Free skew Boolean algebras

Ganna Kudryavtseva

Ljubljana University Faculty of Civil and Geodetic Engineering IMFM, Ljubljana IJS, Ljubljana

> AAA 91 Brno, February 5-7, 2016

Plan of the talk

- 1. Preliminaries on skew Boolean algebras.
- 2. Background: free generalized Boolean algebras.
- 3. Free skew Boolean algebras.
- 4. Free skew Boolean intersection algebras.

Generalized Boolean algebras

A generalized Boolean algebra (GBA) is an algebra $(A; \land, \lor, \backslash, 0)$ of signature (2, 2, 2, 0) satisfying the following axioms:

1. (associativity)
$$a \lor (b \lor c) = (a \lor b) \lor c$$
,
 $a \land (b \land c) = (a \land b) \land c$;

- 2. (commutativity) $a \lor b = b \lor a$, $a \land b = b \land a$;
- 3. (absorption) $a \lor (a \land b) = a$, $a \land (a \lor b) = a$;
- 4. (distributivity) $a \land (b \lor c) = (a \land b) \lor (a \land c);$
- 5. (properties of 0) $a \lor 0 = a$, $a \land 0 = 0$;
- 6. (properties of relative complement) $(a \setminus b) \land b = 0$, $(a \setminus b) \lor (a \land b) = a$.

Thus GBAs form a variety of algebras. Associativity, commutativity and absorption imply

7. (idempotency)
$$a \lor a = a$$
, $a \land a = a$.

Skew Boolean algebras (SBAs)

A skew Boolean algebra is an algebra $(S; \land, \lor, \backslash, 0)$ of type (2, 2, 2, 0) such that for any $a, b, c, d \in S$:

- 1. (associativity) $a \lor (b \lor c) = (a \lor b) \lor c$, $a \land (b \land c) = (a \land b) \land c$;
- 2. (absorption) $a \lor (a \land b) = a$, $(b \land a) \lor a = a$, $a \land (a \lor b) = a$, $(b \lor a) \land a = a$;
- 3. (distributivity) $a \land (b \lor c) = (a \land b) \lor (a \land c)$, $(b \lor c) \land a = (b \land a) \lor (c \land a)$;
- 4. (properties of 0) $a \lor 0 = 0 \lor a = a$, $a \land 0 = 0 \land a = 0$;
- 5. (properties of relative complement) $(a \setminus b) \land b = b \land (a \setminus b) = 0,$ $(a \setminus b) \lor (a \land b \land a) = a = (a \land b \land a) \lor (a \setminus b);$

6. (normality) $a \wedge b \wedge c \wedge d = a \wedge c \wedge b \wedge d$.

Associativity and absorption imply that (A, \land, \lor) is a *skew lattice* and the absorption axiom implies

7. (idempotency) $a \lor a = a$, $a \land a = a$.

Skew Boolean intersection algebras (SBIAs)

Let $(S; \land, \lor, \backslash, 0)$ be an SBA.

- The natural partial order on S: $a \le b$ iff $a \land b = b \land a = a$.
- S has intersections if the meet of a and b with respect to ≤ exists for any a, b ∈ S.
- $a \sqcap b$ the intersection of a and b.
- If (S; ∧, ∨, \, 0) has intersections, (S; ∧, ∨, ⊓, \, 0) is a skew Boolean intersection algebra (SBIA).

Proposition (Bignall and Leech)

Let $(S; \land, \lor, \backslash, \Box, 0)$ be an algebra of type (2, 2, 2, 2, 0). Then it is an SBIA if and only if $(S; \land, \lor, \backslash, 0)$ is an SBA, (S, \Box) is a semilattice (meaning that \Box is idempotent and commutative) and the following identities hold:

$$x \sqcap (x \land y \land x) = x \land y \land x; \quad x \land (x \sqcap y) = x \sqcap y = (x \sqcap y) \land x.$$

Historical note

- ▶ 1949 Pascual Jordan: work on non-commutative lattices.
- early 1970's a series of works by Boris Schein
- late 1970's and early 1980's Robert Bignall and William Cornish studied non-commutative Boolean algebras
- 1989 Jonathan Leech initiated the modern study of skew lattices.
- 1995 Jonathan Leech and Robert Bignall publish the first paper devoted to skew Boolean intersection algebras.
- 1989 present many aspects of skew lattices and skew Boolean algebras have been studied.
- 2012-2013 Stone duality was extended to skew Boolean algebras and distributive skew lattices.
- A. Bauer, K. Cvetko-Vah, M. Gehrke, S. van Gool, M. Kinyon, GK, M. V. Lawson, J. Leech, J. Pita-Costa, M.Spinks is an (incomplete) list of researchers who have contributed to the topic.

