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Near semirings

Definition
A near semiring is an algebra R = 〈R,+, ·, 0, 1〉 of type 〈2, 2, 0, 0〉
such that

〈R,+, 0〉 is a commutative monoid,
〈R, ·, 1〉 is a groupoid satisfying x · 1 = x = 1 · x ,
(x + y) · z = (x · z) + (y · z) (Right distributivity)
x · 0 = 0 · x = 0

R is a semiring if · is also associative and it satisfies also Left
distributivity, i.e. x · (y + z) = (x · y) + (x · z).
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Subvarieties of near semirings

Definition
We refer to a near semring R as

commutative if x · y = y · x
idempotent if x + x = x

integral if x + 1 = 1.

Remark 1
If R is an idempotent near semiring. Then 〈R,+〉 is a (join)
semilattice. If R is also integral then 1 is the top element with
respect to the order ≤ induced by +.

Remark 2
If R is an idempotent commutative semiring, whose multiplication
is also idempotent (x · x = x) and associative. Then clearly
〈R,+, ·〉 is a (non-distributive) bisemilattice
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Involutive near semirings

Involution
Let R be an idempotent near semiring, with ≤ the induced order.
A map ′ : R → R is an involution on R if it satisfies

(x ′)′ = x ;
if x ≤ y then y ′ ≤ x ′,

for each x , y ∈ R .

The algebra R = 〈R,+, ·, 0, 1,′ 〉 will be called an involutive near
semiring.

Theorem 1
Let R be an involutive near semiring. Define two new operations as
x +̂ y = (x ′ + y ′)′ and x ·̂ y = (x ′ · y ′)′. Then
Rα = 〈R, +̂, ·̂, ′

, 0′, 1′〉 is a near semiring.
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Łukasiewicz near semirings

Definition
Let R be an involutive near semiring, satisfying also

(x · y ′)′ · y ′ = (y · x ′)′ · x ′,
R is called a Łukasiewicz near semiring.

Lemma
Let R be Łukasiewicz near semiring. Then
(a) x · x ′ = x ′ · x = 0.
(b) R is integral.
(c) x ≤ y if and only if x · y ′ = 0.
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Łukasiewicz semirings

Theorem 2
Let R be a Łukasiewicz near semiring whose multiplication is
associative. Then multiplication is also commutative. Furthermore
R is a commutative Łukasiewicz semiring.

Corollary 1

(a) Every Łukasiewicz semiring is commutative.

(b) A Łukasiewicz near semiring is a Łukasiewicz semiring if and
only if multiplication is associative.
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Basic algebras

Definition
A basic algebra is an algebra A = 〈A,⊕,′ , 0, 1〉 of type 〈2, 1, 0, 0〉
satifying:

x ⊕ 0 = x .
x ′′ = x .
(x ′ ⊕ y)′ ⊕ y = (y ′ ⊕ x)′ ⊕ x .
(((x ⊕ y)′ ⊕ y)′ ⊕ z)′ ⊕ (x ⊕ z) = 1,

where 0′ = 1.

Remark
Every basic algebra is a bounded lattice, where the order is defined
as x ≤ y iff x ′⊕ y = 1 and x ∨ y = (x ′⊕ y)⊕ y , x ∧ y = (x ′ ∨ y ′)′.
0 and 1 are the bottom and the top elements of the lattice.
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Basic algebras as near semirings

Theorem 3
Let R be a Łukasiewicz near semiring. Let a ∈ R , then the map
ha : [a, 1]→ [a, 1], defined as x 7−→ xa = (x · a′)′ is an antitone
involution in the interval [a, 1].

Theorem 4
Let R be a Łukasiewicz near semiring. By defining
x ⊕ y = ((x ′ + y) · y ′)′, then B(R) = 〈R,⊕,′ , 0〉 is a basic algebra.
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MV-algebras and near semirings

Theorem 5
Let B = 〈B,⊕,′ , 0〉 be a basic algebra. Defining
x + y = (x ′ ⊕ y)′ ⊕ y ,

x · y = (x ′ ⊕ y ′)′, then
R(B) = 〈B,+, ·,′ , 0, 1〉 is a Lukasiewicz near semiring.

Corollary

Let M = 〈M,⊕,′ , 0〉 an MV-algebra. Then R(M) is a commutative
Lukasiewicz near semiring.
Let R = 〈R,+, ·,′ , 0, 1〉 be a Lukasiewicz semiring and let
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Orthomodular lattices

Definition
An orthomodular lattice is an algebra L = 〈L,∨,∧,′ , 0, 1〉 of type
〈2, 2, 1, 0, 0〉 such that

〈L,∨,∧, 0, 1〉 is a bounded lattice,
x ∧ x ′ = 0,
x ∨ x ′ = 1,
x ≤ y ⇒ y = x ∨ (y ∧ x ′). (Orthomodular law)

The orthomodular law can be equivalently expressed by an identity,
for example (x ∨ y) ∧ (x ∨ (x ∨ y)′) = y .
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Orthomodular near semirings

Definition
An orthomodular near semiring R is a Łukasiewicz near semiring
satisfying also:

x = x · (y + x)

Lemma
In an orthomodular near semiring, the following holds:

x · x = x

x + x ′ = 1
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OML as near semirings

Theorem 6

Let L = 〈L,∨,∧,′ , 0, 1〉 be an orthomodular lattice and define
multiplication as x · y := (x ∨ y ′) ∧ y (the Sasaki hook).

Then
R(L) = 〈L,∨, ·,′ , 0, 1〉 is an orthomodular near semiring.

Theorem 7
Let R be an orthomodular near semiring. Setting x ∨ y = x + y ,
and then defining x ∧ y = (x ′ ∨ y ′)′, then L(R) = 〈R,∨,∧,′ , 0, 1〉
is an orthomodular lattice.
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Congruence properties

Theorem 8
The variety of Lukasiewicz near semirings is congruence regular,

witnessed by the terms

t1(x , y , z) = (x · y ′) + (y · x ′) + z

t2(x , y , z) = ((x · y ′) + (y · x ′))′ · z

Theorem 9
The variety of Lukasiewicz near semirings is arithmetical.
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The end!

Thanks for your attention!!
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