Construction of a complement to a quasiorder

Danica Jakubíková-Studenovská, Lucia Janičková
Pavol Jozef Šafárik University in Košice, Slovakia

Brno, Czech republic 5.2. -7.2.2016

Introduction

Introduction

- quasiorder of $\mathcal{A}=$ a binary relation on \mathcal{A}, which is

Introduction

- quasiorder of $\mathcal{A}=$ a binary relation on \mathcal{A}, which is
- reflexive

Introduction

- quasiorder of $\mathcal{A}=$ a binary relation on \mathcal{A}, which is
- reflexive
- transitive

Introduction

- quasiorder of $\mathcal{A}=$ a binary relation on \mathcal{A}, which is
- reflexive
- transitive
- compatible with all fundamental operations of \mathcal{A}

Introduction

- quasiorder of $\mathcal{A}=$ a binary relation on \mathcal{A}, which is
- reflexive
- transitive
- compatible with all fundamental operations of \mathcal{A}
- the lattice $\operatorname{Quord}(A, \subseteq)$ of all quasiorders of an algebra \mathcal{A}

Introduction

Introduction

- M. Erné and J. Reinhold (1995): lattices of all quasiorders on a set
- atomistic
- dually atomistic
- complemented
- I. Chajda and G. Czédli (1996), A. G. Pinus (1995):
- every algebraic lattice is isomorphic to the quasiorder lattice of a suitable algebra
- G. Czédli and A. Lenkehegyi (1983), A. G. Pinus and I. Chajda (1993):
- quasiorder lattice of a majority algebra is always distributive
- R. Pöschel and S. Radeleczki:
- how endomorphisms of quasiorders behave
- when End $q \subseteq$ End q^{\prime} for quasiorders q, q^{\prime} on a set A (End q is the set of all mappings preserving q)
- description of the quasiorder lattice of the algebra ($A, \operatorname{End} q$)

Introduction

Introduction

- a monounary algebra $\mathcal{A}=(A, f)$

Introduction

- a monounary algebra $\mathcal{A}=(A, f)$
- an element $x \in A$ is referred to as cyclic if there exists a positive integer n such that $f^{n}(x)=x$

Aim

Aim

AIM

AIM

- Find necessary and sufficient conditions for a monounary algebra (A, f), under which the lattice Quord (A, f) is complemented.

AIM

- Find necessary and sufficient conditions for a monounary algebra (A, f), under which the lattice Quord (A, f) is complemented.
- Construct a complementary quasiorder to a given quasiorder, if the lattice $\operatorname{Quord}(A, f)$ is complemented.

Result

Theorem

Let (A, f) be a monounary algebra. The lattice $\operatorname{Quord}(A, f)$ is complemented if and only if

- each connected component of (A, f) contains a cycle,
- there is $n \in N$ such that each cycle of (A, f) has n elements,
- n is square-free,
- for each $a \in A$, the element $f(a)$ is cyclic.

Sufficiency of the condition was proved by means of transfinite induction. We will describe a construction of a complement to a given quasiorder of (A, f) satisfying this condition.

Preliminary

- For $\alpha \in \operatorname{Quord}(A, f)$, define $\bar{\alpha}$:

$$
(b, a) \in \bar{\alpha} \Longleftrightarrow(a, b) \in \alpha
$$

Preliminary

- For $\alpha \in \operatorname{Quord}(A, f)$, define $\bar{\alpha}$:

$$
(b, a) \in \bar{\alpha} \Longleftrightarrow(a, b) \in \alpha
$$

- Assumption: Let (A, f) be a monounary algebra such that

Preliminary

- For $\alpha \in \operatorname{Quord}(A, f)$, define $\bar{\alpha}$:

$$
(b, a) \in \bar{\alpha} \Longleftrightarrow(a, b) \in \alpha
$$

- Assumption: Let (A, f) be a monounary algebra such that - each connected component of (A, f) contains a cycle,

Preliminary

- For $\alpha \in \operatorname{Quord}(A, f)$, define $\bar{\alpha}$:

$$
(b, a) \in \bar{\alpha} \Longleftrightarrow(a, b) \in \alpha
$$

- Assumption: Let (A, f) be a monounary algebra such that
- each connected component of (A, f) contains a cycle,
- there is $n \in N$ such that each cycle of (A, f) has n elements,

Preliminary

- For $\alpha \in \operatorname{Quord}(A, f)$, define $\bar{\alpha}$:

$$
(b, a) \in \bar{\alpha} \Longleftrightarrow(a, b) \in \alpha
$$

- Assumption: Let (A, f) be a monounary algebra such that
- each connected component of (A, f) contains a cycle,
- there is $n \in N$ such that each cycle of (A, f) has n elements,
- n is square-free,

Preliminary

- For $\alpha \in \operatorname{Quord}(A, f)$, define $\bar{\alpha}$:

$$
(b, a) \in \bar{\alpha} \Longleftrightarrow(a, b) \in \alpha
$$

- Assumption: Let (A, f) be a monounary algebra such that
- each connected component of (A, f) contains a cycle,
- there is $n \in N$ such that each cycle of (A, f) has n elements,
- n is square-free,
- for each $a \in A$, the element $f(a)$ is cyclic.
- For $\alpha \in \operatorname{Quord}(A, f)$, define $\bar{\alpha}$:

$$
(b, a) \in \bar{\alpha} \Longleftrightarrow(a, b) \in \alpha .
$$

- Assumption: Let (A, f) be a monounary algebra such that
- each connected component of (A, f) contains a cycle,
- there is $n \in N$ such that each cycle of (A, f) has n elements,
- n is square-free,
- for each $a \in A$, the element $f(a)$ is cyclic.
- Let $\alpha \in \operatorname{Cuord}(A, f)$.
- For $\alpha \in \operatorname{Quord}(A, f)$, define $\bar{\alpha}$:

$$
(b, a) \in \bar{\alpha} \Longleftrightarrow(a, b) \in \alpha .
$$

- Assumption: Let (A, f) be a monounary algebra such that
- each connected component of (A, f) contains a cycle,
- there is $n \in N$ such that each cycle of (A, f) has n elements,
- n is square-free,
- for each $a \in A$, the element $f(a)$ is cyclic.
- Let $\alpha \in \operatorname{Quord}(A, f)$.
- For $a \in A$ denote by $C(a)$ the cycle, containing $f(a)$.

Preliminary

- A^{\prime} : all noncyclic elements x of A such that $\left(x, f^{n}(x)\right) \notin \alpha$ and $\left(f^{n}(x), x\right) \notin \alpha$.