Left-handed SBAs

An SBA S is left-handed if the normality axiom is replaced by: (6') (left normality) $x \land y \land z = x \land z \land y$, and a dual axiom holds for right-handed SBAs.

In this talk, we restrict attention to left-handed SBAs. The right-handed case is dual, and the general case can be easily obtained from these two applying Leech's fibered product decomposition theorem.

Notation:

- LSBA left-handed SBA.
- LSBIA left-handed SBIA.

On the structure of LSBAs and LSBIAs

• Relation \mathcal{D} : $x \mathcal{D} y$ if and only if $x \wedge y = x$ and $y \wedge x = y$.

- If S is an SBA then D is a congruence on S and S/D is the maximum commutative quotient of S. (But, if S is an SBIA, D is in general not respected by □ operation.)
- Primitive LSBAs: (k + 1)_L = {0,...,k} i ∧ j = i, i ∨ j = j for any 1 ≤ i, j ≤ k. This generalizes the two-element Boolean algebra 2 = {0,1}.
- ▶ Fact: Let S be a finite LSBIA. Then

$$S \simeq \mathbf{2}^{k_2} \times \mathbf{3}^{k_3}_L \times \cdots \times (\mathbf{m} + \mathbf{1})^{k_{m+1}}_L$$

for some *m* where all $k_i \ge 0$. This generalizes the fact that any finite Boolean algebra is isomorphic to some 2^k .

Why are LSBAs important and worth attention?

- 1. Partial functions algebras are LSBAs generalizing powersets and are prototypical examples of finite SBAs. $\mathcal{P}(A, \{1, \dots, k\}) \simeq (\mathbf{k} + \mathbf{1})_L^{|A|}$ similarly as $\mathcal{P}(A) \simeq \mathcal{P}(A, \{1\}) \simeq \mathbf{2}^{|A|}$.
- 2. LSBAs arise naturally in rings where idempotents are closed under multiplication (Cvetko-Vah and Leech).
- 3. The category of LSBAs is dual to the category of étale spaces over Boolean spaces. (GK, 2012).
- 4. The category of LSBIAs is dual to the category of Hausdorff étale spaces over Boolean spaces (Bauer and Cvetko-Vah, GK, 2012).

Free generalized Boolean algebras

The free generalized Boolean algebra \mathbf{GBA}_X over the generating set X is the the algebra of all terms over X, where two terms are equal in \mathbf{GBA}_X if one of them can be obtained from another one by a finite number of applications of the identities defining the variety of GBAs.

Example. Let $X = \{x_1, x_2\}$. Then **GBA**_X $\simeq 2^3$ where $2 = \{0, 1\}$. Indeed, denote $a_{\{1\}} = x_1 \setminus x_2$, $a_{\{2\}} = x_2 \setminus x_1$ and $a_{\{1,2\}} = x_1 \wedge x_2$.

These terms are pairwise distinct, as they can have distinct evaluation in 2.

$$\bullet a_1 \wedge a_2 = a_1 \wedge a_3 = a_2 \wedge a_3 = 0.$$

•
$$x_1 = (x_1 \setminus x_2) \lor (x_1 \land x_2)$$
 and $x_2 = (x_2 \setminus x_1) \lor (x_1 \land x_2)$.

► Thus any element of **GBA**_X is a join of a subset of {a₁, a₂, a₃}.

Similarly, if |X| = n, **GBA**_X $\simeq 2^{2^{n-1}}$, atoms are in a bijections with non-empty subsets of X.

