Construction of a complement to a quasiorder

Danica Jakubíková-Studenovská, Lucia Janičková

Pavol Jozef Šafárik University in Košice, Slovakia

Brno, Czech republic 5.2. – 7.2.2016

• quasiorder of A = a binary relation on A, which is

- quasiorder of A = a binary relation on A, which is
 - reflexive

- quasiorder of A = a binary relation on A, which is
 - reflexive
 - transitive

- quasiorder of A = a binary relation on A, which is
 - reflexive
 - transitive
 - ullet compatible with all fundamental operations of ${\cal A}$

- quasiorder of A = a binary relation on A, which is
 - reflexive
 - transitive
 - ullet compatible with all fundamental operations of ${\cal A}$
- the lattice $\mathrm{Quord}(A,\subseteq)$ of all quasiorders of an algebra $\mathcal A$

- M. Erné and J. Reinhold (1995): lattices of all quasiorders on a set
 - atomistic
 - dually atomistic
 - complemented
- I. Chajda and G. Czédli (1996), A. G. Pinus (1995):
 - every algebraic lattice is isomorphic to the quasiorder lattice of a suitable algebra
- G. Czédli and A. Lenkehegyi (1983), A. G. Pinus and I. Chajda (1993):
 - quasiorder lattice of a majority algebra is always distributive
- R. Pöschel and S. Radeleczki:
 - how endomorphisms of quasiorders behave
 - when $\operatorname{End} q \subseteq \operatorname{End} q'$ for quasiorders q, q' on a set A ($\operatorname{End} q$ is the set of all mappings preserving q)
 - description of the quasiorder lattice of the algebra (A, End q)

ullet a monounary algebra $\mathcal{A}=(A,f)$

- ullet a monounary algebra $\mathcal{A}=(A,f)$
- an element $x \in A$ is referred to as cyclic if there exists a positive integer n such that $f^n(x) = x$

Aim

Aim

AIM

Aim

AIM

• Find necessary and sufficient conditions for a monounary algebra (A,f), under which the lattice ${\rm Quord}\,(A,f)$ is complemented.

AIM

- Find necessary and sufficient conditions for a monounary algebra (A,f), under which the lattice $\mathrm{Quord}\,(A,f)$ is complemented.
- Construct a complementary quasiorder to a given quasiorder, if the lattice $\mathrm{Quord}(A,f)$ is complemented.

Result

$\mathsf{Theorem}$

Let (A,f) be a monounary algebra. The lattice $\mathrm{Quord}\,(A,f)$ is complemented if and only if

- ullet each connected component of (A,f) contains a cycle,
- there is $n \in N$ such that each cycle of (A, f) has n elements,
- n is square-free,
- for each $a \in A$, the element f(a) is cyclic.

Sufficiency of the condition was proved by means of transfinite induction. We will describe a **construction of a complement** to a given quasiorder of (A,f) satisfying this condition.

$$(b,a) \in \bar{\alpha} \iff (a,b) \in \alpha.$$

• For $\alpha \in \operatorname{Quord}(A, f)$, define $\bar{\alpha}$:

$$(b,a) \in \bar{\alpha} \iff (a,b) \in \alpha.$$

• Assumption: Let (A, f) be a monounary algebra such that

$$(b,a) \in \bar{\alpha} \iff (a,b) \in \alpha.$$

- Assumption: Let (A, f) be a monounary algebra such that
 - ullet each connected component of (A,f) contains a cycle,

$$(b,a) \in \bar{\alpha} \iff (a,b) \in \alpha.$$

- Assumption: Let (A, f) be a monounary algebra such that
 - \bullet each connected component of (A, f) contains a cycle,
 - there is $n \in N$ such that each cycle of (A, f) has n elements,

$$(b,a) \in \bar{\alpha} \iff (a,b) \in \alpha.$$

- Assumption: Let (A, f) be a monounary algebra such that
 - \bullet each connected component of (A, f) contains a cycle,
 - there is $n \in N$ such that each cycle of (A, f) has n elements,
 - n is square-free,

$$(b,a) \in \bar{\alpha} \iff (a,b) \in \alpha.$$

- Assumption: Let (A, f) be a monounary algebra such that
 - \bullet each connected component of (A, f) contains a cycle,
 - there is $n \in N$ such that each cycle of (A, f) has n elements,
 - *n* is square-free,
 - for each $a \in A$, the element f(a) is cyclic.

$$(b,a) \in \bar{\alpha} \iff (a,b) \in \alpha.$$

- Assumption: Let (A, f) be a monounary algebra such that
 - ullet each connected component of (A,f) contains a cycle,
 - there is $n \in N$ such that each cycle of (A, f) has n elements,
 - n is square-free,
 - for each $a \in A$, the element f(a) is cyclic.
- Let $\alpha \in \text{Quord}(A, f)$.

$$(b,a) \in \bar{\alpha} \iff (a,b) \in \alpha.$$

- Assumption: Let (A, f) be a monounary algebra such that
 - ullet each connected component of (A,f) contains a cycle,
 - there is $n \in N$ such that each cycle of (A, f) has n elements,
 - n is square-free,
 - for each $a \in A$, the element f(a) is cyclic.
- Let $\alpha \in \text{Quord}(A, f)$.
- For $a \in A$ denote by C(a) the cycle, containing f(a).