Preliminary

- A^{\prime} : all noncyclic elements x of A such that $\left(x, f^{n}(x)\right) \notin \alpha$ and $\left(f^{n}(x), x\right) \notin \alpha$.
- ρ on $A^{\prime}:(a, b) \in \rho$ if $a, b \in A^{\prime}, f(a)=f(b)$ and there are $k \in N$ and $a=u_{0}, u_{1}, \ldots, u_{k}=b$ elements of A^{\prime} such that $(\forall i \in\{0, \ldots, k-1\})\left(f(a)=f\left(u_{i}\right),\left(u_{i}, u_{i+1}\right) \in \alpha \cup \bar{\alpha}\right)$.

Preliminary

- A^{\prime} : all noncyclic elements x of A such that $\left(x, f^{n}(x)\right) \notin \alpha$ and $\left(f^{n}(x), x\right) \notin \alpha$.
- ρ on $A^{\prime}:(a, b) \in \rho$ if $a, b \in A^{\prime}, f(a)=f(b)$ and there are $k \in N$ and $a=u_{0}, u_{1}, \ldots, u_{k}=b$ elements of A^{\prime} such that $(\forall i \in\{0, \ldots, k-1\})\left(f(a)=f\left(u_{i}\right),\left(u_{i}, u_{i+1}\right) \in \alpha \cup \bar{\alpha}\right)$.
- ρ is an equivalence on A^{\prime},

Preliminary

- A^{\prime} : all noncyclic elements x of A such that $\left(x, f^{n}(x)\right) \notin \alpha$ and $\left(f^{n}(x), x\right) \notin \alpha$.
- ρ on $A^{\prime}:(a, b) \in \rho$ if $a, b \in A^{\prime}, f(a)=f(b)$ and there are $k \in N$ and $a=u_{0}, u_{1}, \ldots, u_{k}=b$ elements of A^{\prime} such that $(\forall i \in\{0, \ldots, k-1\})\left(f(a)=f\left(u_{i}\right),\left(u_{i}, u_{i+1}\right) \in \alpha \cup \bar{\alpha}\right)$.
- ρ is an equivalence on A^{\prime},
- for each $D \in A^{\prime} / \rho$ there are $P(D) \subseteq D$ and $p(D) \in P(D)$ such that

Preliminary

- A^{\prime} : all noncyclic elements x of A such that $\left(x, f^{n}(x)\right) \notin \alpha$ and $\left(f^{n}(x), x\right) \notin \alpha$.
- ρ on $A^{\prime}:(a, b) \in \rho$ if $a, b \in A^{\prime}, f(a)=f(b)$ and there are $k \in N$ and $a=u_{0}, u_{1}, \ldots, u_{k}=b$ elements of A^{\prime} such that $(\forall i \in\{0, \ldots, k-1\})\left(f(a)=f\left(u_{i}\right),\left(u_{i}, u_{i+1}\right) \in \alpha \cup \bar{\alpha}\right)$.
- ρ is an equivalence on A^{\prime},
- for each $D \in A^{\prime} / \rho$ there are $P(D) \subseteq D$ and $p(D) \in P(D)$ such that
(1) $(\forall x \in D \backslash P(D))(\exists y \in P(D))((x, y) \in \alpha,(y, x) \in \alpha)$;

Preliminary

- A^{\prime} : all noncyclic elements x of A such that $\left(x, f^{n}(x)\right) \notin \alpha$ and $\left(f^{n}(x), x\right) \notin \alpha$.
- ρ on $A^{\prime}:(a, b) \in \rho$ if $a, b \in A^{\prime}, f(a)=f(b)$ and there are $k \in N$ and $a=u_{0}, u_{1}, \ldots, u_{k}=b$ elements of A^{\prime} such that $(\forall i \in\{0, \ldots, k-1\})\left(f(a)=f\left(u_{i}\right),\left(u_{i}, u_{i+1}\right) \in \alpha \cup \bar{\alpha}\right)$.
- ρ is an equivalence on A^{\prime},
- for each $D \in A^{\prime} / \rho$ there are $P(D) \subseteq D$ and $p(D) \in P(D)$ such that
(1) $(\forall x \in D \backslash P(D))(\exists y \in P(D))((x, y) \in \alpha,(y, x) \in \alpha)$;
(2) $\forall x, y \in P(D), x \neq y)((x, y) \in \alpha \Rightarrow(y, x) \notin \alpha)$.

Complementarity - construction (K)

Complementarity - construction (K)

Let $x, y \in A$. We put $(x, y) \in \beta$ if either $x=y$ or (x, y) fulfills one of the steps of the construction (K).

- Step (a). Let x, y belong to the same cycle $C, y=f^{k}(x)$, $\alpha \upharpoonright C=\theta_{d}, d / n$ and let $e=\frac{n}{d}$. We set $(x, y) \in \beta$ if and only if e / k.
- Step (b). Let $x \in C_{1}, y \in C_{2}$, where C_{1} and C_{2} are distinct cycles. We put $(x, y) \in \beta$ if and only if there are $a \in C_{1}$ and $b \in C_{2}$ with $(b, a) \in \alpha,(a, b) \notin \alpha$.
- Step (c). Suppose that $x, y \in P(D)$ for some $D \in A^{\prime} / \rho$. Then $(x, y) \in \beta$ if and only if and $(y, x) \in \alpha$.
- Step (d1). Suppose that x belongs to a cycle C, y is noncyclic, $C(y)=C$. Further let $\alpha \upharpoonright C=\theta_{d}, d / n, e=\frac{n}{d}$. If $y \notin A^{\prime}$, then $(x, y) \in \beta$ if and only if
$\left(f^{n}(y), y\right) \notin \alpha,\left(y, f^{n}(y)\right) \in \alpha, x=f^{k}(y), e / k$.

