Sharp and principal elements in effect algebras

G. Bińczak J. Kaleta

February, 2016 Brno

G. Bińczak, J.Kaleta

Sharp and principal elements in effect algebra

February, 2016 Brno

1 / 18

- ∢ ⊢⊒ →

Definition

An effect algebra is defined to be an algebraic system $(E, 0, 1, \oplus)$ consisting of a set E, two special elements $0, 1 \in E$ called the *zero* and the *unit*, and a partially defined binary operation \oplus on E that satisfies the following conditions for all $p, q, r \in E$:

• [Commutative Law] If $p \oplus q$ is defined, then $q \oplus p$ is defined and $p \oplus q = q \oplus p$.

- 3

Definition

An effect algebra is defined to be an algebraic system $(E, 0, 1, \oplus)$ consisting of a set E, two special elements $0, 1 \in E$ called the zero and the unit, and a partially defined binary operation \oplus on E that satisfies the following conditions for all $p, q, r \in E$:

- [Commutative Law] If $p \oplus q$ is defined, then $q \oplus p$ is defined and $p \oplus q = q \oplus p$.
- 2 [Associative Law] If $q \oplus r$ is defined and $p \oplus (q \oplus r)$ is defined, then $p \oplus q$ is defined, $(p \oplus q) \oplus r$ is defined, and $p \oplus (q \oplus r) = (p \oplus q) \oplus r$.

An effect algebra is defined to be an algebraic system $(E, 0, 1, \oplus)$ consisting of a set E, two special elements $0, 1 \in E$ called the zero and the unit, and a partially defined binary operation \oplus on E that satisfies the following conditions for all $p, q, r \in E$:

- [Commutative Law] If $p \oplus q$ is defined, then $q \oplus p$ is defined and $p \oplus q = q \oplus p$.
- 2 [Associative Law] If $q \oplus r$ is defined and $p \oplus (q \oplus r)$ is defined, then $p \oplus q$ is defined, $(p \oplus q) \oplus r$ is defined, and $p \oplus (q \oplus r) = (p \oplus q) \oplus r$.
- **③** [Orthosupplementation Law] For every $p \in E$ there exists a unique $q \in E$ such that $p \oplus q$ is defined and $p \oplus q = 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

An effect algebra is defined to be an algebraic system $(E, 0, 1, \oplus)$ consisting of a set E, two special elements $0, 1 \in E$ called the zero and the *unit*, and a partially defined binary operation \oplus on E that satisfies the following conditions for all $p, q, r \in E$:

- **O** [Commutative Law] If $p \oplus q$ is defined, then $q \oplus p$ is defined and $p \oplus q = q \oplus p$.
- 2 [Associative Law] If $q \oplus r$ is defined and $p \oplus (q \oplus r)$ is defined, then $p \oplus q$ is defined, $(p \oplus q) \oplus r$ is defined, and $p \oplus (q \oplus r) = (p \oplus q) \oplus r$.
- Orthosupplementation Law] For every $p \in E$ there exists a unique $q \in E$ such that $p \oplus q$ is defined and $p \oplus q = 1$.
- **(** [Zero-unit Law] If $1 \oplus p$ is defined, then p = 0.

2 / 18

If $p, q \in E$, we say that p and q are orthogonal and write $p \perp q$ iff $p \oplus q$ is defined in E. If $p, q \in E$ and $p \oplus q = 1$, we call q the orthosupplement of p and write p' = q.

If $p, q \in E$, we say that p and q are orthogonal and write $p \perp q$ iff $p \oplus q$ is defined in E. If $p, q \in E$ and $p \oplus q = 1$, we call q the orthosupplement of p and write p' = q. It is shown in [5] that the relation \leq defined for $p, q \in E$ by $p \leq q$ iff $\exists r \in E$ with $p \oplus r = q$ is a partial order on E and $0 \leq p \leq 1$ holds for all $p \in E$. It is also shown that the mapping $p \mapsto p'$ is an order-reversing involution and that $q \perp p$ iff $q \leq p'$. Furtheremore, E satisfies the following cancellation law: If $p \oplus q \leq r \oplus q$, then $p \leq r$.