• A': all noncyclic elements x of A such that $(x, f^n(x)) \notin \alpha$ and $(f^n(x), x) \notin \alpha$.

- A': all noncyclic elements x of A such that $(x, f^n(x)) \notin \alpha$ and $(f^n(x), x) \notin \alpha$.
- ρ on A': $(a,b) \in \rho$ if $a,b \in A'$, f(a) = f(b) and there are $k \in N$ and $a = u_0, u_1, \ldots, u_k = b$ elements of A' such that $(\forall i \in \{0, \ldots, k-1\})(f(a) = f(u_i), (u_i, u_{i+1}) \in \alpha \cup \bar{\alpha}).$

- A': all noncyclic elements x of A such that $(x, f^n(x)) \notin \alpha$ and $(f^n(x), x) \notin \alpha$.
- ρ on A': $(a,b) \in \rho$ if $a,b \in A'$, f(a) = f(b) and there are $k \in N$ and $a = u_0, u_1, \ldots, u_k = b$ elements of A' such that $(\forall i \in \{0, \ldots, k-1\})(f(a) = f(u_i), (u_i, u_{i+1}) \in \alpha \cup \bar{\alpha}).$
- ρ is an equivalence on A',

- A': all noncyclic elements x of A such that $(x, f^n(x)) \notin \alpha$ and $(f^n(x), x) \notin \alpha$.
- ρ on A': $(a,b) \in \rho$ if $a,b \in A'$, f(a) = f(b) and there are $k \in N$ and $a = u_0, u_1, \ldots, u_k = b$ elements of A' such that $(\forall i \in \{0, \ldots, k-1\})(f(a) = f(u_i), (u_i, u_{i+1}) \in \alpha \cup \bar{\alpha}).$
- ρ is an equivalence on A',
- for each $D \in A'/\rho$ there are $P(D) \subseteq D$ and $p(D) \in P(D)$ such that

- A': all noncyclic elements x of A such that $(x, f^n(x)) \notin \alpha$ and $(f^n(x), x) \notin \alpha$.
- ρ on A': $(a,b) \in \rho$ if $a,b \in A'$, f(a) = f(b) and there are $k \in N$ and $a = u_0, u_1, \ldots, u_k = b$ elements of A' such that $(\forall i \in \{0, \ldots, k-1\})(f(a) = f(u_i), (u_i, u_{i+1}) \in \alpha \cup \bar{\alpha}).$
- ρ is an equivalence on A',
- for each $D \in A'/\rho$ there are $P(D) \subseteq D$ and $p(D) \in P(D)$ such that

- A': all noncyclic elements x of A such that $(x, f^n(x)) \notin \alpha$ and $(f^n(x), x) \notin \alpha$.
- ρ on A': $(a,b) \in \rho$ if $a,b \in A'$, f(a) = f(b) and there are $k \in N$ and $a = u_0, u_1, \ldots, u_k = b$ elements of A' such that $(\forall i \in \{0, \ldots, k-1\})(f(a) = f(u_i), (u_i, u_{i+1}) \in \alpha \cup \bar{\alpha}).$
- ρ is an equivalence on A',
- for each $D \in A'/\rho$ there are $P(D) \subseteq D$ and $p(D) \in P(D)$ such that

 - $(\forall x, y \in P(D), x \neq y)((x, y) \in \alpha \Rightarrow (y, x) \notin \alpha).$

Complementarity - construction (K)

Complementarity - construction (K)

Let $x,y\in A$. We put $(x,y)\in \beta$ if either x=y or (x,y) fulfills one of the steps of the construction (K).

- Step (a). Let x,y belong to the same cycle C, $y=f^k(x)$, $\alpha \upharpoonright C=\theta_d$, d/n and let $e=\frac{n}{d}$. We set $(x,y)\in \beta$ if and only if e/k.
- Step (b). Let $x \in C_1$, $y \in C_2$, where C_1 and C_2 are distinct cycles. We put $(x,y) \in \beta$ if and only if there are $a \in C_1$ and $b \in C_2$ with $(b,a) \in \alpha, (a,b) \notin \alpha$.
- Step (c). Suppose that $x,y \in P(D)$ for some $D \in A'/\rho$. Then $(x,y) \in \beta$ if and only if and $(y,x) \in \alpha$.
- Step (d1). Suppose that x belongs to a cycle C, y is noncyclic, C(y) = C. Further let $\alpha \upharpoonright C = \theta_d$, d/n, $e = \frac{n}{d}$. If $y \notin A'$, then $(x,y) \in \beta$ if and only if $(f^n(y),y) \notin \alpha, (y,f^n(y)) \in \alpha, x = f^k(y), e/k$.