Complementarity - construction (K)

- Step (d'1). Suppose that y belongs to a cycle C, x is noncyclic, $C(x)=C$. Further let $\alpha \upharpoonright C=\theta_{d}, d / n, e=\frac{n}{d}$. If $x \notin A^{\prime}$, then $(x, y) \in \beta$ if and only if $\left(f^{n}(x), x\right) \in \alpha,\left(x, f^{n}(x)\right) \notin \alpha, y=f^{k}(x), e / k$.
- Step (d2). Suppose that x belongs to a cycle C, y is noncyclic, $C(y)=C$. Further let $\alpha \upharpoonright C=\theta_{d}, d / n, e=\frac{n}{d}$. If $y \in A^{\prime}$, then $(x, y) \in \beta$ if and only if there is $D \in A^{\prime} / \rho$ such that $y \in P(D), x=f^{k}(y), e / k$ and $(y, p(D)) \in \alpha$.
- Step (d'2). Suppose that y belongs to a cycle C, x is noncyclic, $C(x)=C$. Further let $\alpha \upharpoonright C=\theta_{d}, d / n, e=\frac{n}{d}$. If $x \in A^{\prime}$, then $(x, y) \in \beta$ if and only if there is $D \in A^{\prime} / \rho$ such that $x \in P(D), y=f^{k}(x), e / k$ and $(x, p(D)) \in \alpha$.
- Step (e). Suppose that x, y satisfy none of the assumptions of the previous steps. Then $(x, y) \in \beta$ if and only if $\left(x, f^{n}(x)\right) \in \beta,\left(f^{n}(x), f^{n}(y)\right) \in \beta,\left(f^{n}(y), y\right) \in \beta$.

Construction (K) - example

Let (A, f) be a given algebra:

Construction (K) - example

Let $\alpha \in \operatorname{Quord}(A, f)$:

Construction (K) - example

Construction (K) - example

n is number of elements of each cycle.

- $n=6$

Construction (K) - example

n is number of elements of each cycle.

- $n=6$
A^{\prime} : all noncyclic elements x of A such that $\left(x, f^{n}(x)\right) \notin \alpha$ and $\left(f^{n}(x), x\right) \notin \alpha$.

Construction (K) - example

n is number of elements of each cycle.

- $n=6$
A^{\prime} : all noncyclic elements x of A such that $\left(x, f^{n}(x)\right) \notin \alpha$ and $\left(f^{n}(x), x\right) \notin \alpha$.
- $A^{\prime}=\left\{c_{2}, c_{3}, c_{5}, c_{8}, c_{9}, c_{10}, d_{1}, d_{2}, d_{3}, d_{5}\right\}$

Construction (K) - example

n is number of elements of each cycle.

- $n=6$
A^{\prime} : all noncyclic elements x of A such that $\left(x, f^{n}(x)\right) \notin \alpha$ and $\left(f^{n}(x), x\right) \notin \alpha$.
- $A^{\prime}=\left\{c_{2}, c_{3}, c_{5}, c_{8}, c_{9}, c_{10}, d_{1}, d_{2}, d_{3}, d_{5}\right\}$
ρ on $A^{\prime}:(a, b) \in \rho$ if $a, b \in A^{\prime}, f(a)=f(b)$ and there are $k \in N$ and $a=u_{0}, u_{1}, \ldots, u_{k}=b$ elements of A^{\prime} such that $(\forall i \in\{0, \ldots, k-1\})\left(f(a)=f\left(u_{i}\right),\left(u_{i}, u_{i+1}\right) \in \alpha \cup \bar{\alpha}\right)$.

Construction (K) - example

n is number of elements of each cycle.

- $n=6$
A^{\prime} : all noncyclic elements x of A such that $\left(x, f^{n}(x)\right) \notin \alpha$ and $\left(f^{n}(x), x\right) \notin \alpha$.
- $A^{\prime}=\left\{c_{2}, c_{3}, c_{5}, c_{8}, c_{9}, c_{10}, d_{1}, d_{2}, d_{3}, d_{5}\right\}$
ρ on $A^{\prime}:(a, b) \in \rho$ if $a, b \in A^{\prime}, f(a)=f(b)$ and there are $k \in N$ and $a=u_{0}, u_{1}, \ldots, u_{k}=b$ elements of A^{\prime} such that $(\forall i \in\{0, \ldots, k-1\})\left(f(a)=f\left(u_{i}\right),\left(u_{i}, u_{i+1}\right) \in \alpha \cup \bar{\alpha}\right)$.
- $\rho:$| $c_{2}, c_{3}, c_{5}, c_{8}, c_{9}, c_{10}$ | d_{2}, d_{3}, d_{5} | d_{1} |
| :---: | :--- | :--- |
- $A^{\prime} / \rho:$| D_{1} | $c_{2}, c_{3}, c_{5}, c_{8}, c_{9}, c_{10}$ |
| :--- | :--- |
| D_{2} | d_{2}, d_{3}, d_{5} |
| D_{3} | d_{1} |

Construction (K) - example

$A^{\prime} / \rho:$| D_{1} | $c_{2}, c_{3}, c_{5}, c_{8}, c_{9}, c_{10}$ |
| :--- | :--- |
| D_{2} | d_{2}, d_{3}, d_{5} |
| D_{3} | d_{1} |

Construction (K) - example

$$
A^{\prime} / \rho: \begin{array}{|l|l|}
\hline D_{1} & c_{2}, c_{3}, c_{5}, c_{8}, c_{9}, c_{10} \\
\hline D_{2} & d_{2}, d_{3}, d_{5} \\
\hline D_{3} & d_{1} \\
\hline
\end{array}
$$

Construction (K) - example

Construction (K) - example

For each $D \in A^{\prime} / \rho$ there are $P(D) \subseteq D$ and $p(D) \in P(D)$ such that:

1) $(\forall x \in D \backslash P(D))(\exists y \in P(D))((x, y) \in \alpha,(y, x) \in \alpha)$;
2) $(\forall x, y \in P(D), x \neq y)((x, y) \in \alpha \Rightarrow(y, x) \notin \alpha)$.

Construction (K) - example

For each $D \in A^{\prime} / \rho$ there are $P(D) \subseteq D$ and $p(D) \in P(D)$ such that:

1) $(\forall x \in D \backslash P(D))(\exists y \in P(D))((x, y) \in \alpha,(y, x) \in \alpha)$;
2) $(\forall x, y \in P(D), x \neq y)((x, y) \in \alpha \Rightarrow(y, x) \notin \alpha)$.

Let:

- $P\left(D_{1}\right)=\left\{c_{2}, c_{3}, c_{5}, c_{9}\right\}$ and $p\left(D_{1}\right)=c_{2}$
- $P\left(D_{2}\right)=\left\{d_{2}, d_{3}\right\}$ and $p\left(D_{2}\right)=d_{2}$
- $P\left(D_{3}\right)=\left\{d_{1}\right\}$ and $p\left(D_{3}\right)=d_{1}$

Construction (K) - example

Step (a). Let x, y belong to the same cycle $C, y=f^{k}(x)$, $\alpha \upharpoonright C=\theta_{d}, d / n$ and let $e=\frac{n}{d}$. We set $(x, y) \in \beta$ if and only if e / k.

