J. Kühr

Special elements in bounded lattices with antitone involutions

Petr Emanovský Jan Kühr

Department of Algebra and Geometry Faculty of Science - Palacký University in Olomouc

AAA91, 5-7 February 2016, Brno

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

A lattice with antitone involutions is a bounded lattice

 (L, ∨, ∧, 0, 1) equipped with a collection {¬_a : a ∈ L} of
 antitone involutions (relative negations) ¬_a on the
 principal filters [a, 1] ⊆ L.

- Examples:
 - Orthomodular lattices $(L, \lor, \land, ', 0, 1)$:

$$\neg_a x = x' \lor a \quad \text{for } x \ge a$$

• MV-algebras
$$(A, \oplus, \neg, 0, 1)$$
:

$$\neg_a x = \neg x \oplus a \quad \text{for } x \geq a$$

• Lattice effect algebras (E, +, ', 0, 1):

$$\neg_a x = x' + a \quad \text{for } x \ge a$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 • のへで

lattices with antitone involutions J. Kühr

Special elements in

bounded

elements in bounded lattices with antitone involutions

Special

J. Kühr

 The so-called "basic algebras" ("AI-algebras"?) [Chajda-Halaš-Kühr 2009] are algebras A = (A, ⊕, ¬, 0, 1) corresponding to lattices with antitone involutions, as follows:

•
$$\neg x = \neg_0 x$$
 and $x \oplus y = \neg_y (\neg x \lor y)$;

• $x \lor y = \neg(\neg x \oplus y) \oplus y$, $x \land y = \neg(\neg x \lor \neg y)$, and $\neg_a x = \neg x \oplus a$ for $x \ge a$.

• For example, in orthomodular lattices: $x \oplus y = (x' \lor y)' \lor y = (x \land y') \lor$

• The variety axiomatized by the identities:

$$\begin{aligned} x \oplus 0 &= x, \\ \neg \neg x &= x, \\ \neg (\neg x \oplus y) \oplus y &= \neg (\neg y \oplus x) \oplus x, \\ \neg (\neg (x \oplus y) \oplus y) \oplus z) \oplus (x \oplus z) &= 1. \end{aligned}$$

elements in bounded lattices with antitone involutions

Special

J. Kühr

 The so-called "basic algebras" ("AI-algebras"?) [Chajda-Halaš-Kühr 2009] are algebras A = (A, ⊕, ¬, 0, 1) corresponding to lattices with antitone involutions, as follows:

•
$$\neg x = \neg_0 x$$
 and $x \oplus y = \neg_y (\neg x \lor y)$;

- $x \lor y = \neg(\neg x \oplus y) \oplus y$, $x \land y = \neg(\neg x \lor \neg y)$, and $\neg_a x = \neg x \oplus a$ for $x \ge a$.
- For example, in orthomodular lattices:

$$x \oplus y = (x' \lor y)' \lor y = (x \land y') \lor y.$$

The variety axiomatized by the identities:

$$\begin{aligned} x \oplus 0 &= x, \\ \neg \neg x &= x, \\ \neg (\neg x \oplus y) \oplus y &= \neg (\neg y \oplus x) \oplus x, \\ \neg (\neg (\neg (x \oplus y) \oplus y) \oplus z) \oplus (x \oplus z) &= 1. \end{aligned}$$

elements in bounded lattices with antitone involutions

Special

I Kühr

 The so-called "basic algebras" ("Al-algebras"?) [Chajda-Halaš-Kühr 2009] are algebras $\mathbf{A} = (A, \oplus, \neg, 0, 1)$ corresponding to lattices with antitone involutions, as follows

•
$$\neg x = \neg_0 x$$
 and $x \oplus y = \neg_y (\neg x \lor y)$;

- $x \lor y = \neg(\neg x \oplus y) \oplus y$, $x \land y = \neg(\neg x \lor \neg y)$, and $\neg_a x = \neg x \oplus a \text{ for } x \ge a.$
- For example, in orthomodular lattices:

$$x \oplus y = (x' \lor y)' \lor y = (x \land y') \lor y.$$

The variety axiomatized by the identities:

$$\begin{aligned} x \oplus 0 &= x, \\ \neg \neg x &= x, \\ \neg (\neg x \oplus y) \oplus y &= \neg (\neg y \oplus x) \oplus x, \\ \neg (\neg (\neg (x \oplus y) \oplus y) \oplus z) \oplus (x \oplus z) &= 1. \end{aligned}$$

