Quantum structures as near semirings

Ivan Chajda

Palacký University

Olomouc

Joint work with S. Bonzio and A.Ledda

2015

• Łukasiewicz near semirings

- Łukasiewicz near semirings
- Basic algebras as near semirings

- Łukasiewicz near semirings
- Basic algebras as near semirings
- Orthomodular lattices as near semirings

- Łukasiewicz near semirings
- Basic algebras as near semirings
- Orthomodular lattices as near semirings
- Congruence properties

- Łukasiewicz near semirings
- Basic algebras as near semirings
- Orthomodular lattices as near semirings
- Congruence properties

Motivation: representing quantum structures as semirings, similarly to what is done for MV-algebras (Di Nola et al.)

A near semiring is an algebra $\mathbf{R} = \langle R, +, \cdot, 0, 1 \rangle$ of type $\langle 2, 2, 0, 0 \rangle$ such that

• $\langle R, +, 0 \rangle$ is a commutative monoid,

- $\langle R, +, 0 \rangle$ is a commutative monoid,
- $\langle R, \cdot, 1 \rangle$ is a groupoid satisfying $x \cdot 1 = x = 1 \cdot x$,

- $\langle R, +, 0 \rangle$ is a commutative monoid,
- $\langle R, \cdot, 1 \rangle$ is a groupoid satisfying $x \cdot 1 = x = 1 \cdot x$,
- $(x + y) \cdot z = (x \cdot z) + (y \cdot z)$ (Right distributivity)

- $\langle R, +, 0 \rangle$ is a commutative monoid,
- $\langle R, \cdot, 1 \rangle$ is a groupoid satisfying $x \cdot 1 = x = 1 \cdot x$,
- $(x + y) \cdot z = (x \cdot z) + (y \cdot z)$ (Right distributivity)
- $x \cdot 0 = 0 \cdot x = 0$

A near semiring is an algebra $\mathbf{R} = \langle R, +, \cdot, 0, 1 \rangle$ of type $\langle 2, 2, 0, 0 \rangle$ such that

- $\langle R, +, 0 \rangle$ is a commutative monoid,
- $\langle R, \cdot, 1 \rangle$ is a groupoid satisfying $x \cdot 1 = x = 1 \cdot x$,
- $(x + y) \cdot z = (x \cdot z) + (y \cdot z)$ (Right distributivity)
- $x \cdot 0 = 0 \cdot x = 0$

R is a semiring if \cdot is also associative and it satisfies also Left distributivity, i.e. $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$.

Definition

Definition

• commutative if
$$x \cdot y = y \cdot x$$

Definition

- commutative if $x \cdot y = y \cdot x$
- idempotent if x + x = x

Definition

- commutative if $x \cdot y = y \cdot x$
- idempotent if x + x = x
- integral if x + 1 = 1.

Definition

We refer to a near semring ${\boldsymbol{\mathsf{R}}}$ as

- commutative if $x \cdot y = y \cdot x$
- idempotent if x + x = x
- integral if x + 1 = 1.

Remark 1

If **R** is an idempotent near semiring. Then $\langle R, + \rangle$ is a (join) semilattice. If **R** is also integral then 1 is the top element with respect to the order \leq induced by +.

Definition

We refer to a near semring ${\boldsymbol{\mathsf{R}}}$ as

- commutative if $x \cdot y = y \cdot x$
- idempotent if x + x = x
- integral if x + 1 = 1.

Remark 1

If R is an idempotent near semiring. Then $\langle R, + \rangle$ is a (join) semilattice. If R is also integral then 1 is the top element with respect to the order \leq induced by +.

Remark 2

If **R** is an idempotent commutative semiring, whose multiplication is also idempotent $(x \cdot x = x)$ and associative.

Definition

We refer to a near semring ${\boldsymbol{\mathsf{R}}}$ as

- commutative if $x \cdot y = y \cdot x$
- idempotent if x + x = x
- integral if x + 1 = 1.