Complementarity - construction (K)

- Step (d'1). Suppose that y belongs to a cycle C, x is noncyclic, C(x) = C. Further let $\alpha \upharpoonright C = \theta_d$, d/n, $e = \frac{n}{d}$. If $x \notin A'$, then $(x,y) \in \beta$ if and only if $(f^n(x),x) \in \alpha, (x,f^n(x)) \notin \alpha, y = f^k(x), e/k$.
- Step (d2). Suppose that x belongs to a cycle C, y is noncyclic, C(y) = C. Further let $\alpha \upharpoonright C = \theta_d$, d/n, $e = \frac{n}{d}$. If $y \in A'$, then $(x,y) \in \beta$ if and only if there is $D \in A'/\rho$ such that $y \in P(D), x = f^k(y), e/k$ and $(y, p(D)) \in \alpha$.
- Step (d'2). Suppose that y belongs to a cycle C, x is noncyclic, C(x)=C. Further let $\alpha \upharpoonright C=\theta_d$, d/n, $e=\frac{n}{d}$. If $x \in A'$, then $(x,y) \in \beta$ if and only if there is $D \in A'/\rho$ such that $x \in P(D), y = f^k(x), e/k$ and $(x,p(D)) \in \alpha$.
- Step (e). Suppose that x, y satisfy none of the assumptions of the previous steps. Then $(x, y) \in \beta$ if and only if $(x, f^n(x)) \in \beta$, $(f^n(x), f^n(y)) \in \beta$, $(f^n(y), y) \in \beta$.

Construction (K) - example

Let (A, f) be a given algebra:

Construction (K) - example

Let $\alpha \in \text{Quord}(A, f)$:

n is number of elements of each cycle.

• n = 6

n is number of elements of each cycle.

•
$$n = 6$$

A': all noncyclic elements x of A such that $(x, f^n(x)) \notin \alpha$ and $(f^n(x), x) \notin \alpha$.

n is number of elements of each cycle.

• n = 6

A': all noncyclic elements x of A such that $(x, f^n(x)) \notin \alpha$ and $(f^n(x), x) \notin \alpha$.

• $A' = \{c_2, c_3, c_5, c_8, c_9, c_{10}, d_1, d_2, d_3, d_5\}$

n is number of elements of each cycle.

• n = 6

A': all noncyclic elements x of A such that $(x, f^n(x)) \notin \alpha$ and $(f^n(x), x) \notin \alpha$.

• $A' = \{c_2, c_3, c_5, c_8, c_9, c_{10}, d_1, d_2, d_3, d_5\}$

 $\begin{array}{l} \rho \text{ on } A' \colon (a,b) \in \rho \text{ if } a,b \in A', \ f(a) = f(b) \text{ and there are } k \in N \\ \text{and } a = u_0,u_1,\ldots,u_k = b \text{ elements of } A' \text{ such that} \\ (\forall i \in \{0,\ldots,k-1\})(f(a) = f(u_i),(u_i,u_{i+1}) \in \alpha \cup \bar{\alpha}). \end{array}$

n is number of elements of each cycle.

• n = 6

A': all noncyclic elements x of A such that $(x, f^n(x)) \notin \alpha$ and $(f^n(x), x) \notin \alpha$.

• $A' = \{c_2, c_3, c_5, c_8, c_9, c_{10}, d_1, d_2, d_3, d_5\}$

 $\begin{array}{l} \rho \text{ on } A' \colon (a,b) \in \rho \text{ if } a,b \in A', \ f(a) = f(b) \text{ and there are } k \in N \\ \text{and } a = u_0,u_1,\ldots,u_k = b \text{ elements of } A' \text{ such that} \\ (\forall i \in \{0,\ldots,k-1\})(f(a) = f(u_i),(u_i,u_{i+1}) \in \alpha \cup \bar{\alpha}). \end{array}$

 $\bullet \ \rho : \boxed{ \ c_2, c_3, c_5, c_8, c_9, c_{10} \ \middle| \ d_2, d_3, d_5 \ \middle| \ d_1 \ \middle| }$

 $\bullet \ A'/\rho: \begin{array}{|c|c|c|c|}\hline D_1 & c_2,c_3,c_5,c_8,c_9,c_{10}\\\hline D_2 & d_2,d_3,d_5\\\hline D_3 & d_1\\\hline \end{array}$

	D_1	$c_2, c_3, c_5, c_8, c_9, c_{10}$
A'/ρ :	D_2	d_2, d_3, d_5
	D_3	d_1

	D_1	$c_2, c_3, c_5, c_8, c_9, c_{10}$
A'/ρ :	D_2	d_2, d_3, d_5
	D_3	d_1

For each $D \in A'/\rho$ there are $P(D) \subseteq D$ and $p(D) \in P(D)$ such that:

- 1) $(\forall x \in D \setminus P(D))(\exists y \in P(D))((x, y) \in \alpha, (y, x) \in \alpha);$
- 2) $(\forall x, y \in P(D), x \neq y)((x, y) \in \alpha \Rightarrow (y, x) \notin \alpha)$.

For each $D \in A'/\rho$ there are $P(D) \subseteq D$ and $p(D) \in P(D)$ such that:

- 1) $(\forall x \in D \setminus P(D))(\exists y \in P(D))((x,y) \in \alpha, (y,x) \in \alpha);$
- 2) $(\forall x, y \in P(D), x \neq y)((x, y) \in \alpha \Rightarrow (y, x) \notin \alpha)$.