Construction (K) - example

Step (a). Let x, y belong to the same cycle $C, y=f^{k}(x)$, $\alpha \upharpoonright C=\theta_{d}, d / n$ and let $e=\frac{n}{d}$. We set $(x, y) \in \beta$ if and only if e / k.

- $x, y \in\{0,1,2,3,4,5\}, y=f^{k}(x), \alpha \upharpoonright C=\theta_{3}, 3 / n$ and $e=\frac{6}{3}=2$.

Construction (K) - example

Step (a). Let x, y belong to the same cycle $C, y=f^{k}(x)$, $\alpha \upharpoonright C=\theta_{d}, d / n$ and let $e=\frac{n}{d}$. We set $(x, y) \in \beta$ if and only if e / k.

- $x, y \in\{0,1,2,3,4,5\}, y=f^{k}(x), \alpha \upharpoonright C=\theta_{3}, 3 / n$ and $e=\frac{6}{3}=2$.
- We set $(x, y) \in \beta$ if and only if e / k, i.e. if and only if $k \equiv 0(\bmod 2)$.

Construction (K) - example

Step (a). Let x, y belong to the same cycle $C, y=f^{k}(x)$, $\alpha \upharpoonright C=\theta_{d}, d / n$ and let $e=\frac{n}{d}$. We set $(x, y) \in \beta$ if and only if e / k.

- $x, y \in\{0,1,2,3,4,5\}, y=f^{k}(x), \alpha \upharpoonright C=\theta_{3}, 3 / n$ and $e=\frac{6}{3}=2$.
- We set $(x, y) \in \beta$ if and only if e / k, i.e. if and only if $k \equiv 0(\bmod 2)$.
- It follows that $(x, y) \in \beta$ if and only if either $x, y \in\{0,2,4\}$, or $x, y \in\{1,3,5\}$.

Construction (K) - example

Step (a). Let x, y belong to the same cycle $C, y=f^{k}(x)$, $\alpha \upharpoonright C=\theta_{d}, d / n$ and let $e=\frac{n}{d}$. We set $(x, y) \in \beta$ if and only if e / k.

- $x, y \in\{0,1,2,3,4,5\}, y=f^{k}(x), \alpha \upharpoonright C=\theta_{3}, 3 / n$ and $e=\frac{6}{3}=2$.
- We set $(x, y) \in \beta$ if and only if e / k, i.e. if and only if $k \equiv 0(\bmod 2)$.
- It follows that $(x, y) \in \beta$ if and only if either $x, y \in\{0,2,4\}$, or $x, y \in\{1,3,5\}$.

Construction (K) - example

Step (a). Let x, y belong to the same cycle $C, y=f^{k}(x)$, $\alpha \upharpoonright C=\theta_{d}, d / n$ and let $e=\frac{n}{d}$. We set $(x, y) \in \beta$ if and only if e / k.

- $x, y \in\{0,1,2,3,4,5\}, y=f^{k}(x), \alpha \upharpoonright C=\theta_{3}, 3 / n$ and $e=\frac{6}{3}=2$.
- We set $(x, y) \in \beta$ if and only if e / k, i.e. if and only if $k \equiv 0(\bmod 2)$.
- It follows that $(x, y) \in \beta$ if and only if either $x, y \in\{0,2,4\}$, or $x, y \in\{1,3,5\}$.

024

Construction (K) - example

Step (b). Let $x \in C_{1}, y \in C_{2}$, where C_{1} and C_{2} are distinct cycles. We put $(x, y) \in \beta$ if and only if there are $a \in C_{1}$ and $b \in C_{2}$ with $(b, a) \in \alpha,(a, b) \notin \alpha$.

Construction (K) - example

Step (b). Let $x \in C_{1}, y \in C_{2}$, where C_{1} and C_{2} are distinct cycles. We put $(x, y) \in \beta$ if and only if there are $a \in C_{1}$ and $b \in C_{2}$ with $(b, a) \in \alpha,(a, b) \notin \alpha$.

- In this example, there are no distinct cycles.

Construction (K) - example

Step (b). Let $x \in C_{1}, y \in C_{2}$, where C_{1} and C_{2} are distinct cycles. We put $(x, y) \in \beta$ if and only if there are $a \in C_{1}$ and $b \in C_{2}$ with $(b, a) \in \alpha,(a, b) \notin \alpha$.

- In this example, there are no distinct cycles.

Construction (K) - example

Step (b). Let $x \in C_{1}, y \in C_{2}$, where C_{1} and C_{2} are distinct cycles. We put $(x, y) \in \beta$ if and only if there are $a \in C_{1}$ and $b \in C_{2}$ with $(b, a) \in \alpha,(a, b) \notin \alpha$.

- In this example, there are no distinct cycles.

135

024

Construction (K) - example

Step (c). Suppose that $x, y \in P(D)$ for some $D \in A^{\prime} / \rho$. Then $(x, y) \in \beta$ if and only if and $(y, x) \in \alpha$.

Construction (K) - example

Step (c). Suppose that $x, y \in P(D)$ for some $D \in A^{\prime} / \rho$. Then $(x, y) \in \beta$ if and only if and $(y, x) \in \alpha$.

- We distinguish three cases:

Construction (K) - example

Step (c). Suppose that $x, y \in P(D)$ for some $D \in A^{\prime} / \rho$. Then $(x, y) \in \beta$ if and only if and $(y, x) \in \alpha$.

- We distinguish three cases:
(1) $x, y \in P\left(D_{1}\right)=\left\{c_{2}, c_{3}, c_{5}, c_{9}\right\}$, then $(x, y) \in \beta$ if and only if $(x, y) \in\left\{\left(c_{2}, c_{3}\right),\left(c_{2}, c_{9}\right),\left(c_{5}, c_{3}\right)\right\}$,

Construction (K) - example

Step (c). Suppose that $x, y \in P(D)$ for some $D \in A^{\prime} / \rho$. Then $(x, y) \in \beta$ if and only if and $(y, x) \in \alpha$.