Remark 1

If R is an idempotent near semiring. Then $\langle R, + \rangle$ is a (join) semilattice. If R is also integral then 1 is the top element with respect to the order \leq induced by +.

Remark 2

If **R** is an idempotent commutative semiring, whose multiplication is also idempotent $(x \cdot x = x)$ and associative. Then clearly $\langle R, +, \cdot \rangle$ is a (non-distributive) bisemilattice

Let **R** be an *idempotent* near semiring, with \leq the induced order. A map ' : $R \rightarrow R$ is an *involution* on R if it satisfies

Let **R** be an *idempotent* near semiring, with \leq the induced order. A map ' : $R \rightarrow R$ is an *involution* on R if it satisfies

•
$$(x')' = x;$$

• if
$$x \leq y$$
 then $y' \leq x'$,

for each $x, y \in R$.

Let **R** be an *idempotent* near semiring, with \leq the induced order. A map ' : $R \rightarrow R$ is an *involution* on R if it satisfies

- (x')' = x;
- if $x \leq y$ then $y' \leq x'$,

for each $x, y \in R$.

The algebra $\mathbf{R} = \langle R, +, \cdot, 0, 1, \rangle$ will be called an involutive near semiring.

Let **R** be an *idempotent* near semiring, with \leq the induced order. A map ' : $R \rightarrow R$ is an *involution* on R if it satisfies

- (x')' = x;
- if $x \leq y$ then $y' \leq x'$,

for each $x, y \in R$.

The algebra $\mathbf{R} = \langle R, +, \cdot, 0, 1, \rangle$ will be called an involutive near semiring.

Theorem 1

Let **R** be an involutive near semiring. Define two new operations as $x + \hat{y} = (x' + y')'$ and $x \cdot \hat{y} = (x' \cdot y')'$. Then $\mathbf{R}_{\alpha} = \langle R, \hat{+}, \hat{\cdot}, \dot{\cdot}, 0', 1' \rangle$ is a near semiring.

Let ${\bf R}$ be an involutive near semiring, satisfying also

Let ${\bf R}$ be an involutive near semiring, satisfying also

Let R be an involutive near semiring, satisfying also

•
$$(x \cdot y')' \cdot y' = (y \cdot x')' \cdot x'$$
,

Let R be an involutive near semiring, satisfying also

•
$$(x \cdot y')' \cdot y' = (y \cdot x')' \cdot x'$$
,

R is called a Łukasiewicz near semiring.

Let R be an involutive near semiring, satisfying also

•
$$(x \cdot y')' \cdot y' = (y \cdot x')' \cdot x',$$

R is called a Łukasiewicz near semiring.

Lemma

Let R be Łukasiewicz near semiring. Then

(a)
$$x \cdot x' = x' \cdot x = 0.$$

Let **R** be an involutive near semiring, satisfying also

•
$$(x \cdot y')' \cdot y' = (y \cdot x')' \cdot x',$$

R is called a Łukasiewicz near semiring.

Lemma

Let R be Łukasiewicz near semiring. Then
(a) x · x' = x' · x = 0.
(b) R is integral.

Let **R** be an involutive near semiring, satisfying also

•
$$(x \cdot y')' \cdot y' = (y \cdot x')' \cdot x',$$

R is called a Łukasiewicz near semiring.

Lemma

Let R be Łukasiewicz near semiring. Then
(a) x ⋅ x' = x' ⋅ x = 0.
(b) R is integral.
(c) x ≤ y if and only if x ⋅ y' = 0.

Let ${\bf R}$ be a Łukasiewicz near semiring whose multiplication is associative.

Let ${\bf R}$ be a Łukasiewicz near semiring whose multiplication is associative. Then multiplication is also commutative.

Let R be a Łukasiewicz near semiring whose multiplication is associative. Then multiplication is also commutative. Furthermore R is a commutative Łukasiewicz semiring.