Free LSBAs: finite case

 $_{\mathcal{L}}$ **SBA**_X — the free LSBA over the generating set X. Let $X = \{1, 2, ..., n\}$. Can we describe atoms and atomic \mathcal{D} -classes of $_{\mathcal{L}}$ **SBA**_X?

- Let $Y \subseteq X$ be a non-empty subset and $y \in Y$.
- ► (X, Y, y) pointed non-empty subset of X.
- Atoms:

$$e(X, Y, y) = (y \land (\land \{y \colon y \in Y))) \setminus \lor \{y \colon y \in X \setminus Y\}.$$

By left normality, this is well defined and e(X, Y, y) = e(X, Z, z) if and only if Y = Z and y = z.

- ► Atoms are in a bijection with pointed non-empty subsets of *X*.
- Atomic *D*-classes are in a bijection with non-empty subsets of *X*.

Example

Atoms of $_{\mathcal{L}}\mathbf{SBA}_2$:

Example

Atoms of $_{\mathcal{L}}\mathbf{SBA}_3$:

Free LSBAs: finite case, structure

Theorem (Jonathan Leech and GK, 2015) Let $n \ge 1$. 1. $_{\mathcal{L}}SBA_n \simeq 2^{\binom{n}{1}} \times 3_L^{\binom{n}{2}} \times 4_L^{\binom{n}{3}} \times \cdots \times (n+1)_L^{\binom{n}{n}}$. Consequently,

$$|_{\mathcal{L}}$$
SBA_n $| = 2^{\binom{n}{1}} 3^{\binom{n}{2}} 4^{\binom{n}{3}} \dots (n+1)^{\binom{n}{n}}.$

2. The number of atoms of $_{\mathcal{L}}\mathbf{SBA}_n$ equals

$$\binom{n}{1}1 + \binom{n}{2}2 + \dots + \binom{n}{n-1}(n-1) + \binom{n}{n}n = n2^{n-1}$$

3. The center of $_{\mathcal{L}}\mathbf{SBA}_n$ is isomorphic to $\mathbf{2}^n$.

Free LSBAs: infinite case

Theorem (Jonathan Leech and GK, 2015)

Let S be a LSBA, let $X \subseteq S$ be a generating set of S and let $\pi: S \to S/\mathcal{D}$ be the canonical homomorphism. TFAE:

- (i) S is freely generated by X.
- (ii) For every finite $Y \subseteq X$, the subalgebra $\langle Y \rangle$ is free on Y.
- (iii) For every subset $\{x_1, \ldots, x_n\}$ of *n* distinct elements in *X*, their evaluations in the $n2^{n-1}$ atomic terms on *n* variables produce $n2^{n-1}$ distinct non-zero outcomes in *S*.
- (iv) S/\mathcal{D} is freely generated by $\pi(X)$ and for any $x \neq y \in X$, $x \cap y$ exists and equals 0. Thus $\mathcal{L}SBA_X$ has intersections.

Proposition

- 1. $_{\mathcal{L}}\mathbf{SBA}_X$ is atomless.
- 2. The center of $_{\mathcal{L}}\mathbf{SBA}_X$ equals $\{0\}$.

Free LSBAs: infinite case, continued

- Let X be infinite and put $\mathcal{X} = \{0,1\}^X \setminus \{f_0\}$ where $f_0 = 0$.
- $\Omega = \{(f, x) \colon f \in \mathcal{X} \text{ and } x \in X \text{ is such that } f(x) = 1\}.$
- ▶ $p: \Omega \to \mathcal{X}: p(f, x) = f, \mathbf{S}_X = \{A \subseteq \Omega: p|_A \text{ is injective.}\}$
- Define the binary operations \lor , \land and \backslash on S_X by:

$$\begin{array}{rcl} A \wedge B & = & \{(f, x) \in A \colon f \in p(A) \cap p(B)\}, \\ A \vee B & = & (A \setminus B) \cup B, \\ A \setminus B & = & \{(f, x) \in A \colon f \in p(A) \setminus p(B)\}. \end{array}$$

- $(S_X; \land, \lor \backslash, \varnothing)$ is a LSBIA.
- ▶ $i: X \to \mathbf{S}_X, i(x) = \{(f, x): f(x) = 1\}, \overline{X} = \{i(x): x \in X\}, \mathbf{S}_X = \langle \overline{X} \rangle.$
- ▶ The evaluation of e(Z, Y, y), where $Z \subseteq X$ is finite, is $\{(f, y) \in \Omega : f(x) = 1, x \in Y \text{ and } f(x) = 0, x \in Z \setminus Y\}$.
- S_X is freely generated by \overline{X} .