J. Kühr

Two boolean skeletons

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Central elements

• An element $a \in A$ is central if a = h(0, 1) or a = h(1, 0)for some isomorphism $h: A_1 \times A_2 \cong A$. Equivalently, $a \in \mathscr{C}(A)$ iff

$$\boldsymbol{\alpha}_a = \{(x, y) \in A^2 : x \lor a = y \lor a\}$$

is a factor congruence of $A = (A, \oplus, \neg, 0, 1)$.

• $\mathscr{C}(A)$ is a boolean subalgebra of A.

J. Kühr

Two boolean skeletons

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Central elements

An element a ∈ A is central if a = h(0,1) or a = h(1,0) for some isomorphism h: A₁ × A₂ ≅ A. Equivalently, a ∈ 𝔅(A) iff

$$\boldsymbol{\alpha}_a = \{(x, y) \in A^2 : x \lor a = y \lor a\}$$

is a factor congruence of $A = (A, \oplus, \neg, 0, 1)$.

• $\mathscr{C}(A)$ is a boolean subalgebra of A.

J. Kühr

Two boolean skeletons

Central elements

An element a ∈ A is central if a = h(0,1) or a = h(1,0) for some isomorphism h: A₁ × A₂ ≅ A. Equivalently, a ∈ 𝔅(A) iff

$$\boldsymbol{\alpha}_a = \{(x, y) \in A^2 : x \lor a = y \lor a\}$$

is a factor congruence of $\mathbf{A} = (A, \oplus, \neg, 0, 1).$

• $\mathscr{C}(A)$ is a boolean subalgebra of A.

J. Kühr

Two boolean skeletons

Sharp elements

- An element $a \in A$ is sharp if $a \vee \neg a = 1$, or equivalently, if $a \oplus a = a$.
- In lattice effect algebras, $\mathcal{S}(A)$ is an orthomodular subalgebra.
- In basic algebras satisfying the identity

$$x \oplus (y \wedge z) = (x \oplus y) \wedge (x \oplus z),$$
 (M)

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

 $\mathscr{S}(\boldsymbol{A}) = \mathscr{C}(\boldsymbol{A}).$

In general, S(A) is neither a subalgebra nor a sublattice.
 Is there a boolean subalgebra between C(A) and S(A)?

J. Kühr

Two boolean skeletons

Sharp elements

- An element $a \in A$ is sharp if $a \vee \neg a = 1$, or equivalently, if $a \oplus a = a$.
- In lattice effect algebras, $\mathcal{S}(A)$ is an orthomodular subalgebra.
- In basic algebras satisfying the identity

$$x \oplus (y \wedge z) = (x \oplus y) \wedge (x \oplus z),$$
 (M)

 $\mathcal{S}(\boldsymbol{A}) = \mathcal{C}(\boldsymbol{A}).$

• In general, $\mathcal{S}(A)$ is neither a subalgebra nor a sublattice. Is there a boolean subalgebra between $\mathscr{C}(A)$ and $\mathcal{S}(A)$?

J. Kühr

Two boolean skeletons

Boolean elements

An element a ∈ A is boolean if a ⊕ x = a ∨ x for all x ∈ A.
 Note: If a ∈ 𝔅(A), then ¬_xa = ¬a ∨ x for every x ≤ a.

• In lattice effect algebras, $\mathfrak{B}(A) = \mathfrak{C}(A) \subseteq \mathfrak{S}(A)$.