Let R be a Łukasiewicz near semiring whose multiplication is associative. Then multiplication is also commutative. Furthermore R is a commutative Łukasiewicz semiring.

Corollary 1

(a) Every Łukasiewicz semiring is commutative.

Let R be a Łukasiewicz near semiring whose multiplication is associative. Then multiplication is also commutative. Furthermore R is a commutative Łukasiewicz semiring.

Corollary 1

(a) Every Łukasiewicz semiring is commutative.

(b) A Łukasiewicz near semiring is a Łukasiewicz semiring if and only if multiplication is associative.

Definition

Definition

•
$$x \oplus 0 = x$$
.

Definition

- $x \oplus 0 = x$.
- x'' = x.

Definition

- $x \oplus 0 = x$.
- x'' = x.

•
$$(x'\oplus y)'\oplus y=(y'\oplus x)'\oplus x.$$

Definition

A basic algebra is an algebra $\mathbf{A} = \langle A, \oplus, ', 0, 1 \rangle$ of type $\langle 2, 1, 0, 0 \rangle$ satifying:

- $x \oplus 0 = x$.
- x'' = x.

•
$$(x' \oplus y)' \oplus y = (y' \oplus x)' \oplus x.$$

• $(((x \oplus y)' \oplus y)' \oplus z)' \oplus (x \oplus z) = 1,$

where 0' = 1.

Definition

A basic algebra is an algebra $\mathbf{A} = \langle A, \oplus, ', 0, 1 \rangle$ of type $\langle 2, 1, 0, 0 \rangle$ satifying:

• $x \oplus 0 = x$.

•
$$x'' = x$$
.

•
$$(x'\oplus y)'\oplus y=(y'\oplus x)'\oplus x.$$

•
$$(((x \oplus y)' \oplus y)' \oplus z)' \oplus (x \oplus z) = 1,$$

where 0' = 1.

Remark

Every basic algebra is a bounded lattice, where the order is defined as $x \leq y$ iff $x' \oplus y = 1$

Definition

A basic algebra is an algebra $\mathbf{A} = \langle A, \oplus, ', 0, 1 \rangle$ of type $\langle 2, 1, 0, 0 \rangle$ satifying:

• $x \oplus 0 = x$.

•
$$x'' = x$$
.

•
$$(x'\oplus y)'\oplus y=(y'\oplus x)'\oplus x.$$

•
$$(((x \oplus y)' \oplus y)' \oplus z)' \oplus (x \oplus z) = 1,$$

where 0' = 1.

Remark

Every basic algebra is a bounded lattice, where the order is defined as $x \le y$ iff $x' \oplus y = 1$ and $x \lor y = (x' \oplus y) \oplus y$, $x \land y = (x' \lor y')'$.

Definition

A basic algebra is an algebra $\mathbf{A} = \langle A, \oplus, ', 0, 1 \rangle$ of type $\langle 2, 1, 0, 0 \rangle$ satifying:

• $x \oplus 0 = x$.

•
$$x'' = x$$
.

•
$$(x'\oplus y)'\oplus y=(y'\oplus x)'\oplus x.$$

•
$$(((x \oplus y)' \oplus y)' \oplus z)' \oplus (x \oplus z) = 1,$$

where 0' = 1.

Remark

Every basic algebra is a bounded lattice, where the order is defined as $x \le y$ iff $x' \oplus y = 1$ and $x \lor y = (x' \oplus y) \oplus y$, $x \land y = (x' \lor y')'$. 0 and 1 are the bottom and the top elements of the lattice.

Let *R* be a Łukasiewicz near semiring. Let $a \in R$, then the map $h_a : [a, 1] \to [a, 1]$, defined as $x \mapsto x^a = (x \cdot a')'$ is an antitone involution in the interval [a, 1].