Free LSBIAs: finite case

$_{\mathcal{L}}$ **SBIA**_X — the free LSBIA over the generating set X.

- ▶ free LSBAs: atoms encoded pointed non-empty subsets of *X*.
- free LSBIAs: atoms encoded by pointed partitions of non-empty subsets of X!

The construction (GK, 2016)

Let (X, α, A) be a pointed partition of a non-empty subset of X. Let $\alpha = \{A_1, \ldots, A_k\}$ (thus $A = A_i$ for some *i*) and $Y = \text{dom}(\alpha)$. Define

 $e(X, \alpha, A) = p \setminus (\lor Q)$, where

$$p = (\Box A) \land (\land \{\Box A_i \colon 1 \le i \le k\}) = (\Box A) \land (\Box A_1) \land \dots \land (\Box A_k) \text{ and}$$
$$Q = (X \setminus Y) \cup \{\Box (A_i \cup A_j) \colon 1 \le i < j \le k\}.$$

Free LSBIAs: finite case continued

Example. Let $X = \{x_1, x_2, x_3, x_4, x_5\}$, $\alpha = x_1x_3|x_4$, $\beta = x_2|x_3x_4|x_5$ and $\gamma = x_1x_2x_3x_4x_5$. Then:

 $e(X, \alpha, \{x_4\}) = (x_4 \land (x_1 \sqcap x_3)) \setminus (x_2 \lor x_5 \lor (x_1 \sqcap x_3 \sqcap x_4)),$ $e(X, \alpha, \{x_1, x_3\}) = ((x_1 \sqcap x_3) \land x_4) \setminus (x_2 \lor x_5 \lor (x_1 \sqcap x_3 \sqcap x_4)),$

$$e(X, \beta, \{x_3, x_4\}) = \\ ((x_3 \sqcap x_4) \land x_2 \land x_5) \setminus (x_1 \lor (x_2 \sqcap x_3 \sqcap x_4) \lor (x_2 \sqcap x_5) \lor (x_3 \sqcap x_4 \sqcap x_5)), \\ e(X, \gamma, \{x_1, x_2, x_3, x_4, x_5\}) = x_1 \sqcap x_2 \sqcap x_3 \sqcap x_4 \sqcap x_5.$$

Free LSBIAs: finite case continued

Atoms

The elements $e(X, \alpha, A)$ are all pairwise distinct and non-zero, and they are precisely the atoms of $_{\mathcal{L}}$ **SBIA**_X. Thus atoms are in a bijection with pointed partitions of non-empty subsets of X.

The relation of containment of partitions

Let $Z \subseteq Y$, $Z \neq \emptyset$, and α, β be partitions of non-empty subsets of Z and Y, respectively. Define $(Z, \alpha) \preceq (Y, \beta)$ if

 $\operatorname{dom}(\alpha) \subseteq \operatorname{dom}(\beta) \subseteq \operatorname{dom}(\alpha) \cup (Y \setminus Z)$

and for any $x, y \in dom(\alpha)$: $x \alpha y$ if and only if $x \beta y$.

Example

Let $Y = \{x_1, x_2, x_3, x_4\}$, $Z = \{x_1, x_2, x_3\}$, $\alpha = x_1|x_2, \beta = x_1|x_2x_4$ $\gamma = x_1x_3|x_2x_4$. Then $(Z, \alpha) \preceq (Y, \beta)$, but $(Z, \alpha) \not \preceq (Y, \gamma)$ since $\operatorname{dom}(\gamma) \not \subseteq \operatorname{dom}(\alpha) \cup (Y \setminus Z)$.