- We distinguish three cases:
(1) $x, y \in P\left(D_{1}\right)=\left\{c_{2}, c_{3}, c_{5}, c_{9}\right\}$, then $(x, y) \in \beta$ if and only if $(x, y) \in\left\{\left(c_{2}, c_{3}\right),\left(c_{2}, c_{9}\right),\left(c_{5}, c_{3}\right)\right\}$,
(2) $x, y \in P\left(D_{2}\right)=\left\{d_{2}, d_{3}\right\}$, then $(x, y) \in \beta$ if and only if $(x, y)=\left(d_{3}, d_{2}\right)$,

Construction (K) - example

Step (c). Suppose that $x, y \in P(D)$ for some $D \in A^{\prime} / \rho$. Then $(x, y) \in \beta$ if and only if and $(y, x) \in \alpha$.

- We distinguish three cases:
(1) $x, y \in P\left(D_{1}\right)=\left\{c_{2}, c_{3}, c_{5}, c_{9}\right\}$, then $(x, y) \in \beta$ if and only if $(x, y) \in\left\{\left(c_{2}, c_{3}\right),\left(c_{2}, c_{9}\right),\left(c_{5}, c_{3}\right)\right\}$,
(2) $x, y \in P\left(D_{2}\right)=\left\{d_{2}, d_{3}\right\}$, then $(x, y) \in \beta$ if and only if $(x, y)=\left(d_{3}, d_{2}\right)$,
(3) $x, y \in P\left(D_{3}\right)=\left\{d_{1}\right\}$, then $(x, y) \in \beta$.

Construction (K) - example

Step (c). Suppose that $x, y \in P(D)$ for some $D \in A^{\prime} / \rho$. Then $(x, y) \in \beta$ if and only if and $(y, x) \in \alpha$.

- We distinguish three cases:
(1) $x, y \in P\left(D_{1}\right)=\left\{c_{2}, c_{3}, c_{5}, c_{9}\right\}$, then $(x, y) \in \beta$ if and only if $(x, y) \in\left\{\left(c_{2}, c_{3}\right),\left(c_{2}, c_{9}\right),\left(c_{5}, c_{3}\right)\right\}$,
(2) $x, y \in P\left(D_{2}\right)=\left\{d_{2}, d_{3}\right\}$, then $(x, y) \in \beta$ if and only if $(x, y)=\left(d_{3}, d_{2}\right)$,
(3) $x, y \in P\left(D_{3}\right)=\left\{d_{1}\right\}$, then $(x, y) \in \beta$.

Construction (K) - example

Step (c). Suppose that $x, y \in P(D)$ for some $D \in A^{\prime} / \rho$. Then $(x, y) \in \beta$ if and only if and $(y, x) \in \alpha$.

- We distinguish three cases:
(1) $x, y \in P\left(D_{1}\right)=\left\{c_{2}, c_{3}, c_{5}, c_{9}\right\}$, then $(x, y) \in \beta$ if and only if $(x, y) \in\left\{\left(c_{2}, c_{3}\right),\left(c_{2}, c_{9}\right),\left(c_{5}, c_{3}\right)\right\}$,
(2) $x, y \in P\left(D_{2}\right)=\left\{d_{2}, d_{3}\right\}$, then $(x, y) \in \beta$ if and only if $(x, y)=\left(d_{3}, d_{2}\right)$,
(3) $x, y \in P\left(D_{3}\right)=\left\{d_{1}\right\}$, then $(x, y) \in \beta$.

135

Construction (K) - example

Step (d1). Suppose that x belongs to a cycle C, y is noncyclic, $C(y)=C$. Further let $\alpha \upharpoonright C=\theta_{d}, d / n, e=\frac{n}{d}$. If $y \notin A^{\prime}$, then $(x, y) \in \beta$ if and only if $\left(f^{n}(y), y\right) \notin \alpha,\left(y, f^{n}(y)\right) \in \alpha, x=f^{k}(y), e / k$.

Construction (K) - example

Step (d1). Suppose that x belongs to a cycle C, y is noncyclic, $C(y)=C$. Further let $\alpha \upharpoonright C=\theta_{d}, d / n, e=\frac{n}{d}$. If $y \notin A^{\prime}$, then $(x, y) \in \beta$ if and only if
$\left(f^{n}(y), y\right) \notin \alpha,\left(y, f^{n}(y)\right) \in \alpha, x=f^{k}(y), e / k$.

- $x \in\{0,1,2,3,4,5\}, y \notin A^{\prime}$ i.e. $y \in\left\{c_{1}, c_{4}, c_{6}, c_{7}, d_{4}\right\}$.

Construction (K) - example

Step (d1). Suppose that x belongs to a cycle C, y is noncyclic, $C(y)=C$. Further let $\alpha \upharpoonright C=\theta_{d}, d / n, e=\frac{n}{d}$. If $y \notin A^{\prime}$, then $(x, y) \in \beta$ if and only if
$\left(f^{n}(y), y\right) \notin \alpha,\left(y, f^{n}(y)\right) \in \alpha, x=f^{k}(y), e / k$.

- $x \in\{0,1,2,3,4,5\}, y \notin A^{\prime}$ i.e. $y \in\left\{c_{1}, c_{4}, c_{6}, c_{7}, d_{4}\right\}$.
- $\alpha \upharpoonright C=\theta_{3}, e=2$.

Construction (K) - example

Step (d1). Suppose that x belongs to a cycle C, y is noncyclic, $C(y)=C$. Further let $\alpha \upharpoonright C=\theta_{d}, d / n, e=\frac{n}{d}$. If $y \notin A^{\prime}$, then $(x, y) \in \beta$ if and only if
$\left(f^{n}(y), y\right) \notin \alpha,\left(y, f^{n}(y)\right) \in \alpha, x=f^{k}(y), e / k$.

- $x \in\{0,1,2,3,4,5\}, y \notin A^{\prime}$ i.e. $y \in\left\{c_{1}, c_{4}, c_{6}, c_{7}, d_{4}\right\}$.
- $\alpha \upharpoonright C=\theta_{3}, e=2$.
- We set $(x, y) \in \beta$ if and only if $\left(f^{6}(y), y\right) \notin \alpha,\left(y, f^{6}(y)\right) \in \alpha$, $x=f^{k}(y), e / k$ i.e. $k \equiv 0(\bmod 2)$.

Construction (K) - example

Step (d1).

- It follows that $(x, y) \in \beta$ if and only if $(x, y) \in\left\{\left(1, c_{4}\right),\left(3, c_{4}\right),\left(5, c_{4}\right)\right\}$.

Construction (K) - example

Step (d1).

- It follows that $(x, y) \in \beta$ if and only if $(x, y) \in\left\{\left(1, c_{4}\right),\left(3, c_{4}\right),\left(5, c_{4}\right)\right\}$.