In basic algebras satisfying

$$x \oplus (y \wedge z) = (x \oplus y) \wedge (x \oplus z), \tag{M}$$

 $\mathcal{S}(\mathbf{A}) = \mathcal{B}(\mathbf{A}) = \mathcal{C}(\mathbf{A}).$

• In general, $\mathfrak{B}(oldsymbol{A})$ is a boolean subalgebra of $oldsymbol{A}$ such that

 $\mathfrak{C}(\mathbf{A}) \subseteq \mathfrak{B}(\mathbf{A}) \subseteq \mathfrak{S}(\mathbf{A}) \cap \operatorname{Neutr}(\mathbf{A}).$

J. Kühr

Two boolean skeletons

Boolean elements

- An element a ∈ A is boolean if a ⊕ x = a ∨ x for all x ∈ A.
 Note: If a ∈ 𝔅(A), then ¬_xa = ¬a ∨ x for every x ≤ a.
- In lattice effect algebras, $\mathfrak{B}(A) = \mathfrak{C}(A) \subseteq \mathfrak{S}(A).$
- In basic algebras satisfying

$$x \oplus (y \wedge z) = (x \oplus y) \wedge (x \oplus z),$$
 (M)

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

 $\mathcal{S}(\mathbf{A}) = \mathcal{B}(\mathbf{A}) = \mathcal{C}(\mathbf{A}).$

• In general, $\mathfrak{B}(oldsymbol{A})$ is a boolean subalgebra of $oldsymbol{A}$ such that

 $\mathscr{C}(A) \subseteq \mathscr{B}(A) \subseteq \mathscr{S}(A) \cap \operatorname{Neutr}(A).$

J. Kühr

Two boolean skeletons

Boolean elements

- An element a ∈ A is boolean if a ⊕ x = a ∨ x for all x ∈ A.
 Note: If a ∈ 𝔅(A), then ¬_xa = ¬a ∨ x for every x ≤ a.
- In lattice effect algebras, $\mathfrak{B}(A) = \mathfrak{C}(A) \subseteq \mathfrak{S}(A).$
- In basic algebras satisfying

$$x \oplus (y \wedge z) = (x \oplus y) \wedge (x \oplus z),$$
 (M)

ション ふゆ アメリア メリア しょうくの

 $\mathscr{S}(\mathbf{A}) = \mathscr{B}(\mathbf{A}) = \mathscr{C}(\mathbf{A}).$

• In general, $\mathfrak{B}(oldsymbol{A})$ is a boolean subalgebra of $oldsymbol{A}$ such that

 $\mathscr{C}(A) \subseteq \mathscr{B}(A) \subseteq \mathscr{S}(A) \cap \operatorname{Neutr}(A).$

J. Kühr

Two boolean skeletons

Boolean elements

- An element a ∈ A is boolean if a ⊕ x = a ∨ x for all x ∈ A.
 Note: If a ∈ 𝔅(A), then ¬_xa = ¬a ∨ x for every x ≤ a.
- In lattice effect algebras, $\mathfrak{B}(A) = \mathfrak{C}(A) \subseteq \mathfrak{S}(A).$
- In basic algebras satisfying

$$x \oplus (y \wedge z) = (x \oplus y) \wedge (x \oplus z),$$
 (M)

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

 $\mathscr{S}(\boldsymbol{A}) = \mathscr{B}(\boldsymbol{A}) = \mathscr{C}(\boldsymbol{A}).$

• In general, $\mathfrak{B}(oldsymbol{A})$ is a boolean subalgebra of $oldsymbol{A}$ such that

 $\mathscr{C}(\boldsymbol{A})\subseteq \mathscr{B}(\boldsymbol{A})\subseteq \mathscr{S}(\boldsymbol{A})\cap \operatorname{Neutr}(\boldsymbol{A}).$

J. Kühr

Distributive and standard elements

In any basic algebra \boldsymbol{A} , for any $a \in A$ one has:

• $a \in \text{Distr}(\mathbf{A})$ iff $\neg a \in \text{Distr}^{\partial}(\mathbf{A})$ iff for all $x, y \in A$,

 $(x\vee y)\oplus a=(x\oplus a)\vee (y\oplus a);$

• $a \in \operatorname{Stand}({oldsymbol A})$ iff $eg a \in \operatorname{Stand}^\partial({oldsymbol A})$ iff for all $x,y \in A$,