Let *R* be a Łukasiewicz near semiring. Let $a \in R$, then the map $h_a : [a, 1] \to [a, 1]$, defined as $x \mapsto x^a = (x \cdot a')'$ is an antitone involution in the interval [a, 1].

Theorem 4

Let **R** be a Łukasiewicz near semiring. By defining $x \oplus y = ((x' + y) \cdot y')'$,

Let *R* be a Łukasiewicz near semiring. Let $a \in R$, then the map $h_a : [a, 1] \rightarrow [a, 1]$, defined as $x \mapsto x^a = (x \cdot a')'$ is an antitone involution in the interval [a, 1].

Theorem 4

Let **R** be a Łukasiewicz near semiring. By defining $x \oplus y = ((x' + y) \cdot y')'$, then $B(\mathbf{R}) = \langle R, \oplus, ', 0 \rangle$ is a basic algebra.

Let $\mathbf{B} = \langle B, \oplus, ', 0 \rangle$ be a basic algebra. Defining $x + y = (x' \oplus y)' \oplus y$,

Let $\mathbf{B} = \langle B, \oplus, ', 0 \rangle$ be a basic algebra. Defining $x + y = (x' \oplus y)' \oplus y$, $x \cdot y = (x' \oplus y')'$,

Let $\mathbf{B} = \langle B, \oplus, ', 0 \rangle$ be a basic algebra. Defining $x + y = (x' \oplus y)' \oplus y$, $x \cdot y = (x' \oplus y')'$, then $\mathbf{R}(\mathbf{B}) = \langle B, +, \cdot, ', 0, 1 \rangle$ is a Lukasiewicz near semiring.

Let $\mathbf{B} = \langle B, \oplus, ', 0 \rangle$ be a basic algebra. Defining $x + y = (x' \oplus y)' \oplus y$, $x \cdot y = (x' \oplus y')'$, then $\mathbf{R}(\mathbf{B}) = \langle B, +, \cdot, ', 0, 1 \rangle$ is a Lukasiewicz near semiring.

Corollary

Let $M = \langle M, \oplus, ', 0 \rangle$ an MV-algebra. Then R(M) is a commutative Lukasiewicz near semiring.

Let $\mathbf{B} = \langle B, \oplus, ', 0 \rangle$ be a basic algebra. Defining $x + y = (x' \oplus y)' \oplus y$, $x \cdot y = (x' \oplus y')'$, then $\mathbf{R}(\mathbf{B}) = \langle B, +, \cdot, ', 0, 1 \rangle$ is a Lukasiewicz near semiring.

Corollary

Let $\mathbf{M} = \langle M, \oplus, ', 0 \rangle$ an MV-algebra. Then $\mathbf{R}(\mathbf{M})$ is a commutative Lukasiewicz near semiring. Let $\mathbf{R} = \langle R, +, \cdot, ', 0, 1 \rangle$ be a Lukasiewicz semiring and let $x \oplus y = ((x' + y) \cdot y')'$. Then $\mathbf{M}(\mathbf{R}) = \langle R, \oplus, \alpha, 0 \rangle$ is an MV-algebra.

An orthomodular lattice is an algebra $L=\langle L,\vee,\wedge,',0,1\rangle$ of type $\langle 2,2,1,0,0\rangle$ such that

An orthomodular lattice is an algebra $L=\langle L,\vee,\wedge,',0,1\rangle$ of type $\langle 2,2,1,0,0\rangle$ such that

• $\langle L, \lor, \land, 0, 1 \rangle$ is a bounded lattice,

An orthomodular lattice is an algebra $L=\langle L,\vee,\wedge,',0,1\rangle$ of type $\langle 2,2,1,0,0\rangle$ such that

• $\langle {\it L}, \lor, \land, 0, 1 \rangle$ is a bounded lattice,

•
$$x \wedge x' = 0$$
,

• $x \lor x' = 1$,

An orthomodular lattice is an algebra $L=\langle L,\vee,\wedge,',0,1\rangle$ of type $\langle 2,2,1,0,0\rangle$ such that