Construction (K) - example

Step (d'1). Suppose that y belongs to a cycle C, x is noncyclic, $C(x)=C$. Further let $\alpha \upharpoonright C=\theta_{d}, d / n, e=\frac{n}{d}$. If $x \notin A^{\prime}$, then $(x, y) \in \beta$ if and only if
$\left(f^{n}(x), x\right) \in \alpha,\left(x, f^{n}(x)\right) \notin \alpha, y=f^{k}(x), e / k$.

Construction (K) - example

Step (d'1). Suppose that y belongs to a cycle C, x is noncyclic, $C(x)=C$. Further let $\alpha \upharpoonright C=\theta_{d}, d / n, e=\frac{n}{d}$. If $x \notin A^{\prime}$, then $(x, y) \in \beta$ if and only if
$\left(f^{n}(x), x\right) \in \alpha,\left(x, f^{n}(x)\right) \notin \alpha, y=f^{k}(x), e / k$.

- $x \notin A^{\prime}$ i.e. $x \in\left\{c_{1}, c_{4}, c_{6}, c_{7}, d_{4}\right\}, y \in\{0,1,2,3,4,5\}$.

Construction (K) - example

Step (d'1). Suppose that y belongs to a cycle C, x is noncyclic, $C(x)=C$. Further let $\alpha \upharpoonright C=\theta_{d}, d / n, e=\frac{n}{d}$. If $x \notin A^{\prime}$, then $(x, y) \in \beta$ if and only if
$\left(f^{n}(x), x\right) \in \alpha,\left(x, f^{n}(x)\right) \notin \alpha, y=f^{k}(x), e / k$.

- $x \notin A^{\prime}$ i.e. $x \in\left\{c_{1}, c_{4}, c_{6}, c_{7}, d_{4}\right\}, y \in\{0,1,2,3,4,5\}$.
- $\alpha \upharpoonright C=\theta_{3}, e=2$.

Construction (K) - example

Step (d'1). Suppose that y belongs to a cycle C, x is noncyclic, $C(x)=C$. Further let $\alpha \upharpoonright C=\theta_{d}, d / n, e=\frac{n}{d}$. If $x \notin A^{\prime}$, then $(x, y) \in \beta$ if and only if
$\left(f^{n}(x), x\right) \in \alpha,\left(x, f^{n}(x)\right) \notin \alpha, y=f^{k}(x), e / k$.

- $x \notin A^{\prime}$ i.e. $x \in\left\{c_{1}, c_{4}, c_{6}, c_{7}, d_{4}\right\}, y \in\{0,1,2,3,4,5\}$.
- $\alpha \upharpoonright C=\theta_{3}, e=2$.
- We set $(x, y) \in \beta$ if and only if $\left(f^{6}(y), y\right) \in \alpha,\left(y, f^{6}(y)\right) \notin \alpha$, $x=f^{k}(y), e / k$ i.e. $k \equiv 0(\bmod 2)$.

Construction (K) - example

Step (d'1).

- It follows that $(x, y) \in \beta$ if and only if either $x \in\left\{c_{1}, c_{6}, c_{7}\right\} \wedge y \in\{1,2,3\}$, or
$(x, y) \in\left\{\left(d_{4}, 0\right),\left(d_{4}, 2\right),\left(d_{4}, 4\right)\right\}$.

Construction (K) - example

Step (d'1).

- It follows that $(x, y) \in \beta$ if and only if either

$$
\begin{aligned}
& x \in\left\{c_{1}, c_{6}, c_{7}\right\} \wedge y \in\{1,2,3\}, \text { or } \\
& (x, y) \in\left\{\left(d_{4}, 0\right),\left(d_{4}, 2\right),\left(d_{4}, 4\right)\right\} .
\end{aligned}
$$

Construction (K) - example

Step (d2). Suppose that x belongs to a cycle C, y is noncyclic, $C(y)=C$. Further let $\alpha \upharpoonright C=\theta_{d}, d / n, e=\frac{n}{d}$. If $y \in A^{\prime}$, then $(x, y) \in \beta$ if and only if there is $D \in A^{\prime} / \rho$ such that $y \in P(D), x=f^{k}(y), e / k$ and $(y, p(D)) \in \alpha$.

Construction (K) - example

Step (d2). Suppose that x belongs to a cycle C, y is noncyclic, $C(y)=C$. Further let $\alpha \upharpoonright C=\theta_{d}, d / n, e=\frac{n}{d}$. If $y \in A^{\prime}$, then $(x, y) \in \beta$ if and only if there is $D \in A^{\prime} / \rho$ such that $y \in P(D), x=f^{k}(y), e / k$ and $(y, p(D)) \in \alpha$.

- $x \in\{0,1,2,3,4,5\}, y \in A^{\prime}$ i.e.
$y \in\left\{c_{2}, c_{3}, c_{5}, c_{8}, c_{9}, c_{10}, d_{1}, d_{2}, d_{3}, d_{5}\right\}$.

Construction (K) - example

Step (d2). Suppose that x belongs to a cycle C, y is noncyclic, $C(y)=C$. Further let $\alpha \upharpoonright C=\theta_{d}, d / n, e=\frac{n}{d}$. If $y \in A^{\prime}$, then $(x, y) \in \beta$ if and only if there is $D \in A^{\prime} / \rho$ such that $y \in P(D), x=f^{k}(y), e / k$ and $(y, p(D)) \in \alpha$.

- $x \in\{0,1,2,3,4,5\}, y \in A^{\prime}$ i.e.
$y \in\left\{c_{2}, c_{3}, c_{5}, c_{8}, c_{9}, c_{10}, d_{1}, d_{2}, d_{3}, d_{5}\right\}$.
- $\alpha \upharpoonright C=\theta_{3}, e=2$.

Construction (K) - example

Step (d2). Suppose that x belongs to a cycle C, y is noncyclic, $C(y)=C$. Further let $\alpha \upharpoonright C=\theta_{d}, d / n, e=\frac{n}{d}$. If $y \in A^{\prime}$, then $(x, y) \in \beta$ if and only if there is $D \in A^{\prime} / \rho$ such that $y \in P(D), x=f^{k}(y), e / k$ and $(y, p(D)) \in \alpha$.