Let:

- $P(D_1) = \{c_2, c_3, c_5, c_9\}$ and $p(D_1) = c_2$
- $P(D_2) = \{d_2, d_3\}$ and $p(D_2) = d_2$
- $P(D_3) = \{d_1\}$ and $p(D_3) = d_1$

Step (a). Let x,y belong to the same cycle C, $y=f^k(x)$, $\alpha \upharpoonright C=\theta_d$, d/n and let $e=\frac{n}{d}$. We set $(x,y)\in\beta$ if and only if e/k.

Step (a). Let x,y belong to the same cycle C, $y=f^k(x)$, $\alpha \upharpoonright C=\theta_d$, d/n and let $e=\frac{n}{d}$. We set $(x,y)\in \beta$ if and only if e/k.

• $x,y \in \{0,1,2,3,4,5\}, y=f^k(x), \alpha \upharpoonright C=\theta_3, 3/n \text{ and } e=\frac{6}{3}=2.$

Step (a). Let x,y belong to the same cycle C, $y=f^k(x)$, $\alpha \upharpoonright C=\theta_d$, d/n and let $e=\frac{n}{d}$. We set $(x,y)\in \beta$ if and only if e/k.

- $x,y \in \{0,1,2,3,4,5\}, y=f^k(x), \alpha \upharpoonright C=\theta_3, 3/n \text{ and } e=\frac{6}{2}=2.$
- We set $(x,y) \in \beta$ if and only if e/k, i.e. if and only if $k \equiv 0 \pmod{2}$.

Step (a). Let x,y belong to the same cycle C, $y=f^k(x)$, $\alpha \upharpoonright C=\theta_d$, d/n and let $e=\frac{n}{d}$. We set $(x,y)\in\beta$ if and only if e/k.

- $x,y\in\{0,1,2,3,4,5\},y=f^k(x),\alpha\upharpoonright C=\theta_3,3/n$ and $e=\frac{6}{2}=2.$
- We set $(x,y) \in \beta$ if and only if e/k, i.e. if and only if $k \equiv 0 \pmod{2}$.
- It follows that $(x,y) \in \beta$ if and only if either $x,y \in \{0,2,4\}$, or $x,y \in \{1,3,5\}$.

Step (a). Let x,y belong to the same cycle C, $y=f^k(x)$, $\alpha \upharpoonright C=\theta_d$, d/n and let $e=\frac{n}{d}$. We set $(x,y)\in\beta$ if and only if e/k.

- $x,y\in\{0,1,2,3,4,5\},y=f^k(x),\alpha\upharpoonright C=\theta_3,3/n$ and $e=\frac{6}{2}=2.$
- We set $(x,y) \in \beta$ if and only if e/k, i.e. if and only if $k \equiv 0 \pmod{2}$.
- It follows that $(x,y) \in \beta$ if and only if either $x,y \in \{0,2,4\}$, or $x,y \in \{1,3,5\}$.

Step (a). Let x,y belong to the same cycle C, $y=f^k(x)$, $\alpha \upharpoonright C=\theta_d$, d/n and let $e=\frac{n}{d}$. We set $(x,y)\in \beta$ if and only if e/k.

- $x,y\in\{0,1,2,3,4,5\},y=f^k(x),\alpha\upharpoonright C=\theta_3,3/n$ and $e=\frac{6}{2}=2.$
- We set $(x,y) \in \beta$ if and only if e/k, i.e. if and only if $k \equiv 0 \pmod{2}$.
- It follows that $(x,y) \in \beta$ if and only if either $x,y \in \{0,2,4\}$, or $x,y \in \{1,3,5\}$.

Step (b). Let $x \in C_1$, $y \in C_2$, where C_1 and C_2 are distinct cycles. We put $(x,y) \in \beta$ if and only if there are $a \in C_1$ and $b \in C_2$ with $(b,a) \in \alpha, (a,b) \notin \alpha$.

Step (b). Let $x \in C_1$, $y \in C_2$, where C_1 and C_2 are distinct cycles. We put $(x,y) \in \beta$ if and only if there are $a \in C_1$ and $b \in C_2$ with $(b,a) \in \alpha, (a,b) \notin \alpha$.

• In this example, there are no distinct cycles.

Step (b). Let $x \in C_1$, $y \in C_2$, where C_1 and C_2 are distinct cycles. We put $(x,y) \in \beta$ if and only if there are $a \in C_1$ and $b \in C_2$ with $(b,a) \in \alpha, (a,b) \notin \alpha$.

• In this example, there are no distinct cycles.

Step (b). Let $x \in C_1$, $y \in C_2$, where C_1 and C_2 are distinct cycles. We put $(x,y) \in \beta$ if and only if there are $a \in C_1$ and $b \in C_2$ with $(b,a) \in \alpha, (a,b) \notin \alpha$.

• In this example, there are no distinct cycles.

Step (c). Suppose that $x,y\in P(D)$ for some $D\in A'/\rho$. Then $(x,y)\in\beta$ if and only if and $(y,x)\in\alpha$.