 $(x \lor a) \oplus y = (x \oplus y) \lor (a \oplus y).$

Hence A is distributive iff it satisfies the identity

 $(x \lor y) \oplus z = (x \oplus z) \lor (y \oplus z).$

If A is a lattice effect algebra, then

 $\mathscr{C}(\boldsymbol{A}) = \mathscr{B}(\boldsymbol{A}) = \mathscr{S}(\boldsymbol{A}) \cap \mathrm{Distr}(\boldsymbol{A}) = \mathscr{S}(\boldsymbol{A}) \cap \mathrm{Distr}^{\partial}(\boldsymbol{A}).$

J. Kühr

Distributive and standard elements

In any basic algebra \boldsymbol{A} , for any $a \in A$ one has:

• $a \in \text{Distr}(\mathbf{A})$ iff $\neg a \in \text{Distr}^{\partial}(\mathbf{A})$ iff for all $x, y \in A$,

$$(x\vee y)\oplus a=(x\oplus a)\vee (y\oplus a);$$

• $a \in \text{Stand}(\mathbf{A})$ iff $\neg a \in \text{Stand}^{\partial}(\mathbf{A})$ iff for all $x, y \in A$,

$$(x \lor a) \oplus y = (x \oplus y) \lor (a \oplus y).$$

Hence A is distributive iff it satisfies the identity

$$(x \lor y) \oplus z = (x \oplus z) \lor (y \oplus z).$$

If A is a lattice effect algebra, then

 $\mathscr{C}(\boldsymbol{A}) = \mathscr{B}(\boldsymbol{A}) = \mathscr{S}(\boldsymbol{A}) \cap \mathrm{Distr}(\boldsymbol{A}) = \mathscr{S}(\boldsymbol{A}) \cap \mathrm{Distr}^{\partial}(\boldsymbol{A}).$

J. Kühr

Distributive and standard elements

In any basic algebra A, for any $a \in A$ one has:

• $a \in \text{Distr}(\mathbf{A})$ iff $\neg a \in \text{Distr}^{\partial}(\mathbf{A})$ iff for all $x, y \in A$,

$$(x\vee y)\oplus a=(x\oplus a)\vee (y\oplus a);$$

• $a \in \text{Stand}(\mathbf{A})$ iff $\neg a \in \text{Stand}^{\partial}(\mathbf{A})$ iff for all $x, y \in A$,

$$(x\vee a)\oplus y=(x\oplus y)\vee (a\oplus y).$$

Hence $oldsymbol{A}$ is distributive iff it satisfies the identity

$$(x\vee y)\oplus z=(x\oplus z)\vee (y\oplus z).$$

If A is a lattice effect algebra, then

 $\mathscr{C}(\boldsymbol{A}) = \mathscr{B}(\boldsymbol{A}) = \mathscr{S}(\boldsymbol{A}) \cap \mathrm{Distr}(\boldsymbol{A}) = \mathscr{S}(\boldsymbol{A}) \cap \mathrm{Distr}^{\partial}(\boldsymbol{A}).$

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

J. Kühr

Distributive and standard elements

In any basic algebra \boldsymbol{A} , for any $a \in A$ one has:

• $a \in \text{Distr}(\mathbf{A})$ iff $\neg a \in \text{Distr}^{\partial}(\mathbf{A})$ iff for all $x, y \in A$,

$$(x \lor y) \oplus a = (x \oplus a) \lor (y \oplus a);$$

• $a \in \text{Stand}(\mathbf{A})$ iff $\neg a \in \text{Stand}^{\partial}(\mathbf{A})$ iff for all $x, y \in A$,

$$(x \lor a) \oplus y = (x \oplus y) \lor (a \oplus y).$$

Hence \boldsymbol{A} is distributive iff it satisfies the identity

$$(x\vee y)\oplus z=(x\oplus z)\vee (y\oplus z).$$

If $oldsymbol{A}$ is a lattice effect algebra, then

$$\mathscr{C}(\boldsymbol{A}) = \mathscr{B}(\boldsymbol{A}) = \mathscr{S}(\boldsymbol{A}) \cap \mathrm{Distr}(\boldsymbol{A}) = \mathscr{S}(\boldsymbol{A}) \cap \mathrm{Distr}^{\partial}(\boldsymbol{A}).$$

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

J. Kühr

"Strongly distributive" elements

Let $A = (A, \oplus, \neg, 0, 1)$ be a basic algebra. The following are equivalent, for any $a \in A$:

• $h_a \colon x \mapsto x \lor a$ is a homomorphism of A onto the interval algebra $([a, 1], \oplus_a, \neg_a, a, 1)$ where

 $\neg_a x = \neg x \oplus a \quad \text{and} \quad x \oplus_a y = \neg(\neg x \oplus a) \oplus y$

for $x, y \ge a$;

- $\alpha_a = \{(x,y) \in A^2 : x \lor a = y \lor a\}$ is a congruence of A;
- $\beta_a = \{(x, y) \in A^2 : x \lor y = (x \land y) \lor z \text{ for some } z \leq a\}$ is a congruence of A;

• $x \oplus (y \lor a) = (x \oplus y) \lor a$ for all $x, y \in A$;

• $a \in \mathcal{S}(\mathbf{A})$ and $x \oplus (y \oplus a) = (x \oplus y) \oplus a$ for all $x, y \in A$. In this case, $a \in \mathcal{B}(\mathbf{A})$.

J. Kühr

"Strongly distributive" elements

Let $A = (A, \oplus, \neg, 0, 1)$ be a basic algebra. The following are equivalent, for any $a \in A$:

• $h_a \colon x \mapsto x \lor a$ is a homomorphism of A onto the interval algebra $([a, 1], \oplus_a, \neg_a, a, 1)$ where

 $\neg_a x = \neg x \oplus a \quad \text{and} \quad x \oplus_a y = \neg(\neg x \oplus a) \oplus y$

for $x, y \ge a$;

- $\alpha_a = \{(x,y) \in A^2 : x \lor a = y \lor a\}$ is a congruence of A;
- $\beta_a = \{(x, y) \in A^2 : x \lor y = (x \land y) \lor z \text{ for some } z \leq a\}$ is a congruence of A;

• $x \oplus (y \lor a) = (x \oplus y) \lor a$ for all $x, y \in A$;

• $a \in S(\mathbf{A})$ and $x \oplus (y \oplus a) = (x \oplus y) \oplus a$ for all $x, y \in A$. In this case, $a \in \mathfrak{B}(\mathbf{A})$.

J. Kühr

"Strongly distributive" elements

Let $A = (A, \oplus, \neg, 0, 1)$ be a basic algebra. The following are equivalent, for any $a \in A$:

• $h_a \colon x \mapsto x \lor a$ is a homomorphism of A onto the interval algebra $([a, 1], \oplus_a, \neg_a, a, 1)$ where

 $\neg_a x = \neg x \oplus a \quad \text{and} \quad x \oplus_a y = \neg(\neg x \oplus a) \oplus y$

for $x, y \ge a$;

- $\alpha_a = \{(x,y) \in A^2 : x \lor a = y \lor a\}$ is a congruence of A;
- $\beta_a = \{(x, y) \in A^2 : x \lor y = (x \land y) \lor z \text{ for some } z \le a\}$ is a congruence of A;

• $x \oplus (y \lor a) = (x \oplus y) \lor a$ for all $x, y \in A$;

• $a \in \mathcal{S}(\mathbf{A})$ and $x \oplus (y \oplus a) = (x \oplus y) \oplus a$ for all $x, y \in A$. In this case, $a \in \mathcal{B}(\mathbf{A})$.

J. Kühr

"Strongly distributive" elements

Let $A = (A, \oplus, \neg, 0, 1)$ be a basic algebra. The following are equivalent, for any $a \in A$:

• $h_a \colon x \mapsto x \lor a$ is a homomorphism of A onto the interval algebra $([a, 1], \oplus_a, \neg_a, a, 1)$ where

 $eg _a x = \neg x \oplus a \quad \text{and} \quad x \oplus_a y = \neg (\neg x \oplus a) \oplus y$

for $x, y \ge a$;

- $\alpha_a = \{(x, y) \in A^2 : x \lor a = y \lor a\}$ is a congruence of A;
- $\beta_a = \{(x, y) \in A^2 : x \lor y = (x \land y) \lor z \text{ for some } z \le a\}$ is a congruence of A;

• $x \oplus (y \lor a) = (x \oplus y) \lor a$ for all $x, y \in A$;

• $a \in S(\mathbf{A})$ and $x \oplus (y \oplus a) = (x \oplus y) \oplus a$ for all $x, y \in A$. In this case, $a \in \mathfrak{B}(\mathbf{A})$.