If $p, q \in E$, we say that p and q are orthogonal and write $p \perp q$ iff $p \oplus q$ is defined in E. If p, $q \in E$ and $p \oplus q = 1$, we call q the orthosupplement of p and write p' = q. It is shown in [5] that the relation < defined for $p, q \in E$ by p < q iff $\exists r \in E$ with $p \oplus r = q$ is a partial order on E and 0 holds for all $p \in E$. It is also shown that the mapping $p \mapsto p'$ is an order-reversing involution and that $q \perp p$ iff q < p'. Furtheremore, E satisfies the following cancellation law: If $p \oplus q < r \oplus q$, then p < r. An element $a \in E$ is sharp if $a \wedge a' = 0$. We denote the set of sharp elements of E by S_F . An element $a \in E$ is said to be *principal* iff for all $p, q \in E$, $p \perp q$ and $p, q \leq a \Rightarrow p \oplus q \leq a$. We denote the set of principal elements of E by P_F .

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ - 画 - のへ⊙

In order to characterize principal elements we need the following known Theorem:

Theorem (1, Theorem 3.5 in 8)

If $p, q \in E$, $p \perp q$, and $p \lor q$ exists in E, then $p \land q$ exists in E, $p \land q \leq (p \lor q)' \leq (p \land q)'$ and $p \oplus q = (p \land q) \oplus (p \lor q)$. In order to characterize principal elements we need the following known Theorem:

Theorem (1, Theorem 3.5 in 8)

If $p, q \in E$, $p \perp q$, and $p \lor q$ exists in E, then $p \land q$ exists in E, $p \land q \leq (p \lor q)' \leq (p \land q)'$ and $p \oplus q = (p \land q) \oplus (p \lor q)$.

Lemma (2)

Let $(E, 0, 1, \oplus)$ be an effect algebra. If $x \in P_E$, $t \in E$ and $t \le x$ then there exists $t \lor x'$ in E and

$$t \vee x' = t \oplus x'.$$

- 3

Suppose that $x \in P_E$. Let $t \in E$ and $t \leq x$ hence $t \perp x'$. We show that $t \oplus x'$ is the join of t and x'. Obviously $t \leq t \oplus x'$ and $x' \leq t \oplus x'$. Suppose that $u \in E$, $t \leq u$ and $x' \leq u$ then

- 31

Suppose that $x \in P_E$. Let $t \in E$ and $t \leq x$ hence $t \perp x'$. We show that $t \oplus x'$ is the join of t and x'. Obviously $t \leq t \oplus x'$ and $x' \leq t \oplus x'$. Suppose that $u \in E$, $t \leq u$ and $x' \leq u$ then

$$t \perp u'$$
 (1)

and

$$u' \le x \quad t \le x. \tag{2}$$

- 31

Suppose that $x \in P_E$. Let $t \in E$ and $t \leq x$ hence $t \perp x'$. We show that $t \oplus x'$ is the join of t and x'. Obviously $t \leq t \oplus x'$ and $x' \leq t \oplus x'$. Suppose that $u \in E$, $t \leq u$ and $x' \leq u$ then

$$t \perp u'$$
 (1)

イロト 不得下 イヨト イヨト

and

$$u' \le x \quad t \le x. \tag{2}$$

Now (1) and (2) implies $t \oplus u' \leq x$ since $x \in P_E$. Hence $x' \perp (t \oplus u')$ and by associativity $x' \perp t$ and $(x' \oplus t) \perp u'$ thus $t \oplus x' \leq u$ so $t \oplus x'$ is the smallest upper bound of the set $\{t, x'\}$ and therefore $t \oplus x' = t \lor x'$. \Box

- 31

de Morgan's law

It turns out that under some conditions every effect algebra satisfies the de Morgan's law.

Lemma (3)

Let $(E, 0, 1, \oplus)$ be an effect algebra. If $x, y \in E$ and there exists $x \lor y$ in E then there exists $x' \land y'$ in E and

$$x' \wedge y' = (x \vee y)'$$

Similarly we obtain

de Morgan's law

It turns out that under some conditions every effect algebra satisfies the de Morgan's law.