- $x \in\{0,1,2,3,4,5\}, y \in A^{\prime}$ i.e.

$$
y \in\left\{c_{2}, c_{3}, c_{5}, c_{8}, c_{9}, c_{10}, d_{1}, d_{2}, d_{3}, d_{5}\right\}
$$

- $\alpha \upharpoonright C=\theta_{3}, e=2$.
- We set $(x, y) \in \beta$ if and only if there is $D \in A^{\prime} / \rho$ such that $y \in P(D), x=f^{k}(y), k \equiv 0(\bmod 2)$ and $(y, p(D)) \in \alpha$.

Construction (K) - example

Step (d2).

- It follows that $(x, y) \in \beta$ if and only if either $x \in\{1,3,5\}$ and $y \in\left\{c_{2}, c_{3}, c_{9}\right\}$, or $x \in\{0,2,4\}$ and $y \in\left\{d_{1}, d_{2}\right\}$.

Construction (K) - example

Step (d2).

- It follows that $(x, y) \in \beta$ if and only if either $x \in\{1,3,5\}$ and $y \in\left\{c_{2}, c_{3}, c_{9}\right\}$, or $x \in\{0,2,4\}$ and $y \in\left\{d_{1}, d_{2}\right\}$.

Construction (K) - example

Step (d'2). Suppose that y belongs to a cycle C, x is noncyclic, $C(x)=C$. Further let $\alpha \upharpoonright C=\theta_{d}, d / n, e=\frac{n}{d}$. If $x \in A^{\prime}$, then $(x, y) \in \beta$ if and only if there is $D \in A^{\prime} / \rho$ such that $x \in P(D), y=f^{k}(x), e / k$ and $(x, p(D)) \in \alpha$.

- $x \in A^{\prime}$ e.i. $x \in\left\{c_{2}, c_{3}, c_{5}, c_{8}, c_{9}, c_{10}, d_{1}, d_{2}, d_{3}, d_{5}\right\}$, $y \in\{0,1,2,3,4,5\}$.

Construction (K) - example

Step (d'2). Suppose that y belongs to a cycle C, x is noncyclic, $C(x)=C$. Further let $\alpha \upharpoonright C=\theta_{d}, d / n, e=\frac{n}{d}$. If $x \in A^{\prime}$, then $(x, y) \in \beta$ if and only if there is $D \in A^{\prime} / \rho$ such that $x \in P(D), y=f^{k}(x), e / k$ and $(x, p(D)) \in \alpha$.

- $x \in A^{\prime}$ e.i. $x \in\left\{c_{2}, c_{3}, c_{5}, c_{8}, c_{9}, c_{10}, d_{1}, d_{2}, d_{3}, d_{5}\right\}$, $y \in\{0,1,2,3,4,5\}$.
- We set $(x, y) \in \beta$ if and only if there is $D \in A^{\prime} / \rho$ such that $x \in P(D), y=f^{k}(x), k \equiv 0(\bmod 2)$ and $(p(D), x) \in \alpha$.

Construction (K) - example

Step (d'2).

- It follows that $(x, y) \in \beta$ if and only if either $x=c_{2}$ and $y \in\{1,3,5\}$ or $x \in\left\{d_{1}, d_{2}, d_{3}\right\}$ and $y \in\{0,2,4\}$.

Construction (K) - example

Step (d'2).

- It follows that $(x, y) \in \beta$ if and only if either $x=c_{2}$ and $y \in\{1,3,5\}$ or $x \in\left\{d_{1}, d_{2}, d_{3}\right\}$ and $y \in\{0,2,4\}$.

Construction (K) - example

Step (e). Suppose that x, y satisfy none of the assumptions of the previous steps. Then $(x, y) \in \beta$ if and only if $\left(x, f^{n}(x)\right) \in \beta$, $\left(f^{n}(x), f^{n}(y)\right) \in \beta,\left(f^{n}(y), y\right) \in \beta$.

- In this example, remaining cases are:

Construction (K) - example

Step (e). Suppose that x, y satisfy none of the assumptions of the previous steps. Then $(x, y) \in \beta$ if and only if $\left(x, f^{n}(x)\right) \in \beta$, $\left(f^{n}(x), f^{n}(y)\right) \in \beta,\left(f^{n}(y), y\right) \in \beta$.

- In this example, remaining cases are:
(1) $x \in P\left(D_{i}\right), y \in P\left(D_{j}\right), i \neq j, i, j \in\{1,2,3\}$,

Construction (K) - example

Step (e). Suppose that x, y satisfy none of the assumptions of the previous steps. Then $(x, y) \in \beta$ if and only if $\left(x, f^{n}(x)\right) \in \beta$, $\left(f^{n}(x), f^{n}(y)\right) \in \beta,\left(f^{n}(y), y\right) \in \beta$.

- In this example, remaining cases are:
(1) $x \in P\left(D_{i}\right), y \in P\left(D_{j}\right), i \neq j, i, j \in\{1,2,3\}$,
(2) x, y are noncyclic elements such that $x, y \notin P(D)$ for any $D \in A^{\prime} / \rho$,

Construction (K) - example

Step (e). Suppose that x, y satisfy none of the assumptions of the previous steps. Then $(x, y) \in \beta$ if and only if $\left(x, f^{n}(x)\right) \in \beta$, $\left(f^{n}(x), f^{n}(y)\right) \in \beta,\left(f^{n}(y), y\right) \in \beta$.

- In this example, remaining cases are:
(1) $x \in P\left(D_{i}\right), y \in P\left(D_{j}\right), i \neq j, i, j \in\{1,2,3\}$,
(2) x, y are noncyclic elements such that $x, y \notin P(D)$ for any $D \in A^{\prime} / \rho$,
(3) $x \in P(D)$ for some $D \in A^{\prime} / \rho$ and y is noncyclic element such $y \notin P(D)$ for any $D \in A^{\prime} / \rho$,

Construction (K) - example

Step (e). Suppose that x, y satisfy none of the assumptions of the previous steps. Then $(x, y) \in \beta$ if and only if $\left(x, f^{n}(x)\right) \in \beta$, $\left(f^{n}(x), f^{n}(y)\right) \in \beta,\left(f^{n}(y), y\right) \in \beta$.

- In this example, remaining cases are:
(1) $x \in P\left(D_{i}\right), y \in P\left(D_{j}\right), i \neq j, i, j \in\{1,2,3\}$,
(2) x, y are noncyclic elements such that $x, y \notin P(D)$ for any $D \in A^{\prime} / \rho$,
(3) $x \in P(D)$ for some $D \in A^{\prime} / \rho$ and y is noncyclic element such $y \notin P(D)$ for any $D \in A^{\prime} / \rho$,
(9) x is noncyclic element such $x \notin P(D)$ for any $D \in A^{\prime} / \rho$ and $y \in P(D)$ for some $D \in A^{\prime} / \rho$.