J. Kühr

"Strongly distributive" elements

Let $A = (A, \oplus, \neg, 0, 1)$ be a basic algebra. The following are equivalent, for any $a \in A$:

• $h_a \colon x \mapsto x \lor a$ is a homomorphism of A onto the interval algebra $([a, 1], \oplus_a, \neg_a, a, 1)$ where

 $eg _a x = \neg x \oplus a \quad \text{and} \quad x \oplus_a y = \neg (\neg x \oplus a) \oplus y$

for $x, y \ge a$;

- $\alpha_a = \{(x,y) \in A^2 : x \lor a = y \lor a\}$ is a congruence of A;
- $\beta_a = \{(x, y) \in A^2 : x \lor y = (x \land y) \lor z \text{ for some } z \le a\}$ is a congruence of A;

• $x \oplus (y \lor a) = (x \oplus y) \lor a$ for all $x, y \in A$;

• $a \in \mathcal{S}(A)$ and $x \oplus (y \oplus a) = (x \oplus y) \oplus a$ for all $x, y \in A$. n this case, $a \in \mathcal{B}(A)$.

J. Kühr

"Strongly distributive" elements

Let $A = (A, \oplus, \neg, 0, 1)$ be a basic algebra. The following are equivalent, for any $a \in A$:

• $h_a \colon x \mapsto x \lor a$ is a homomorphism of A onto the interval algebra $([a, 1], \oplus_a, \neg_a, a, 1)$ where

 $\neg_a x = \neg x \oplus a \quad \text{and} \quad x \oplus_a y = \neg(\neg x \oplus a) \oplus y$

for $x, y \ge a$;

- $\alpha_a = \{(x,y) \in A^2 : x \lor a = y \lor a\}$ is a congruence of A;
- $\beta_a = \{(x, y) \in A^2 : x \lor y = (x \land y) \lor z \text{ for some } z \le a\}$ is a congruence of A;

• $x \oplus (y \lor a) = (x \oplus y) \lor a$ for all $x, y \in A$;

• $a \in S(\mathbf{A})$ and $x \oplus (y \oplus a) = (x \oplus y) \oplus a$ for all $x, y \in A$. In this case, $a \in \mathfrak{B}(\mathbf{A})$.

J. Kühr

Central elements again

Let A be a basic algebra. The following are equivalent, for any $a \in A$:

- $a \in \mathscr{C}(\boldsymbol{A});$
- $x \oplus (y \lor z) = (x \oplus y) \lor z$ for all $x, y \in A$ and $z \in \{a, \neg a\}$;
- $a \in S(A)$ and $x \oplus (y \oplus z) = (x \oplus y) \oplus z$ for all $x, y \in A$ and $z \in \{a, \neg a\}$.

J. Kühr

Boolean elements again

• If
$$a\in \mathfrak{B}(oldsymbol{A})$$
, then

$$\boldsymbol{\alpha}_a = \{(x, y) \in A^2 : x \lor a = y \lor a\}$$

is a congruence of $(A, \lor, \land, \neg, 0, 1)$, not of A if $a \notin \mathscr{C}(A)$. If I is an ideal of the boolean algebra $\mathscr{B}(A)$ or $\mathscr{C}(A)$, then

$$\boldsymbol{lpha}_I = igcup \{ \boldsymbol{lpha}_a : a \in I \}$$

is a congruence of $(A,\vee,\wedge,\neg,0,1)$ or $\boldsymbol{A},$ respectively.

- For any basic algebra A,
 - (A, ∨, ∧, ¬, 0, 1) is a subdirect product of the quotient algebras (A, ∨, ∧, ¬, 0, 1)/α_M where M ranges over the maximal ideals of 𝔅(A);
 - A is a subdirect product of A/α_M where M ranges over the maximal ideals of C(A).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

J. Kühr

Boolean elements again

• If
$$a\in \mathfrak{B}(oldsymbol{A})$$
, then

1

$$\boldsymbol{\alpha}_a = \{(x, y) \in A^2 : x \lor a = y \lor a\}$$

is a congruence of $(A, \lor, \land, \neg, 0, 1)$, not of A if $a \notin \mathscr{C}(A)$. If I is an ideal of the boolean algebra $\mathscr{B}(A)$ or $\mathscr{C}(A)$, then

$$\boldsymbol{\alpha}_I = \bigcup \{ \boldsymbol{\alpha}_a : a \in I \}$$

is a congruence of $(A,\vee,\wedge,\neg,0,1)$ or $\boldsymbol{A},$ respectively.