• We distinguish three cases:

- We distinguish three cases:
 - **1** $x, y \in P(D_1) = \{c_2, c_3, c_5, c_9\}$, then $(x, y) \in \beta$ if and only if $(x, y) \in \{(c_2, c_3), (c_2, c_9), (c_5, c_3)\}$,

- We distinguish three cases:
 - ① $x, y \in P(D_1) = \{c_2, c_3, c_5, c_9\}$, then $(x, y) \in \beta$ if and only if $(x, y) \in \{(c_2, c_3), (c_2, c_9), (c_5, c_3)\}$,
 - ② $x,y \in P(D_2) = \{d_2,d_3\}$, then $(x,y) \in \beta$ if and only if $(x,y) = (d_3,d_2)$,

- We distinguish three cases:
 - ① $x, y \in P(D_1) = \{c_2, c_3, c_5, c_9\}$, then $(x, y) \in \beta$ if and only if $(x, y) \in \{(c_2, c_3), (c_2, c_9), (c_5, c_3)\}$,
 - ② $x, y \in P(D_2) = \{d_2, d_3\}$, then $(x, y) \in \beta$ if and only if $(x, y) = (d_3, d_2)$,
 - **3** $x, y \in P(D_3) = \{d_1\}, \text{ then } (x, y) \in \beta.$

- We distinguish three cases:
 - ① $x, y \in P(D_1) = \{c_2, c_3, c_5, c_9\}$, then $(x, y) \in \beta$ if and only if $(x, y) \in \{(c_2, c_3), (c_2, c_9), (c_5, c_3)\}$,
 - ② $x, y \in P(D_2) = \{d_2, d_3\}$, then $(x, y) \in \beta$ if and only if $(x, y) = (d_3, d_2)$,
 - **3** $x, y \in P(D_3) = \{d_1\}, \text{ then } (x, y) \in \beta.$

- We distinguish three cases:
 - ① $x, y \in P(D_1) = \{c_2, c_3, c_5, c_9\}$, then $(x, y) \in \beta$ if and only if $(x, y) \in \{(c_2, c_3), (c_2, c_9), (c_5, c_3)\}$,
 - ② $x, y \in P(D_2) = \{d_2, d_3\}$, then $(x, y) \in \beta$ if and only if $(x, y) = (d_3, d_2)$,
 - **3** $x, y \in P(D_3) = \{d_1\}, \text{ then } (x, y) \in \beta.$

Step (d1). Suppose that x belongs to a cycle C, y is noncyclic, C(y) = C. Further let $\alpha \upharpoonright C = \theta_d$, d/n, $e = \frac{n}{d}$. If $y \notin A'$, then $(x,y) \in \beta$ if and only if $(f^n(y),y) \notin \alpha, (y,f^n(y)) \in \alpha, x = f^k(y), e/k$.

Step (d1). Suppose that x belongs to a cycle C, y is noncyclic, C(y) = C. Further let $\alpha \upharpoonright C = \theta_d$, d/n, $e = \frac{n}{d}$. If $y \notin A'$, then $(x,y) \in \beta$ if and only if $(f^n(y),y) \notin \alpha, (y,f^n(y)) \in \alpha, x = f^k(y), e/k$.

• $x \in \{0,1,2,3,4,5\}, y \not\in A'$ i.e. $y \in \{c_1,c_4,c_6,c_7,d_4\}$.

Step (d1). Suppose that x belongs to a cycle C, y is noncyclic, C(y)=C. Further let $\alpha \upharpoonright C=\theta_d$, d/n, $e=\frac{n}{d}$. If $y\notin A'$, then $(x,y)\in \beta$ if and only if $(f^n(y),y)\notin \alpha, (y,f^n(y))\in \alpha, x=f^k(y), e/k$.

- $x \in \{0, 1, 2, 3, 4, 5\}, y \notin A'$ i.e. $y \in \{c_1, c_4, c_6, c_7, d_4\}.$
- $\alpha \upharpoonright C = \theta_3, e = 2.$

Step (d1). Suppose that x belongs to a cycle C, y is noncyclic, C(y)=C. Further let $\alpha \upharpoonright C=\theta_d,\ d/n,\ e=\frac{n}{d}.$ If $y\notin A'$, then $(x,y)\in \beta$ if and only if $(f^n(y),y)\notin \alpha, (y,f^n(y))\in \alpha, x=f^k(y),e/k.$

- $x \in \{0, 1, 2, 3, 4, 5\}, y \notin A'$ i.e. $y \in \{c_1, c_4, c_6, c_7, d_4\}.$
- $\bullet \ \alpha \upharpoonright C = \theta_3, e = 2.$
- We set $(x,y) \in \beta$ if and only if $(f^6(y),y) \notin \alpha$, $(y,f^6(y)) \in \alpha$, $x = f^k(y), e/k$ i.e. $k \equiv 0 \pmod 2$.

Step (d1).

• It follows that $(x,y) \in \beta$ if and only if $(x,y) \in \{(1,c_4),(3,c_4),(5,c_4)\}.$

Step (d1).

• It follows that $(x,y) \in \beta$ if and only if $(x,y) \in \{(1,c_4),(3,c_4),(5,c_4)\}.$

Step (d'1). Suppose that y belongs to a cycle C, x is noncyclic, C(x) = C. Further let $\alpha \upharpoonright C = \theta_d$, d/n, $e = \frac{n}{d}$. If $x \notin A'$, then $(x,y) \in \beta$ if and only if $(f^n(x),x) \in \alpha$, $(x,f^n(x)) \notin \alpha$, $y = f^k(x)$, e/k.