Construction (K) - example

Step (e). Suppose that x, y satisfy none of the assumptions of the previous steps. Then $(x, y) \in \beta$ if and only if $\left(x, f^{n}(x)\right) \in \beta$, $\left(f^{n}(x), f^{n}(y)\right) \in \beta,\left(f^{n}(y), y\right) \in \beta$.

- In this example, remaining cases are:
(1) $x \in P\left(D_{i}\right), y \in P\left(D_{j}\right), i \neq j, i, j \in\{1,2,3\}$,
(2) x, y are noncyclic elements such that $x, y \notin P(D)$ for any $D \in A^{\prime} / \rho$,
(3) $x \in P(D)$ for some $D \in A^{\prime} / \rho$ and y is noncyclic element such $y \notin P(D)$ for any $D \in A^{\prime} / \rho$,
(9) x is noncyclic element such $x \notin P(D)$ for any $D \in A^{\prime} / \rho$ and $y \in P(D)$ for some $D \in A^{\prime} / \rho$.
- Then $(x, y) \in \beta$ if and only if $\left(x, f^{6}(x)\right) \in \beta$, $\left(f^{6}(x), f^{6}(y)\right) \in \beta,\left(f^{6}(y), y\right) \in \beta$.

Construction (K) - example

Step (e). $(x, y) \in \beta$ if and only if $\left(x, f^{6}(x)\right) \in \beta$, $\left(f^{6}(x), f^{6}(y)\right) \in \beta,\left(f^{6}(y), y\right) \in \beta$. It follows that
(1) If $x \in P\left(D_{i}\right), y \in P\left(D_{j}\right), i \neq j, i, j \in\{1,2,3\}$, then $(x, y) \in \beta$ if and only if $x \in\left\{d_{1}, d_{2}\right\}$ and $y \in\left\{d_{1}, d_{2}\right\}$.

Construction (K) - example

Step (e). $(x, y) \in \beta$ if and only if $\left(x, f^{6}(x)\right) \in \beta$, $\left(f^{6}(x), f^{6}(y)\right) \in \beta,\left(f^{6}(y), y\right) \in \beta$. It follows that
(1) If $x \in P\left(D_{i}\right), y \in P\left(D_{j}\right), i \neq j, i, j \in\{1,2,3\}$, then $(x, y) \in \beta$ if and only if $x \in\left\{d_{1}, d_{2}\right\}$ and $y \in\left\{d_{1}, d_{2}\right\}$.
(2) If x, y are noncyclic elements such that $x, y \notin P(D)$ for any $D \in A^{\prime} / \rho$, then $(x, y) \in \beta$ if and only if either $x \in\left\{c_{1}, c_{6}, c_{7}, c_{2}\right\}$ and $y=c_{4}$, or $x \in\left\{c_{1}, c_{6}, c_{7}\right\}$ and $y=c_{2}$.

Construction (K) - example

Step (e). $(x, y) \in \beta$ if and only if $\left(x, f^{6}(x)\right) \in \beta$, $\left(f^{6}(x), f^{6}(y)\right) \in \beta,\left(f^{6}(y), y\right) \in \beta$. It follows that
(1) If $x \in P\left(D_{i}\right), y \in P\left(D_{j}\right), i \neq j, i, j \in\{1,2,3\}$, then $(x, y) \in \beta$ if and only if $x \in\left\{d_{1}, d_{2}\right\}$ and $y \in\left\{d_{1}, d_{2}\right\}$.
(2) If x, y are noncyclic elements such that $x, y \notin P(D)$ for any $D \in A^{\prime} / \rho$, then $(x, y) \in \beta$ if and only if either $x \in\left\{c_{1}, c_{6}, c_{7}, c_{2}\right\}$ and $y=c_{4}$, or $x \in\left\{c_{1}, c_{6}, c_{7}\right\}$ and $y=c_{2}$.
(3) If $x \in P(D)$ for some $D \in A^{\prime} / \rho$ and y is noncyclic element such $y \notin P(D)$ for any $D \in A^{\prime} / \rho$, then $(x, y) \in \beta$ if and only if $x=c_{2}, y=c_{4}$.

Construction (K) - example

Step (e). $(x, y) \in \beta$ if and only if $\left(x, f^{6}(x)\right) \in \beta$, $\left(f^{6}(x), f^{6}(y)\right) \in \beta,\left(f^{6}(y), y\right) \in \beta$. It follows that
(1) If $x \in P\left(D_{i}\right), y \in P\left(D_{j}\right), i \neq j, i, j \in\{1,2,3\}$, then $(x, y) \in \beta$ if and only if $x \in\left\{d_{1}, d_{2}\right\}$ and $y \in\left\{d_{1}, d_{2}\right\}$.
(2) If x, y are noncyclic elements such that $x, y \notin P(D)$ for any $D \in A^{\prime} / \rho$, then $(x, y) \in \beta$ if and only if either $x \in\left\{c_{1}, c_{6}, c_{7}, c_{2}\right\}$ and $y=c_{4}$, or $x \in\left\{c_{1}, c_{6}, c_{7}\right\}$ and $y=c_{2}$.
(3) If $x \in P(D)$ for some $D \in A^{\prime} / \rho$ and y is noncyclic element such $y \notin P(D)$ for any $D \in A^{\prime} / \rho$, then $(x, y) \in \beta$ if and only if $x=c_{2}, y=c_{4}$.
(1) If x is noncyclic element such $x \notin P(D)$ for any $D \in A^{\prime} / \rho$ and $y \in P(D)$ for some $D \in A^{\prime} / \rho$, then $(x, y) \in \beta$ if and only if either $x \in\left\{c_{1}, c_{6}, c_{7}\right\}$ and $y \in\left\{c_{2}, c_{3}, c_{9}\right\}$, or $x=d_{4}$ and $y \in\left\{d_{1}, d_{2}\right\}$.

Construction (K) - example

We constructed a complementary quasiorder β to the quasiorder α.

$$
\begin{array}{lll}
d_{5} & c_{8} & c_{10}
\end{array}
$$

Complementarity - main result

Complementarity - main result

Hypothesis

Let (A, f) be a monounary algebra whose lattice $\operatorname{Quord}(A, f)$ is complemented. Let $\alpha \in \operatorname{Quord}(A, f)$.
A relation β on A is a complement in Quord (A, f) to α if and only if β is constructed by the construction (K).

Thank you for your attention.

