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Fixed points in Computer Science

The semantics of recursion is usually described by fixed points of functions, functors,
constructors, or morphisms.

Fixed points have been used: automata and language theory, semantics of program-

ming languages, recursive data types, process algebra, programming logics, verifica-
tion, computational complexity,...

Existence, construction and logic of fixed points.

Many people contributed: Beki¢, De Bakker, Scott, Goguen, Thatcher, Wagner,
Wright, Elgot, Eilenberg, Smyth, Plotkin, Niwinski, Courcelle, Nivat, Bloom, ...

A common basic theory of fixed point operations:

Iteration theories or Iteration categories
Bloom—Elgot—Wright (1980), ZE(1980)

Prototypical example: the category of complete lattices and monotonic functions,

equipped with the parametrized least fixed point operation.



The parametrized least fixed point operation

A, B complete lattices, f: A x B —- A monotonic. Then for each fixed
y € B, the fixed point equation

r = f(z,y)

has a least solution fT(y). The function fT: B — A is monotonic.

Parametric fixed point operator

fiAXB—A — fT:B—>A



Some identities

Fixed point identity
fT=Ffo(flidg) :B— A, f:AxB— A
r= f(x,y)
= f1(y)

Parameter identity
(fo(daxg) =flog:C—A, f:AxB—=Ag:C— B

r = f(x,9(2)) = h(x, 2) z = f(x,y)
x = hi(2) = f1(y)
hi(2) = f1(g(2))



Some identities

Double dagger identity
FIT=(Ffo((ida,ids) xidg) : B> A, f:AxAxB—A

r = f(z,y,2) r= f(z,z,z) = g(z, 2)
z = f1(y,2) z = gf(2)

y = f1(y,2)

y = f11(2)

M(z) = g¢'(2)



Completeness

Complete description: axioms of iteration theories/categories (ZE
1980)

e No finite equational base (Bloom—ZE 2000)
e Simplest known base: some classical identities 4+ generalized power
identities (ZE 1999, 2015)
e Finite quasi-equational axiomatizations
o [MM=ygM= fIT=(fo(gidaxp), fig:AxAxB—A
(Bloom—ZE 1993)
e fo(gidg)=g=f1<g, f:AxB—>Ag:B—A
(ZE 1996)



Fixed points of non-monotonic functions

Sometimes we need to solve fixed point equations involving non-mono-
tonic functions.

Logic programming, language equations, boolean automata, synchronous
and asynchronous circuits, etc.

Two major approaches
Bilattices: Denecker, Fitting, van Gelder, Trusczynski,...
Stratified complete lattices: Rondogiannis, Wadge, ...



Stratified complete lattices
L = (L,<) a complete lattice, (Cq)a<x IS a family of preoredrings of L.
Axiom 1 V5 < a < k. Ly is included in =3.
Axiom 2 (N, =« is the equality relation.
Axiom 3Vzx e L, a<k, X C(zla ={2:V8<az=pgz} Jyc (z]a:
1. X Loy
2. Vze€(z]la XCaz= (yCaz A y<2).
The element y is unique: y=1[], X.

AXiom 4 VX CLX #)Vye La<rk:y=aoX =>y=qVX.

Stratified complete lattices will be called models, for short.



T he standard model

Vi < <..<Fy<...<0<...<Ta<...<Ty <Ty, a<Q

For any set Z, (VZ, <), equipped with the pointwise order is a complete
lattice: [ < g iff Vz f(2) < g(z).

For each ordinal a < €2, define f L, g iff:

1. f and g agree up to (but not including) level «:

VeVB <a f(z)=Fgeg(z)=Fg AN  f(2) =13+ g(z) =1Tp

2. f is below g at level a:

Vz f(z)=Ta=g9(z)=Ta AN ¢g(z)=Fy= f(z)=Fy



Lattice theorem

Define

xLy iff 2=y V dJa<kzClay

Theorem (Lattice theorem, ZE-Rondogiannis) If L is a model, then
(L,C) is a complete lattice.

Least element: L, greatest element not necessarily T
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Weakly monotonic functions

f:L— L' where L,L' models.
f a-monotonic, where a < k, if

Ve,yc L xCay = f(z)Cla f(y)

f weakly monotonic if it is a-monotonic for all o < k.

Example Let k = Q and let —=: VZ — VZ4:

To+1 if f(z) = Fa
(—f)(x) = Fog1 If f(z) =Ta
0 if f(x) =0

Let P be a normal logic program over Z. One can canonically associate
a function fp: V%4 — VZ with P. Then fp is weakly monotonic.
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Fixed point theorem

Theorem (Fixed point theorem, ZE-Rondogiannis) L a model and
f . L — L weakly monotonic. Then there is a C-least x € L with
f(x) C . Moreover, this least pre-fixed point x is a fixed point.

Remark

e f is not necessarily monotonic w.r.t. LC.

e When Co=< and L, is the equality relation on L, for all 0 < a < k,
then C is the ordering <, a function f : L — L is weakly monotonic iff
it is monotonic w.r.t. <, and the theorem asserts that when f: L — L
is monotonic, then it has a least (pre-)fixed point w.r.t. <.
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Parameters
But we also want to solve equations x = f(z,vy) involving parameters.

Fact Models and weakly monotonic functions form a Cartesian cate-
gory.

Proposition Suppose that L, L’ are models and f : L x L' — L is weakly
monotonic. Then for each y € L/, there is a C-least x = fT(y) with
f(z,y) C . Moreover, it holds that z = f(z,y) and fT : L' — L is
weakly monotonic.

So we have a (parametrized) stratified least fixed point operation:

fiAXB—A — fT:B—>A

It extends the (parametrized) least fixed point operation on mono-
tonic functions of complete lattices.
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Main result

Theorem (ZE) An identity holds for the stratified least fixed point op-
erator over weakly monotonic functions of models iff it holds in iteration
categories.
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Further results

e o-continuous functions and weakly continuous functions.

e Cartesian closed categories and the abstraction identity.

e A stronger notion of models. Fixed points form a complete lattice.

e Representation theorem by inverse limit models.
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