Free LSBIAs: finite case continued

If (X, α, A) is a pointed partition and $(X, \alpha) \preceq (Y, \beta)$ then there is the only block of β which contains A, denoted $A\uparrow_{\alpha}^{\beta}$.

Theorem (Decomposition Rule)

Let S be a LSBIA, X, Y be finite non-empty subsets of S and $X \subseteq Y$. Let (X, α, A) be a pointed partition. Then

$$e(X,\alpha,A) = \lor \{ e\left(Y,\beta,A\uparrow_{\alpha}^{\beta}\right) : (X,\alpha) \preceq (Y,\beta) \}, \qquad (1)$$

the latter join being orthogonal.

Free LSBIAs: finite case, structure

The *n*th *Bell number*, B_n , equals the number of partitions of an *n*-element set. The *Stirling number of the second kind*, ${n \\ k}$, equals the number of partitions of an *n*-element set into *k* non-empty subsets, $n \ge 1$, $1 \le k \le n$.

Theorem (GK, 2016)

1. $_{\mathcal{L}}$ **SBIA**_n has precisely $B_{n+1} - 1$ atomic \mathcal{D} -classes. Thus $_{\mathcal{L}}$ **SBIA**_n $/\mathcal{D} \simeq 2^{B_{n+1}-1}$.

2.
$$_{\mathcal{L}}$$
SBIA_n $\simeq 2^{\binom{n+1}{2}} \times 3^{\binom{n+1}{3}}_{L} \times \cdots \times (n+1)^{\binom{n+1}{n+1}}_{L},$
 $|_{\mathcal{L}}$ SBIA_n $| = 2^{\binom{n+1}{2}} 3^{\binom{n+1}{3}} \cdots (n+1)^{\binom{n+1}{n+1}}.$

- 3. \mathcal{L} **SBIA**_n has precisely $B_{n+2} 2B_{n+1}$ atoms.
- The center of LSBIA_n is isomorphic to 2^{2ⁿ−1} which is isomorphic to GBA_n which is isomorphic to the maximum commutative quotient of LSBIA_n.

Free LSBIAs: infinite case

•
$$\mathcal{X} = \{ (X, \alpha) \colon \alpha \in \mathcal{P}(Y) \text{ where } Y \subseteq X \text{ and } Y \neq \emptyset \}.$$

•
$$\Omega = \{(X, \alpha, A) \colon (X, \alpha) \in \mathcal{X} \text{ and } A \in \alpha\}.$$

►
$$p: \Omega \to \mathcal{X}, \ p(X, \alpha, A) = (X, \alpha)$$

•
$$\mathbf{S}_X = \{ U \subseteq \Omega \colon p|_U \text{ is injective} \}.$$

• On S_X we define the binary operations \lor , \land , \setminus and \sqcap by:

$$U \wedge V = \{(X, \alpha, A) \in U : (X, \alpha) \in p(U) \cap p(V)\},\$$

$$U \vee V = (U \setminus V) \cup V,\$$

$$U \setminus V = \{(X, \alpha, A) \in U : (X, \alpha) \in p(U) \setminus p(V)\},\$$

$$U \sqcap V = U \cap V.$$

$$\{(X,\beta,A\uparrow_{\alpha}^{\beta})\in\Omega\colon (X_n,\alpha)\preceq (X,\beta)\}.$$

• S_X is freely generated by \overline{X} .

Free LSBAs: countable generating set

Infinite partition tree: level *i*: partitions of subsets of $[i] = \{1, 2, ..., i\}$. $([i], \alpha)$ is connected with $([i + 1], \beta)$ iff $([i], \alpha) \preceq ([i + 1], \beta)$.

This tree is Cantorian, so that its boundary is homeomorphic to the Cantor set. Basis of topology: sets [v] = all paths passing through v, where v ranges over the vertices. Thus $_{\mathcal{L}} SBIA_{\mathbb{N}} / \mathcal{D} \simeq GBA_{\mathbb{N}}$.

Main references

1. G. Kudryavtseva, J. Leech, Free skew Boolean algebras, preprint, arXiv:1510.07539.

2. G. Kudryavtseva, Free skew Boolean intersection algebras and set partitions, preprint, arXiv:1602.01789.