It, where t is any left-continuous t-norms
on the interval [0, 1], generates the variety of MTL-algebras; then apply
Theorem 5.7.

(4) By [19, Thm 8], the class naT of all It, where t is any non-associative
t-norms on the interval [0, 1], generates the variety of non-associative BL-
algebras; then apply again Theorem 5.7.

(5) By the above, Γ(G, u) generates the variety of pseudo MV-algebras,
see also [71, Thm 4.8]; then apply Theorem 5.7.

We note that the case (1) in Theorem 5.7 was an open problem posed
in [53] and was positively solved in [72, Thm 5.4(3)].
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[20] M. Botur and R. Halaš: Finite commutative basic algebras are
MV-algebras, Mult. Val. Logic and Soft Comp. 14(1-2) (2008), 69–80.
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[94] R.J. Greechie: Another Nonstandard Quantum Logic (And How I
Found It), in Mathematical Foundations of Quantum Theory (Papers
from a conference held at Loyola University, New Orleans, June 2-4,
1977), edited by A. R. Marlow, Academic Press, New York (1978),
71–85.

[95] R.J. Greechie, D. Foulis and S. Pulmannová: The centrum of
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[98] P. Hájek and R. Mesiar: On copulas, quasicopulas and fuzzy logic,
Soft Computing 12 (2008), 1239–1243.

[99] G. Hansoul and B. Teheux: Completeness results for many-valued
 Lukasiewicz modal systems and relational semantics, 2006. Available
at http://arxiv.org/abs/math/0612542.

[100] W.C. Holland: The lattice-ordered group of automorphisms of an
ordered set, Michigan Math. J. 10 (1963), 399–408.



BIBLIOGRAPHY 192

[101] J. Jauch and C. Piron: On the structure quantal proposition sys-
tems, Helv. Phys. Acta 42 (1969), 842–848.

[102] P. Jipsen and F. Montagna:On the structure of generalized BL-
algebras, Algebra Universalis 55 (2006), 226–237.

[103] G. Kalmbach: Orthomodular lattices, Academic Press, London,
New York, 1983.

[104] H.J. Keisler: A survey of ultraproducts, In: Proc. Internat. Congr.
Logic, Methodology and Philosophy of Science (1965), pp. 112–126.
North-Holland, Amsterdam.

[105] E.P. Klement and A. Kolesárová: Extension to copulas and
quasicopulas as special 1-Lipschitz aggregation operators, Kybernetika
41 (2005), 329–348.

[106] A.W. Knapp: Advanced Real Analysis, Birkhäuser, Boston, 2005.
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