Step (d'1). Suppose that y belongs to a cycle C, x is noncyclic, C(x)=C. Further let $\alpha \upharpoonright C=\theta_d$, d/n, $e=\frac{n}{d}$. If $x\notin A'$, then $(x,y)\in \beta$ if and only if $(f^n(x),x)\in \alpha, (x,f^n(x))\notin \alpha, y=f^k(x), e/k$.

• $x \notin A'$ i.e. $x \in \{c_1, c_4, c_6, c_7, d_4\}, y \in \{0, 1, 2, 3, 4, 5\}.$

Step (d'1). Suppose that y belongs to a cycle C, x is noncyclic, C(x)=C. Further let $\alpha \upharpoonright C=\theta_d$, d/n, $e=\frac{n}{d}$. If $x\notin A'$, then $(x,y)\in \beta$ if and only if $(f^n(x),x)\in \alpha, (x,f^n(x))\notin \alpha, y=f^k(x), e/k$.

- $x \notin A'$ i.e. $x \in \{c_1, c_4, c_6, c_7, d_4\}, y \in \{0, 1, 2, 3, 4, 5\}.$
- $\bullet \ \alpha \upharpoonright C = \theta_3, e = 2.$

Step (d'1). Suppose that y belongs to a cycle C, x is noncyclic, C(x)=C. Further let $\alpha \upharpoonright C=\theta_d$, d/n, $e=\frac{n}{d}$. If $x\notin A'$, then $(x,y)\in \beta$ if and only if $(f^n(x),x)\in \alpha, (x,f^n(x))\notin \alpha, y=f^k(x), e/k$.

- $x \notin A'$ i.e. $x \in \{c_1, c_4, c_6, c_7, d_4\}, y \in \{0, 1, 2, 3, 4, 5\}.$
- $\bullet \ \alpha \upharpoonright C = \theta_3, e = 2.$
- We set $(x,y) \in \beta$ if and only if $(f^6(y),y) \in \alpha$, $(y,f^6(y)) \not\in \alpha$, $x = f^k(y), e/k$ i.e. $k \equiv 0 \pmod 2$.

Step (d'1).

• It follows that $(x,y) \in \beta$ if and only if either $x \in \{c_1, c_6, c_7\} \land y \in \{1, 2, 3\}$, or $(x,y) \in \{(d_4,0), (d_4,2), (d_4,4)\}.$

Step (d'1).

• It follows that $(x,y) \in \beta$ if and only if either $x \in \{c_1, c_6, c_7\} \land y \in \{1, 2, 3\}$, or $(x,y) \in \{(d_4,0), (d_4,2), (d_4,4)\}.$

Step (d2). Suppose that x belongs to a cycle C, y is noncyclic, C(y)=C. Further let $\alpha \upharpoonright C=\theta_d$, d/n, $e=\frac{n}{d}$. If $y\in A'$, then $(x,y)\in \beta$ if and only if there is $D\in A'/\rho$ such that $y\in P(D), x=f^k(y), e/k$ and $(y,p(D))\in \alpha$.

Step (d2). Suppose that x belongs to a cycle C, y is noncyclic, C(y)=C. Further let $\alpha \upharpoonright C=\theta_d,\, d/n,\, e=\frac{n}{d}.$ If $y\in A'$, then $(x,y)\in \beta$ if and only if there is $D\in A'/\rho$ such that $y\in P(D), x=f^k(y), e/k$ and $(y,p(D))\in \alpha.$

• $x \in \{0, 1, 2, 3, 4, 5\}, y \in A'$ i.e. $y \in \{c_2, c_3, c_5, c_8, c_9, c_{10}, d_1, d_2, d_3, d_5\}.$

Step (d2). Suppose that x belongs to a cycle C, y is noncyclic, C(y)=C. Further let $\alpha \upharpoonright C=\theta_d,\, d/n,\, e=\frac{n}{d}.$ If $y\in A'$, then $(x,y)\in \beta$ if and only if there is $D\in A'/\rho$ such that $y\in P(D), x=f^k(y), e/k$ and $(y,p(D))\in \alpha.$

- $x \in \{0, 1, 2, 3, 4, 5\}, y \in A'$ i.e. $y \in \{c_2, c_3, c_5, c_8, c_9, c_{10}, d_1, d_2, d_3, d_5\}.$
- $\alpha \upharpoonright C = \theta_3, e = 2.$

Step (d2). Suppose that x belongs to a cycle C, y is noncyclic, C(y)=C. Further let $\alpha \upharpoonright C=\theta_d,\, d/n,\, e=\frac{n}{d}.$ If $y\in A'$, then $(x,y)\in \beta$ if and only if there is $D\in A'/\rho$ such that $y\in P(D), x=f^k(y), e/k$ and $(y,p(D))\in \alpha.$

- $x \in \{0, 1, 2, 3, 4, 5\}, y \in A'$ i.e. $y \in \{c_2, c_3, c_5, c_8, c_9, c_{10}, d_1, d_2, d_3, d_5\}.$
- $\alpha \upharpoonright C = \theta_3, e = 2.$
- We set $(x,y) \in \beta$ if and only if there is $D \in A'/\rho$ such that $y \in P(D), x = f^k(y), k \equiv 0 \pmod{2}$ and $(y,p(D)) \in \alpha$.

Step (d2).