- For any basic algebra A,
 - (A, ∨, ∧, ¬, 0, 1) is a subdirect product of the quotient algebras (A, ∨, ∧, ¬, 0, 1)/α_M where M ranges over the maximal ideals of ℬ(A);
 - A is a subdirect product of A/α_M where M ranges over the maximal ideals of $\mathscr{C}(A)$.

ション ふゆ く 山 マ チャット しょうくしゃ

J. Kühr

Pseudocomplements

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

- By a pseudocomplemented basic algebra we mean a pair (A, *) where A = (A, ⊕, ¬, 0, 1) is a basic algebra and * is a pseudocomplementation on it.
- In fact, $(A, \lor, \land, {}^*, {}^+, 0, 1)$, where

$$x^+ = \neg(\neg x)^*,$$

is a double p-algebra.

• The variety of pseudocomplemented basic algebras is axiomatized by the axioms of basic algebras together with $0^* = 1$, $1^* = 0$ and $x \wedge (x \wedge y)^* = x \wedge y^*$.

J. Kühr

Pseudocomplements

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

- By a pseudocomplemented basic algebra we mean a pair (A, *) where A = (A, ⊕, ¬, 0, 1) is a basic algebra and * is a pseudocomplementation on it.
- In fact, $(A, \lor, \land, {}^*, {}^+, 0, 1)$, where

$$x^+ = \neg(\neg x)^*,$$

is a double p-algebra.

• The variety of pseudocomplemented basic algebras is axiomatized by the axioms of basic algebras together with $0^* = 1$, $1^* = 0$ and $x \wedge (x \wedge y)^* = x \wedge y^*$.

Pseudocomplements

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

• For any pseudocomplemented basic algebra $({oldsymbol A},*)$,

$$\mathcal{S}(\mathbf{A}) \cap \text{Distr}(\mathbf{A}) \subseteq A^* = \{x^* : x \in A\},\\ \mathcal{S}(\mathbf{A}) \cap \text{Distr}^{\partial}(\mathbf{A}) \subseteq A^+ = \{x^+ : x \in A\}.$$

For $a \in \mathcal{S}(\mathbf{A})$, $a^+ \leq \neg a \leq a^*$.

• A is distributive iff it is modular, in which case $\mathcal{S}(A) \subseteq A^* \cap A^+$ and $\neg a = a^* = a^+$ for $a \in \mathcal{S}(A)$.

Special elements in bounded lattices with antitone involutions

J. Kühr

J. Kühr

Pseudocomplements

• Let (A, *) be a pseudocomplemented basic algebra such that $A^* \subseteq \mathcal{S}(A)$, or equivalently, $A^+ \subseteq \mathcal{S}(A)$. Then (A, *) satisfies the Stone identities

$$x^{**} \lor x^{*} = 1$$
 and $x^{++} \land x^{+} = 0$.

• If (A, *) satisfies the identity

 $x \oplus (y \wedge z) = (x \oplus y) \wedge (x \oplus z),$ (M)

うして ふゆう ふほう ふほう うらう

then $\mathscr{C}(\mathbf{A}) = \mathscr{B}(\mathbf{A}) = \mathscr{S}(\mathbf{A}) = A^* = A^+$ and the double p-algebra $(A, \lor, \land, *, ^+, 0, 1)$ is a double Stone algebra.

J. Kühr

Pseudocomplements

• Let $(\mathbf{A}, *)$ be a pseudocomplemented basic algebra such that $A^* \subseteq \mathcal{S}(\mathbf{A})$, or equivalently, $A^+ \subseteq \mathcal{S}(\mathbf{A})$. Then $(\mathbf{A}, *)$ satisfies the Stone identities

$$x^{**} \lor x^* = 1$$
 and $x^{++} \land x^+ = 0$.

