Robinson-Amitsur ultrafilters

Pasha Zusmanovich

University of Ostrava

February 6, 2016

A theorem from 1960s

Theorem (S. Amitsur, A. Robinson)

If a prime associative ring R embeds in a direct product of associative division rings, then R embeds in an associative division ring.

Proof

Given embedding: $R \subseteq \prod_{i \in \mathbb{I}} A_i$. $S = \{\{i \in \mathbb{I} \mid f_i \neq 0\} \mid f \in R, f \neq 0\}.$

Primeness of $R \Rightarrow$ finite intersection property of $S \Rightarrow S$ extends to an ultrafilter U.

 $R \subseteq \prod_{\mathcal{U}} A_i + \text{Los'}$ theorem.

1/9

^{2/9} A generalization from 2010s

Theorem ("Robinson–Amitsur for algebraic systems") For any algebraic system A the following are equivalent:

- (i) A is finitely subdirectly irreducible;
- (ii) For any set $\{B_i\}_{i \in \mathbb{I}}$ of algebraic systems, $A \subseteq \prod_{i \in \mathbb{I}} B_i \Rightarrow \exists$ ultrafilter \mathscr{U} on $\mathbb{I} : A \subseteq \prod_{\mathscr{U}} B_i$.

Remark

For rings and algebras, primeness \Rightarrow finite subdirect irreducibility.

Birkhoff meets Robinson-Amitsur

Criterion for absence of nontrivial identities

Let \mathfrak{V} be a variety of algebraic systems such that any free system in \mathfrak{V} is finitely subdirectly irreducible. Then for an algebraic system $A \in \mathfrak{V}$ the following are equivalent:

- (i) A does not satisfy nontrivial identities within \mathfrak{V} ;
- (ii) any free system of $\mathfrak V$ embeds in an ultrapower of A;
- (iii) any free system of ${\mathfrak V}$ embeds in a system elementarily equivalent to A.

Proof

Applicable to:

All groups, Burnside varieties of groups, all algebras, associative algebras, Lie algebras.

3/9

Semigroups?

Question

What about semigroups? Inverse semigroups? Burnside varieties of semigroups? etc...

An obstacle

Free semigroups are not finitely subdirectly irreducible.

^{5/9} Applications

"Baby" Regev's theorem

If A is a finite-dimensional associative algebra, and B is PI, then $A \otimes B$ is PI.

Algebras with the same identities (Kushkulei, Razmyslov, et al.)

If $\mathfrak{g}_1, \mathfrak{g}_2$ are finite-dimensional simple objects in some classes of algebras (Lie, Jordan, etc.), then $Var(\mathfrak{g}_1) = Var(\mathfrak{g}_2) \Leftrightarrow \mathfrak{g}_1 \simeq \mathfrak{g}_2$.

Growth sequence of Tarski's monsters

Under some additional assumptions, the growth sequence (number of generators of $\underbrace{G \times \cdots \times G}$) of Tarski's monster G is constant,

n times

equal to 2.

Another generalization

Theorem ("Robinson–Amitsur: from ω to κ ")

For any algebraic system A, and any cardinal $\kappa > 2$ such that any κ -complete filter can be extended to a κ -complete ultrafilter, the following are equivalent:

- (i) A is κ -subdirectly irreducible;
- (ii) For any set $\{B_i\}_{i\in\mathbb{I}}$ of algebraic systems, $A \subseteq \prod_{i\in\mathbb{I}} B_i \Rightarrow \exists \kappa$ -complete ultrafilter \mathscr{U} on $\mathbb{I} : A \subseteq \prod_{\mathscr{U}} B_i$.

A disappointment

No corollary similar to criterion for absence of nontrivial identities (second-order logic, big cardinals, ...)

^{7/9} Dual situation

Theorem (Bergman-Nahlus)

For any algebraic system A, and any cardinal $\kappa > 2$, the following are equivalent:

- (i) For any surjective homomorphism $f : \prod_{i \in \mathbb{I}} B_i \to A$, $|\mathbb{I}| < \kappa$, there is $i_0 \in \mathbb{I}$ such that f factors through the canonical projection $\prod_{i \in \mathbb{I}} B_i \to B_{i_0}$.
- (ii) For any surjective homomorphism $f : \prod_{i \in \mathbb{I}} B_i \to A$, there is a κ -complete ultrafilter \mathscr{U} on \mathbb{I} such that f factors through the canonical homomorphism $\prod_{i \in \mathbb{I}} B_i \to \prod_{\mathscr{U}} B_i$.

More questions

Question (Zilber)

Whether an ultraproduct of finite groups can be mapped surjectively on SO(3)?

Remark

By Bergman–Nahlus, "ultraproduct" can be replaced by "direct product".

Another question

Robinson-Amitsur for metric ultraproducts?

(Related to sofic groups, continuous first-order logic, etc.)

Based on:

- On the utility of Robinson-Amitsur ultrafilters, J. Algebra 388 (2013), 268–286; arXiv:0911.5414
- On the utility of Robinson-Amitsur ultrafilters. II, arXiv:1508.07496

Slides at http://www1.osu.cz/~zusmanovich/math.html

That's all. Thank you.