• It follows that $(x,y) \in \beta$ if and only if either $x \in \{1,3,5\}$ and $y \in \{c_2,c_3,c_9\}$, or $x \in \{0,2,4\}$ and $y \in \{d_1,d_2\}$.

Step (d2).

• It follows that $(x,y) \in \beta$ if and only if either $x \in \{1,3,5\}$ and $y \in \{c_2,c_3,c_9\}$, or $x \in \{0,2,4\}$ and $y \in \{d_1,d_2\}$.

Step (d'2). Suppose that y belongs to a cycle C, x is noncyclic, C(x)=C. Further let $\alpha \upharpoonright C=\theta_d$, d/n, $e=\frac{n}{d}$. If $x\in A'$, then $(x,y)\in \beta$ if and only if there is $D\in A'/\rho$ such that $x\in P(D), y=f^k(x), e/k$ and $(x,p(D))\in \alpha$.

• $x \in A'$ e.i. $x \in \{c_2, c_3, c_5, c_8, c_9, c_{10}, d_1, d_2, d_3, d_5\}$, $y \in \{0, 1, 2, 3, 4, 5\}$.

Step (d'2). Suppose that y belongs to a cycle C, x is noncyclic, C(x)=C. Further let $\alpha \upharpoonright C=\theta_d,\ d/n,\ e=\frac{n}{d}.$ If $x\in A'$, then $(x,y)\in \beta$ if and only if there is $D\in A'/\rho$ such that $x\in P(D), y=f^k(x), e/k$ and $(x,p(D))\in \alpha.$

- $x \in A'$ e.i. $x \in \{c_2, c_3, c_5, c_8, c_9, c_{10}, d_1, d_2, d_3, d_5\},$ $y \in \{0, 1, 2, 3, 4, 5\}.$
- We set $(x,y) \in \beta$ if and only if there is $D \in A'/\rho$ such that $x \in P(D), y = f^k(x), k \equiv 0 \pmod{2}$ and $(p(D), x) \in \alpha$.

Step (d'2).

• It follows that $(x,y)\in\beta$ if and only if either $x=c_2$ and $y\in\{1,3,5\}$ or $x\in\{d_1,d_2,d_3\}$ and $y\in\{0,2,4\}.$

Step (d'2).

• It follows that $(x,y)\in\beta$ if and only if either $x=c_2$ and $y\in\{1,3,5\}$ or $x\in\{d_1,d_2,d_3\}$ and $y\in\{0,2,4\}.$

Step (e). Suppose that x,y satisfy none of the assumptions of the previous steps. Then $(x,y)\in\beta$ if and only if $(x,f^n(x))\in\beta$, $(f^n(x),f^n(y))\in\beta$, $(f^n(y),y)\in\beta$.

• In this example, remaining cases are:

Step (e). Suppose that x,y satisfy none of the assumptions of the previous steps. Then $(x,y) \in \beta$ if and only if $(x,f^n(x)) \in \beta$, $(f^n(x),f^n(y)) \in \beta$, $(f^n(y),y) \in \beta$.

- In this example, remaining cases are:

Step (e). Suppose that x,y satisfy none of the assumptions of the previous steps. Then $(x,y) \in \beta$ if and only if $(x,f^n(x)) \in \beta$, $(f^n(x),f^n(y)) \in \beta$, $(f^n(y),y) \in \beta$.

- In this example, remaining cases are:
 - $x \in P(D_i), y \in P(D_j), i \neq j, i, j \in \{1, 2, 3\},\$
 - ② x,y are noncyclic elements such that $x,y\not\in P(D)$ for any $D\in A'/\rho$,

- **Step (e).** Suppose that x,y satisfy none of the assumptions of the previous steps. Then $(x,y) \in \beta$ if and only if $(x,f^n(x)) \in \beta$, $(f^n(x),f^n(y)) \in \beta$, $(f^n(y),y) \in \beta$.
 - In this example, remaining cases are:
 - **1** $x \in P(D_i), y \in P(D_j), i \neq j, i, j \in \{1, 2, 3\},$
 - ② x,y are noncyclic elements such that $x,y\not\in P(D)$ for any $D\in A'/\rho$,
 - 3 $x \in P(D)$ for some $D \in A'/\rho$ and y is noncyclic element such $y \notin P(D)$ for any $D \in A'/\rho$,

- **Step (e).** Suppose that x,y satisfy none of the assumptions of the previous steps. Then $(x,y) \in \beta$ if and only if $(x,f^n(x)) \in \beta$, $(f^n(x),f^n(y)) \in \beta$, $(f^n(y),y) \in \beta$.
 - In this example, remaining cases are:
 - $x \in P(D_i), y \in P(D_j), i \neq j, i, j \in \{1, 2, 3\},\$
 - ② x,y are noncyclic elements such that $x,y\not\in P(D)$ for any $D\in A'/\rho$,
 - 3 $x \in P(D)$ for some $D \in A'/\rho$ and y is noncyclic element such $y \notin P(D)$ for any $D \in A'/\rho$,
 - **3** x is noncyclic element such $x \notin P(D)$ for any $D \in A'/\rho$ and $y \in P(D)$ for some $D \in A'/\rho$.