Lemma (3)

Let $(E, 0, 1, \oplus)$ be an effect algebra. If $x, y \in E$ and there exists $x \lor y$ in E then there exists $x' \land y'$ in E and

$$x' \wedge y' = (x \vee y)'$$

Similarly we obtain

Lemma (4)

Let $(E, 0, 1, \oplus)$ be an effect algebra. If $x, y \in E$ and there exists $x \wedge y$ in E then there exists $x' \vee y'$ in E and

$$x' \lor y' = (x \land y)'$$

Theorem (5)

Let $({\sf E},0,1,\oplus)$ be an effect algebra. Then

 $P_{E} = \{x \in E : x \in S_{E} \text{ and } \forall_{t \in E} t \leq x \Rightarrow t \lor x' \text{ exists in } E\}$

3

・ロト ・ 同ト ・ ヨト ・ ヨ

Suppose that $x \in P_E$ then $x \in S_E$ (see Lemma 3.3 in [8]). Let $t \in E$ and $t \leq x$. Then there exists $t \lor x'$ in E by Lemma (2). Suppose that $x \in S_E$ and

$$\forall_{t \in E} t \le x \Rightarrow t \lor x' \text{ exists in } E.$$
(4)

We show that $x \in P_E$.

- 3

Suppose that $x \in P_E$ then $x \in S_E$ (see Lemma 3.3 in [8]). Let $t \in E$ and $t \leq x$. Then there exists $t \lor x'$ in E by Lemma (2). Suppose that $x \in S_E$ and

$$\forall_{t \in E} t \le x \Rightarrow t \lor x' \text{ exists in } E.$$
(4)

We show that $x \in P_E$. If $u, s \in E$, $u \le x$, $s \le x$ and $u \perp s$ then $u \wedge x' = 0$ (5)

because: if $y \le x'$ and $y \le u \le x$ then y = 0 since $x \land x' = 0$. Moreover $u \le x$ so $u \lor x'$ exists by (4). By Theorem (1).

$$u \oplus x' = (u \wedge x') \oplus (u \vee x') \stackrel{(5)}{=} u \vee x'$$
(6)

By Lemma (3) we have

$$u' \wedge x = (u \vee x')'. \tag{7}$$

Moreover $s \le u'$ (since $u \perp s$) and $s \le x$ so $s \le u' \land x$. Hence by (6) and (7) we have

$$s \leq u' \wedge x = (u \vee x')' = (u \oplus x')'$$

so $s \perp (u \oplus x')$ and by associativity $s \oplus u \perp x'$ hence $s \oplus u \leq x$ and $x \in P_E$. \Box

- 3

In the following theorem we prove that in every effect algebra E sharp and principal elements coincide if and only if there exists in E join of every two orthogonal elements such that one of them is sharp.

Theorem (6)

Let $(E, 0, 1, \oplus)$ be an effect algebra. Then $S_E = P_E$ if and only if

 $\forall_{t,x\in E} (t \perp x' \text{ and } x \land x' = 0) \Rightarrow t \lor x' \text{ exists in } E$

(8)

10 / 18

In the following theorem we prove that in every effect algebra E sharp and principal elements coincide if and only if there exists in E join of every two orthogonal elements such that one of them is sharp.

Theorem (6)

Let $(E, 0, 1, \oplus)$ be an effect algebra. Then $S_E = P_E$ if and only if

$$\forall_{t,x\in E} (t \perp x' \text{ and } x \land x' = 0) \Rightarrow t \lor x' \text{ exists in } E$$

Proof.

Suppose that $S_E = P_E$. We show that (8) is satisfied. Let $x, t \in E$, $t \perp x'$ and $x \wedge x' = 0$. Then $t \leq x, x \in P_E$ and by Theorem (5) we know that $t \lor x'$ exists in E.

In the following theorem we prove that in every effect algebra E sharp and principal elements coincide if and only if there exists in E join of every two orthogonal elements such that one of them is sharp.

Theorem (6)

Let $(E, 0, 1, \oplus)$ be an effect algebra. Then $S_E = P_E$ if and only if

$$\forall_{t,x\in E} (t \perp x' \text{ and } x \land x' = 0) \Rightarrow t \lor x' \text{ exists in } E$$

Proof.

Suppose that $S_E = P_E$. We show that (8) is satisfied. Let $x, t \in E$, $t \perp x'$ and $x \wedge x' = 0$. Then $t \leq x, x \in P_E$ and by Theorem (5) we know that $t \lor x'$ exists in E.

In the following theorem we prove that in every effect algebra E sharp and principal elements coincide if and only if there exists in E join of every two orthogonal elements such that one of them is sharp.

Theorem (6)

Let $(E, 0, 1, \oplus)$ be an effect algebra. Then $S_E = P_E$ if and only if

$$\forall_{t,x\in E} (t \perp x' \text{ and } x \land x' = 0) \Rightarrow t \lor x' \text{ exists in } E$$

Proof.

