On Łukasiewicz congruences and subalgebras

Michal Botur, Martin Broušek

Palacký University

Olomouc

5. 2. 2016

Michal Botur, Martin Broušek On Łukasiewicz congruences and subalgebras

イロト イポト イヨト イヨト

3

T-norms

Definition

A function $* : [0, 1]^2 \longrightarrow [0, 1]$ is called a *t-norm* if it satisfies the following properties:

- (*a* * *b*) * *c* = *a* * (*b* * *c*)
- a * b = b * a
- 1 * *a* = *a*
- $a \le b \Rightarrow a * c \le b * c$

A t-norm is called *continuous* if it is continuous as a function.

One of the possible bases for fuzzy equational logic

ヘロン 人間 とくほ とくほ とう

э.

→ E → < E →</p>

Continuous t-norms

For every continuous t-norm, there exists a unique residue \rightarrow such that

$$a * b \leq c \iff a \leq b \rightarrow c.$$

Continuous t-norms can be constructed using basic t-norms:

Gödel t-norm

 $a * b = \min\{a, b\}$

Product t-norm

 $a * b = a \cdot b$

Łukasiewicz t-norm

 $a*b = \max\{0, (a+b)-1\}$

MV-algebras and Łukasiewicz t-norm

Definition

An *MV-algebra* $A = (A, \oplus, \neg, 0)$ is an algebra of a type (2,1,0), where $(A, \oplus, 0)$ is a commutative monoid, and which satisfies the following identities:

•
$$\neg \neg a = a$$

•
$$a \oplus \neg 0 = \neg 0$$

•
$$\neg(\neg a \oplus b) \oplus b = \neg(\neg b \oplus a) \oplus a$$

The derived operation \odot is defined as $a \odot b = \neg(\neg a \oplus \neg b)$. Then Łukasiewicz t-norm is the derived operation \odot of the *Standard MV-algebra*

$$\mathcal{S} = ([0,1],\oplus,\neg,0)$$

where $a \oplus b = \min\{1, a + b\}$ and $\neg a = 1 - a$.

ヘロト 人間 ト くほ ト くほ トー

MV-subalgebras

Definition

Let $\mathcal{A} = (\mathcal{A}, \mathcal{F})$ be an algebra. A function $\alpha : \mathcal{A} \longrightarrow [0, 1]$ such that

•
$$\alpha(c) = 1$$
 for every $c \in F_0$

•
$$\bigcirc_{i=1}^{n} \alpha(a_i) \leq \alpha(f(a_1, \ldots, a_n))$$
 for every $f \in F_n$ and $a_1, \ldots, a_n \in A$

is called an *MV-subalgebra* of A.

Łukasiewicz t-norm is the only one of the basic t-norms such that derived "subalgebras" are closed under:

- convex combinations
- Iimits

ヘロン 人間 とくほ とくほ とう

3

Definition

Let $\mathcal{A} = (A, F)$ be an algebra. A function $\theta : A^2 \longrightarrow [0, 1]$ is called an *MV-congruence* on \mathcal{A} if it satisfies the following:

•
$$\theta(a, a) = 1$$

• $\theta(a, b) = \theta(b, a)$
• $\theta(a, b) \odot \theta(b, c) \le \theta(a, c)$
• $\bigcirc_{i=1}^{n} \theta(a_i, b_i) \le \theta(f(a_1, \dots, a_n), f(b_1, \dots, b_n)), f \in F_n$

There is a one-to-one correspondence between MV-congruences on $\mathcal{A} = (A, F)$ and MV-subalgebras of $\mathcal{A}' = (A^2, F')$ such that $F' = F \cup \{(a, a) \mid a \in A\} \cup \{s, t\}$ where

•
$$t((a_1, b_1), (a_2, b_2)) = \begin{cases} (a_1, b_2) & \text{if } b_1 = a_2 \\ (a_1, b_1) & \text{otherwise} \end{cases}$$

ヘロト ヘアト ヘビト ヘビト

Let α_i be an MV-subalgebra for $i \in I$, than a function α such that

$$\alpha(\mathbf{x}) = \bigwedge_{i \in I} \alpha_i(\mathbf{x})$$

is an MV-subalgebra.

Let $S_{MV}(A)$ denote the set of all MV-subalgebras of A.

Definition

For $\gamma : A \longrightarrow [0, 1]$ we define $[\gamma]$ as the smallest MV-subalgebra greater than α , i.e.,

$$[\gamma] = \bigwedge \{ \alpha_i \in S_{MV}(\mathcal{A}) \mid \gamma \leq \alpha_i \}$$

ヘロト ヘアト ヘビト ヘビト

э.

For any MV-subalgebra α of $\mathcal A$ we may define its *levels* as

 $L_k = \{ a \in A \mid \alpha(a) \ge k \}$

where $k \in [0, 1]$ is fixed.

- L_1 is a subalgebra of A
- If $t(y_1, \ldots, y_n, \underline{x})$ is a term of the language F such that x has only one instance in t (denoted as \underline{x}) and $a_1, \ldots, a_n \in L_1, b \in L_k$ than $t(a_1, \ldots, a_n, b) \in L_k$.