• If $(\boldsymbol{A},^*)$ satisfies the identity

$$x \oplus (y \wedge z) = (x \oplus y) \wedge (x \oplus z),$$
 (M)

then $\mathscr{C}(A) = \mathscr{B}(A) = \mathscr{S}(A) = A^* = A^+$ and the double p-algebra $(A, \lor, \land, *, ^+, 0, 1)$ is a double Stone algebra.

J. Kühr

Pseudocomplements

• We have $\mathscr{C}(\boldsymbol{A})=A^*$ iff $(\boldsymbol{A},*)$ satisfies the equations

$$\begin{aligned} x \oplus (y \lor z^*) &= (x \oplus y) \lor z^*, \\ x \oplus (y \lor \neg z^*) &= (x \oplus y) \lor \neg z^*. \end{aligned}$$

- Let (A, *) be a pseudocomplemented basic algebra such that $\mathscr{C}(A) = A^*$. Then the following are equivalent:
 - (A, *) is subdirectly irreducible;
 - A is linearly ordered;
 - $(\boldsymbol{A},^*)$ is simple.
- Pseudocomplemented basic algebras (A, *) satisfying $\mathscr{C}(A) = A^*$ form a discriminator variety:

 $t(x,y,z) = \left(d(x,y)^* \lor x\right) \land \left(d(x,y)^{**} \lor z\right)$

where $d(x,y) = \neg(\neg x \oplus y) \lor \neg(\neg y \oplus x)$.

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆ ● ◆ ● ◆ ● ◆

J. Kühr

Pseudocomplements

• We have $\mathscr{C}(\boldsymbol{A})=A^*$ iff $(\boldsymbol{A},*)$ satisfies the equations

$$\begin{aligned} x \oplus (y \lor z^*) &= (x \oplus y) \lor z^*, \\ x \oplus (y \lor \neg z^*) &= (x \oplus y) \lor \neg z^*. \end{aligned}$$

- Let (A, *) be a pseudocomplemented basic algebra such that $\mathscr{C}(A) = A^*$. Then the following are equivalent:
 - $(\boldsymbol{A},^*)$ is subdirectly irreducible;
 - A is linearly ordered;
 - $(\boldsymbol{A},^*)$ is simple.
- Pseudocomplemented basic algebras (A, *) satisfying $\mathscr{C}(A) = A^*$ form a discriminator variety:

 $t(x,y,z) = \left(d(x,y)^* \lor x\right) \land \left(d(x,y)^{**} \lor z\right)$

where $d(x,y) = \neg(\neg x \oplus y) \lor \neg(\neg y \oplus x)$.

・ロ・・母・・ヨ・・ヨ・ シック

J. Kühr

Pseudocomplements

• We have $\mathscr{C}(\boldsymbol{A})=A^*$ iff $(\boldsymbol{A},*)$ satisfies the equations

$$\begin{aligned} x \oplus (y \lor z^*) &= (x \oplus y) \lor z^*, \\ x \oplus (y \lor \neg z^*) &= (x \oplus y) \lor \neg z^*. \end{aligned}$$

- Let (A, *) be a pseudocomplemented basic algebra such that $\mathscr{C}(A) = A^*$. Then the following are equivalent:
 - $(\boldsymbol{A},^*)$ is subdirectly irreducible;
 - A is linearly ordered;
 - $(\boldsymbol{A},^*)$ is simple.
- Pseudocomplemented basic algebras (A, *) satisfying $\mathscr{C}(A) = A^*$ form a discriminator variety:

$$t(x,y,z) = \left(d(x,y)^* \lor x\right) \land \left(d(x,y)^{**} \lor z\right)$$

where $d(x,y) = \neg(\neg x \oplus y) \lor \neg(\neg y \oplus x).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

J. Kühr

Pseudocomplements

Corollary. Every finite basic algebra satisfying

$$x \oplus (y \wedge z) = (x \oplus y) \wedge (x \oplus z) \tag{M}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

is an MV-algebra.

J. Kühr

Thank you!

◆□ > < 個 > < E > < E > E の < @</p>