Suppose that $S_E = P_E$. We show that (8) is satisfied. Let $x, t \in E$, $t \perp x'$ and $x \wedge x' = 0$. Then $t \leq x, x \in P_E$ and by Theorem (5) we know that $t \lor x'$ exists in E.Suppose that condition (8) is fullfilled. Obviously $P_E \subseteq S_E$ (see Lemma 3.3 in [8]). We prove that $S_E \subseteq P_E$.

In the following theorem we prove that in every effect algebra E sharp and principal elements coincide if and only if there exists in E join of every two orthogonal elements such that one of them is sharp.

Theorem (6)

Let $(E, 0, 1, \oplus)$ be an effect algebra. Then $S_E = P_E$ if and only if

$$\forall_{t,x\in E} (t \perp x' \text{ and } x \land x' = 0) \Rightarrow t \lor x' \text{ exists in } E$$

Proof.

Suppose that $S_E = P_E$. We show that (8) is satisfied. Let $x, t \in E$, $t \perp x'$ and $x \wedge x' = 0$. Then $t \leq x, x \in P_E$ and by Theorem (5) we know that $t \lor x'$ exists in *E*.Suppose that condition (8) is fullfilled. Obviously $P_E \subseteq S_E$ (see Lemma 3.3 in [8]). We prove that $S_E \subseteq P_E$. Let $x \in S_E$. If $t \in E$, $t \leq x$ then $t \perp x'$ and by condition (8) $t \lor x'$ exists in *E* hence $x \in P_E$ by Theorem (5). Thus $S_E \subseteq P_E$.

Effect algebras closed under \oplus

Lemma (7)

Let $(E, 0, 1, \oplus)$ be an effect algebra. If P_E is closed under \oplus (that is, if $x, y \in P_E$ and $x \perp y$, then $x \oplus y \in P_E$) then

 $\forall_{x,y\in P_E} \quad x\perp y \Rightarrow x'\wedge (x\oplus y)=y.$

11 / 18

A D > A A P >

Effect algebras closed under \oplus

Lemma (7)

Let $(E, 0, 1, \oplus)$ be an effect algebra. If P_E is closed under \oplus (that is, if $x, y \in P_E$ and $x \perp y$, then $x \oplus y \in P_E$) then

$$\forall_{x,y\in P_E} \quad x\perp y\Rightarrow x'\wedge(x\oplus y)=y.$$

Proof.

Let $x, y \in P_E$ and $x \perp y$. Then $y \leq x'$ and $y \leq x \oplus y$ so y is a lower bound of x' and $x \oplus y$. Let t be a lower bound of x' and $x \oplus y$. We show that $t \leq y$. We know that $t \leq x'$ so $t \perp x$. Moreover $t \leq x \oplus y$ and $x \leq x \oplus y$ hence

$$x \oplus t \leq x \oplus y$$

since $x \oplus y \in P_E$. After using cancellation law we obtain $t \leq y$. Hence y is the largest lower bound of x' and $x \oplus y$ so $x' \wedge (x \oplus y) = y$.

Effect algebras closed under \oplus -cont.

Lemma (8)

Let $(E, 0, 1, \oplus)$ be an effect algebra. If for every $x, y \in S_E$ such that $x \perp y$ there exists $x \lor y$ in E and

$$x' \wedge (x \vee y) = y, \quad x \oplus y = x \vee y$$
 (9)

then S_E is closed under \oplus (that is, if $x, y \in S_E$ and $x \perp y$, then $x \oplus y \in S_E$).

Effect algebras closed under \oplus -cont.

Lemma (8)

Let $(E, 0, 1, \oplus)$ be an effect algebra. If for every $x, y \in S_E$ such that $x \perp y$ there exists $x \lor y$ in E and

$$x' \wedge (x \vee y) = y, \quad x \oplus y = x \vee y$$
 (9)

then S_E is closed under \oplus (that is, if $x, y \in S_E$ and $x \perp y$, then $x \oplus y \in S_E$).

Proof.

Let $x, y \in S_E$ and $x \perp y$. By (9) we have

$$0 \quad = y' \wedge y = y' \wedge (x' \wedge (x \vee y)) \stackrel{\textit{Lemma (3)}}{=} (x \vee y)' \wedge (x \vee y)$$

 $=(x\oplus y)'\wedge (x\oplus y),$

In the following Theorem we show that if $S_E = P_E$ then $S_E = P_E$ is closed under \oplus if and only if elements in $S_E = P_E$ satisfy the orthomodular law. It partially solves Open problems 3.2 and 3.3 in [9].