- **Step (e).** Suppose that x,y satisfy none of the assumptions of the previous steps. Then $(x,y) \in \beta$ if and only if $(x,f^n(x)) \in \beta$, $(f^n(x),f^n(y)) \in \beta$, $(f^n(y),y) \in \beta$.
 - In this example, remaining cases are:
 - $x \in P(D_i), y \in P(D_j), i \neq j, i, j \in \{1, 2, 3\},\$
 - ② x,y are noncyclic elements such that $x,y\not\in P(D)$ for any $D\in A'/\rho$,
 - 3 $x \in P(D)$ for some $D \in A'/\rho$ and y is noncyclic element such $y \notin P(D)$ for any $D \in A'/\rho$,
 - **1** x is noncyclic element such $x \notin P(D)$ for any $D \in A'/\rho$ and $y \in P(D)$ for some $D \in A'/\rho$.
 - Then $(x, y) \in \beta$ if and only if $(x, f^6(x)) \in \beta$, $(f^6(x), f^6(y)) \in \beta$, $(f^6(y), y) \in \beta$.

- **Step (e).** $(x,y) \in \beta$ if and only if $(x,f^6(x)) \in \beta$, $(f^6(x),f^6(y)) \in \beta$, $(f^6(y),y) \in \beta$. It follows that
 - **1** If $x \in P(D_i), y \in P(D_j), i \neq j, i, j \in \{1, 2, 3\}$, then $(x, y) \in \beta$ if and only if $x \in \{d_1, d_2\}$ and $y \in \{d_1, d_2\}$.

- **Step (e).** $(x,y) \in \beta$ if and only if $(x,f^{6}(x)) \in \beta$, $(f^{6}(x),f^{6}(y)) \in \beta$, $(f^{6}(y),y) \in \beta$. It follows that
 - If $x \in P(D_i), y \in P(D_j), i \neq j, i, j \in \{1, 2, 3\}$, then $(x, y) \in \beta$ if and only if $x \in \{d_1, d_2\}$ and $y \in \{d_1, d_2\}$.
 - ② If x, y are noncyclic elements such that $x, y \notin P(D)$ for any $D \in A'/\rho$, then $(x, y) \in \beta$ if and only if either $x \in \{c_1, c_6, c_7, c_2\}$ and $y = c_4$, or $x \in \{c_1, c_6, c_7\}$ and $y = c_2$.

- **Step (e).** $(x,y) \in \beta$ if and only if $(x,f^{6}(x)) \in \beta$, $(f^{6}(x),f^{6}(y)) \in \beta$, $(f^{6}(y),y) \in \beta$. It follows that
 - If $x \in P(D_i), y \in P(D_j), i \neq j, i, j \in \{1, 2, 3\}$, then $(x, y) \in \beta$ if and only if $x \in \{d_1, d_2\}$ and $y \in \{d_1, d_2\}$.
 - ② If x,y are noncyclic elements such that $x,y \not\in P(D)$ for any $D \in A'/\rho$, then $(x,y) \in \beta$ if and only if either $x \in \{c_1,c_6,c_7,c_2\}$ and $y=c_4$, or $x \in \{c_1,c_6,c_7\}$ and $y=c_2$.
 - ① If $x \in P(D)$ for some $D \in A'/\rho$ and y is noncyclic element such $y \notin P(D)$ for any $D \in A'/\rho$, then $(x,y) \in \beta$ if and only if $x = c_2, y = c_4$.

- **Step (e).** $(x,y) \in \beta$ if and only if $(x,f^{6}(x)) \in \beta$, $(f^{6}(x),f^{6}(y)) \in \beta$, $(f^{6}(y),y) \in \beta$. It follows that
 - If $x \in P(D_i), y \in P(D_j), i \neq j, i, j \in \{1, 2, 3\}$, then $(x, y) \in \beta$ if and only if $x \in \{d_1, d_2\}$ and $y \in \{d_1, d_2\}$.
 - ② If x,y are noncyclic elements such that $x,y \not\in P(D)$ for any $D \in A'/\rho$, then $(x,y) \in \beta$ if and only if either $x \in \{c_1,c_6,c_7,c_2\}$ and $y=c_4$, or $x \in \{c_1,c_6,c_7\}$ and $y=c_2$.
 - ① If $x \in P(D)$ for some $D \in A'/\rho$ and y is noncyclic element such $y \notin P(D)$ for any $D \in A'/\rho$, then $(x,y) \in \beta$ if and only if $x = c_2, y = c_4$.
 - If x is noncyclic element such $x \not\in P(D)$ for any $D \in A'/\rho$ and $y \in P(D)$ for some $D \in A'/\rho$, then $(x,y) \in \beta$ if and only if either $x \in \{c_1,c_6,c_7\}$ and $y \in \{c_2,c_3,c_9\}$, or $x=d_4$ and $y \in \{d_1,d_2\}$.

We constructed a complementary quasiorder β to the quasiorder α .

Complementarity - main result

Hypothesis

Let (A, f) be a monounary algebra whose lattice $\operatorname{Quord}(A, f)$ is complemented. Let $\alpha \in \operatorname{Quord}(A, f)$.

A relation β on A is a complement in $\operatorname{Quord}(A, f)$ to α if and only if β is constructed by the construction (K).

Thank you for your attention.