- $\langle L, \lor, \land, 0, 1 \rangle$ is a bounded lattice,
- $x \wedge x' = 0$,
- $x \lor x' = 1$,
- $x \leq y \Rightarrow y = x \lor (y \land x')$. (Orthomodular law)

An orthomodular lattice is an algebra $L=\langle L,\vee,\wedge,',0,1\rangle$ of type $\langle 2,2,1,0,0\rangle$ such that

- $\langle L, \lor, \land, 0, 1 \rangle$ is a bounded lattice,
- $x \wedge x' = 0$,
- $x \vee x' = 1$,
- $x \leq y \Rightarrow y = x \lor (y \land x')$. (Orthomodular law)

The orthomodular law can be equivalently expressed by an identity, for example $(x \lor y) \land (x \lor (x \lor y)') = y$.

An orthomodular near semiring ${\sf R}$ is a Łukasiewicz near semiring satisfying also:

An orthomodular near semiring R is a Łukasiewicz near semiring satisfying also:

• $x = x \cdot (y + x)$

An orthomodular near semiring R is a Łukasiewicz near semiring satisfying also:

• $x = x \cdot (y + x)$

Lemma

In an orthomodular near semiring, the following holds:

- $x \cdot x = x$
- x + x' = 1

Let $\mathbf{L} = \langle L, \lor, \land, ', 0, 1 \rangle$ be an orthomodular lattice and define multiplication as $x \cdot y := (x \lor y') \land y$ (the Sasaki hook).

Let $\mathbf{L} = \langle L, \lor, \land, ', 0, 1 \rangle$ be an orthomodular lattice and define multiplication as $x \cdot y := (x \lor y') \land y$ (the Sasaki hook). Then $\mathbf{R}(\mathbf{L}) = \langle L, \lor, \cdot, ', 0, 1 \rangle$ is an orthomodular near semiring.

Let $\mathbf{L} = \langle L, \vee, \wedge, ', 0, 1 \rangle$ be an orthomodular lattice and define multiplication as $x \cdot y := (x \vee y') \wedge y$ (the Sasaki hook). Then $\mathbf{R}(\mathbf{L}) = \langle L, \vee, \cdot, ', 0, 1 \rangle$ is an orthomodular near semiring.

Theorem 7

Let **R** be an orthomodular near semiring. Setting $x \lor y = x + y$, and then defining $x \land y = (x' \lor y')'$,

Let $\mathbf{L} = \langle L, \vee, \wedge, ', 0, 1 \rangle$ be an orthomodular lattice and define multiplication as $x \cdot y := (x \vee y') \wedge y$ (the Sasaki hook). Then $\mathbf{R}(\mathbf{L}) = \langle L, \vee, \cdot, ', 0, 1 \rangle$ is an orthomodular near semiring.

Theorem 7

Let **R** be an orthomodular near semiring. Setting $x \lor y = x + y$, and then defining $x \land y = (x' \lor y')'$, then $L(\mathbf{R}) = \langle R, \lor, \land, ', 0, 1 \rangle$ is an orthomodular lattice.

The variety of Lukasiewicz near semirings is congruence regular,

The variety of Lukasiewicz near semirings is congruence regular, witnessed by the terms

$$t_1(x, y, z) = (x \cdot y') + (y \cdot x') + z$$
$$t_2(x, y, z) = ((x \cdot y') + (y \cdot x'))' \cdot z$$

The variety of Lukasiewicz near semirings is congruence regular, witnessed by the terms

$$t_1(x, y, z) = (x \cdot y') + (y \cdot x') + z$$
$$t_2(x, y, z) = ((x \cdot y') + (y \cdot x'))' \cdot z$$

Theorem 9

The variety of Lukasiewicz near semirings is arithmetical.

Thanks for your attention!!