Theorem (9)

Let $(E, 0, 1, \oplus)$ be an effect algebra such that $S_E = P_E$. Then $S_E = P_E$ is closed under \oplus if and only if for every $x, y \in S_E$ we have

$$x \leq y \Rightarrow x \lor (x' \land y) = y.$$

Suppose that $S_F = P_F$ is closed under \oplus . Let $x, y \in S_F$ and $x \leq y$ then $x \perp y'$ and by Lemma (7) we have $x' \land (x \oplus y') = y'$ since $y' \in S_F$. It follows that

$$y \stackrel{\text{Lemma (4)}}{=} x \vee (x \oplus y')' \stackrel{\text{Lemma (2)}}{=} x \vee (x \vee y')'$$
$$\stackrel{\text{Lemma (4)}}{=} x \vee (x' \wedge y).$$

Proof-cont

Suppose that for every $x, y \in S_F$ we have

$$x \le y \Rightarrow x \lor (x' \land y) = y \tag{10}.$$

We show that for every $x, y \in S_F$ such that $x \perp y$ there exists $x \lor y$ in E and

$$x' \wedge (x \lor y) = y, \quad x \oplus y = x \lor y.$$

Let $x, y \in S_F$ and $x \perp y$. Then x < y' and $y' \in S_F = P_F$, so $x \lor (y')' = x \lor y$ exists in E and $x \lor y = x \oplus y$ by Lemma (2). Moreover $x \lor (x' \land y') = y'$ by (10). Hence $x' \land (x' \land y')' = y$ by Lemma (3) and $x' \wedge (x \vee y) = y$ by Lemma (4). Therefore S_E is closed under \oplus by Lemma (8).

1 Bennett M. K., Foulis D. J. Phi-Symmetric Effect Algebras, Foundations of Physics. **25**, No. 12, 1995, 1699-1722.

3

- 1 Bennett M. K., Foulis D. J. Phi-Symmetric Effect Algebras, Foundations of Physics. **25**, No. 12, 1995, 1699-1722.
- 2 Bush P., Lahti P.J., Mittelstadt P. The Quantum Theory of Measurement Lecture Notes in Phys. New Ser. m2, Springer-Verlag, Berlin, 1991

16 / 18

- 4 回 ト 4 三 ト 4 三

- 1 Bennett M. K., Foulis D. J. Phi-Symmetric Effect Algebras, Foundations of Physics. **25**, No. 12, 1995, 1699-1722.
- 2 Bush P., Lahti P.J., Mittelstadt P. The Quantum Theory of Measurement Lecture Notes in Phys. New Ser. m2, Springer-Verlag, Berlin, 1991
- 3 Bush P., Grabowski M., Lahti P.J Operational Quantum Physics, Springer-Verlag, Berlin, 1995

- 1 Bennett M. K., Foulis D. J. Phi-Symmetric Effect Algebras, Foundations of Physics. **25**, No. 12, 1995, 1699-1722.
- 2 Bush P., Lahti P.J., Mittelstadt P. The Quantum Theory of Measurement Lecture Notes in Phys. New Ser. m2, Springer-Verlag, Berlin, 1991
- 3 Bush P., Grabowski M., Lahti P.J Operational Quantum Physics, Springer-Verlag, Berlin, 1995
- 4 Dvurečenskij A., Pulmannová New Trends in Quantum Structures, Kluwer Academic Publ./Ister Science, Dordrecht-Boston-London/Bratislava, 2000.

- 4 週 ト - 4 三 ト - 4 三 ト

- 1 Bennett M. K., Foulis D. J. Phi-Symmetric Effect Algebras, Foundations of Physics. **25**, No. 12, 1995, 1699-1722.
- 2 Bush P., Lahti P.J., Mittelstadt P. The Quantum Theory of Measurement Lecture Notes in Phys. New Ser. m2, Springer-Verlag, Berlin, 1991
- 3 Bush P., Grabowski M., Lahti P.J Operational Quantum Physics, Springer-Verlag, Berlin, 1995
- 4 Dvurečenskij A., Pulmannová New Trends in Quantum Structures, Kluwer Academic Publ./Ister Science, Dordrecht-Boston-London/Bratislava, 2000.
- 5 Foulis D. J., Bennett M. K. Effect Algebras and Unsharp quantum Logics, Foundations of Physics. **24**, No. 10, 1994, 1331-1351.