Definition

A subset $L \subseteq A$ is called a *level over the subalgebra* S if for every term $t(y_1, \ldots, y_n, \underline{x})$ of the language F and $a_1, \ldots, a_n \in S, b \in L$ the condition $t(a_1, \ldots, a_n, \underline{b}) \in L$.

holds.

ヘロト ヘ戸ト ヘヨト ヘヨト

Let *L* be a level over the subalgebra *S*. We define a function $d_L : A \longrightarrow \mathbb{N} \cup \{\infty\}$ as follows

$$d_L(x) = n$$

where *n* is the smallest number such that there exists a term $t(y_1, \ldots, y_m, \underbrace{x_1, \ldots, x_n})$ and elements $a_1, \ldots, a_m \in S$, $b_1, \ldots, b_n \in L$ for which

$$x = t(a_1,\ldots,a_m,\underline{b_1},\ldots,\underline{b_n}).$$

Theorem

Let L_k be levels of an MV-subalgebra α than

$$\alpha(\mathbf{x}) = \bigvee_{k \in [0,1]} k^{d_{L_k}(\mathbf{x})}$$

where the power is implemented using Łukasiewicz t-norm.

ヘロト 人間 ト くほ ト くほ トー

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Definition

A function $f : [0, 1] \longrightarrow [0, 1]$ is called a \odot -function if it satisfies the following conditions

- g(1) = 1
- $a \leq b \Longrightarrow f(a) \leq f(b)$
- $f(a) \odot f(b) \leq f(a \cdot b)$

Let α be an MV-subalgebra and $f \in \mathbb{O}$ -function than

$$\beta = \alpha \circ f$$

is also an MV-subalgebra.

Super-additive functions

Definition

A function $f : [0, 1] \longrightarrow [0, 1]$ is called a \oplus -function if it satisfies the following conditions

- f(0) = 0
- $a \leq b \Longrightarrow f(a) \leq f(b)$
- $f(a+b) \leq f(a) \oplus f(b)$

The set of \oplus -functions (denoted *SA*) is closed under limits, convex combinations and suprema.

Theorem

The set SA can be generated by the set of all piecewise constant \oplus -functions.

Let $W = \{(a, b) \in [0, 1]^2 \mid a \le b\}$. For $R = (C, S) \in \mathcal{P}(W)^2$ we define a set $F_R = F_C \cap F_S$ where

$$\begin{array}{rcl} {\it F_C} &=& \{f\in SA \mid f(a)=f(b) & \forall (a,b)\in C\} \\ {\it F_S} &=& \{f\in SA \mid f(a)+f(b)=f(a+b) & \forall (a,b)\in S\}. \end{array}$$

We may also define a subset $R_F = (C_F, S_F) \in \mathcal{P}(W)^2$ of all pairs where identities above hold for every $f \in F \subseteq SA$. This would form a Galois connection.

Theorem

Let $R \in \mathcal{P}(W)^2$. If $F_R = \{f\}$ then f is an extreme in SA.

ヘロン 人間 とくほ とくほ とう

э.

To obtain finite $\oplus\mbox{-functions}$ the domain of $\oplus\mbox{-functions}$ can be restricted to

$$K_{n+1} = \{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n}\} \subseteq [0, 1].$$

The second implication of the previous theorem holds for the finite case, thus this case may seem more simple. On the contrary:

- The staircase
- The ski-jupm
- The comfort ski-jupm
- The patologies

To obtain finite $\oplus\mbox{-functions}$ the domain of $\oplus\mbox{-functions}$ can be restricted to

$$K_{n+1} = \{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n}\} \subseteq [0, 1].$$

The second implication of the previous theorem holds for the finite case, thus this case may seem more simple. On the contrary:

- The staircase
- The ski-jupm
- The comfort ski-jupm
- The patologies

To obtain finite $\oplus\mbox{-functions}$ the domain of $\oplus\mbox{-functions}$ can be restricted to

$$K_{n+1} = \{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n}\} \subseteq [0, 1].$$

The second implication of the previous theorem holds for the finite case, thus this case may seem more simple. On the contrary:

- The staircase
- The ski-jupm
- The comfort ski-jupm
- The patologies

To obtain finite $\oplus\mbox{-functions}$ the domain of $\oplus\mbox{-functions}$ can be restricted to

$$K_{n+1} = \{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n}\} \subseteq [0, 1].$$

The second implication of the previous theorem holds for the finite case, thus this case may seem more simple. On the contrary:

- The staircase
- The ski-jupm
- The comfort ski-jupm
- The patologies

・ 同 ト ・ ヨ ト ・ ヨ ト

→ E → < E →</p>

Finite patologies

To obtain finite $\oplus\mbox{-functions}$ the domain of $\oplus\mbox{-functions}$ can be restricted to

$$K_{n+1} = \{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n}\} \subseteq [0, 1].$$

The second implication of the previous theorem holds for the finite case, thus this case may seem more simple. On the contrary:

- The staircase
- The ski-jupm
- The comfort ski-jupm
- The patologies

Thank you for your attention!

Michal Botur, Martin Broušek On Łukasiewicz congruences and subalgebras

ヘロト ヘワト ヘビト ヘビト

3