16 / 18

- 1 Bennett M. K., Foulis D. J. Phi-Symmetric Effect Algebras, Foundations of Physics. **25**, No. 12, 1995, 1699-1722.
- 2 Bush P., Lahti P.J., Mittelstadt P. The Quantum Theory of Measurement Lecture Notes in Phys. New Ser. m2, Springer-Verlag, Berlin, 1991
- 3 Bush P., Grabowski M., Lahti P.J Operational Quantum Physics, Springer-Verlag, Berlin, 1995
- 4 Dvurečenskij A., Pulmannová New Trends in Quantum Structures, Kluwer Academic Publ./Ister Science, Dordrecht-Boston-London/Bratislava, 2000.
- 5 Foulis D. J., Bennett M. K. Effect Algebras and Unsharp quantum Logics, Foundations of Physics. **24**, No. 10, 1994, 1331-1351.
- 6 Gheondea A., Gudder S., Jonas P. On the infimum of quantum effects, Journal of Mathematical Physics **46**, 062102, 2005

7 Giuntini R., Grueuling H., Toward a formal language for unsharp properties, Found. Phys, **19**, 1994, 769-780.

イロト イポト イヨト イヨト 二日

- 7 Giuntini R., Grueuling H., Toward a formal language for unsharp properties, Found. Phys, **19**, 1994, 769-780.
- 8 Greechie R. J., Foulis D. J., Pulmannová S. The center of an effect algebra, Order **12**, 91-106, 1995.

17 / 18

< D > < A > < B >

- 7 Giuntini R., Grueuling H., Toward a formal language for unsharp properties, Found. Phys, **19**, 1994, 769-780.
- 8 Greechie R. J., Foulis D. J., Pulmannová S. The center of an effect algebra, Order **12**, 91-106, 1995.
- 9 Gudder S. Examples, Problems, and Results in Effect Algebras, International Journal of Theoretical Physics, **35**, 2365-2375, 1996.

- 7 Giuntini R., Grueuling H., Toward a formal language for unsharp properties, Found. Phys, **19**, 1994, 769-780.
- 8 Greechie R. J., Foulis D. J., Pulmannová S. The center of an effect algebra, Order **12**, 91-106, 1995.
- 9 Gudder S. Examples, Problems, and Results in Effect Algebras, International Journal of Theoretical Physics, **35**, 2365-2375, 1996.
- 10 Kôpka F., Chovanec F., D-posets, Math. Slovaca, 44, 1994, 21-34.

17 / 18

- 7 Giuntini R., Grueuling H., Toward a formal language for unsharp properties, Found. Phys, **19**, 1994, 769-780.
- 8 Greechie R. J., Foulis D. J., Pulmannová S. The center of an effect algebra, Order **12**, 91-106, 1995.
- 9 Gudder S. Examples, Problems, and Results in Effect Algebras, International Journal of Theoretical Physics, **35**, 2365-2375, 1996.
- 10 Kôpka F., Chovanec F., D-posets, Math. Slovaca, 44, 1994, 21-34.
- 11 Smith J. D. H., Homotopy and semisymmetry of quasigroups, alg. Univ., **38**, 1997, 175-184.

17 / 18

- 7 Giuntini R., Grueuling H., Toward a formal language for unsharp properties, Found. Phys, **19**, 1994, 769-780.
- 8 Greechie R. J., Foulis D. J., Pulmannová S. The center of an effect algebra, Order **12**, 91-106, 1995.
- 9 Gudder S. Examples, Problems, and Results in Effect Algebras, International Journal of Theoretical Physics, **35**, 2365-2375, 1996.
- 10 Kôpka F., Chovanec F., D-posets, Math. Slovaca, 44, 1994, 21-34.
- 11 Smith J. D. H., Homotopy and semisymmetry of quasigroups, alg. Univ., 38, 1997, 175-184.
- 12 Etherington I. M. H., Quasigroups and cubic curves, Proceedings of the Edinburgh Mathematical Society (Series 2), Volume 14, Issue 04, December 1965, 273-291.

17 / 18

Thank You for Your attention

G. Bińczak, J.Kaleta

Sharp and principal elements in effect algebra

February, 2016 Brno

18 / 18