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Abstract

Abstract

Weakly orthocomplemented posets are introduced and investigated
in connection to poset-valued preference structures, as a
generalization of orthocomplemented posets. Different
representations of such posets are presented. Moreover, necessary
and sufficient conditions for a pointwise closure system to be a
system of cuts of poset valued preference structures with a fixed
co-domain is given. Also we give a convenient representation of
posets via join-irreducibles in the framework of poset valued
intuitionistic structures.
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Orthocomplemented poset

An orthocomplemented poset (P,≤,⊥, 0, 1) is a poset (P,≤),
equipped with the top 1 and a bottom 0, and with an antitone
involution ⊥ over P such that for all x ∈ P, the join x ∨ x⊥ exists
and x ∨ x⊥ = 1.

Two elements x , y ∈ P are called orthogonal if x ≤ y⊥.
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Orthogonal poset

Let P = (P;≤,′ , 0, 1) be a bounded poset with a unary operation ′

satisfying the following

(a) x ′′ = x ;
(b) x ≤ y implies y ′ ≤ x ′;
(c) if x ≤ y ′ then the supremum x ∨ y exists in P;
(d) x ∨ x ′ = 1.

Then P is called an orthogonal poset [I. Chajda, 2014].
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An orthogonal poset that satisfies the orthomodular law

from x ≤ y it follows that x ∨ (x ′ ∧ y) = y
is called an orthomodular poset.

If, it is a lattice, then it is called an orthomodular lattice.

A. Tepavčević Characterization of posets connected to preference structures



An orthogonal poset that satisfies the orthomodular law
from x ≤ y it follows that x ∨ (x ′ ∧ y) = y

is called an orthomodular poset.

If, it is a lattice, then it is called an orthomodular lattice.
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Weakly orthocomplemented poset

New structure: weakly orthocomplemented poset.

Let (P,≤, ⊥, 0, 1) be a bounded poset with a unary operation ⊥ ,
satisfying the following: for all x , y ∈ P
(i) x⊥⊥ = x ;
(ii) x ≤ y implies y⊥ ≤ x⊥;
(iii) if x is not comparable with x⊥, then the supremum x ∨ x⊥

exists and x ∨ x⊥ = 1.

We call such an ordered structure a weakly orthocomplemented
poset.
Examples of weakly orthocoplemented posets are Boolean lattices,
orthcomplemented posets, orthogonal posets, bounded chains.
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Preliminaries

In our investigation we deal with mappings from a non-empty set
X (domain) into a poset P (co-domain) P-valued sets.

Special cases when P is a complete lattice (lattice valued sets) or
the unit interval [0, 1] of real numbers (fuzzy sets).

If µ : X → P is a P-valued set on X then, for p ∈ P, the set

µp := {x ∈ X | µ(x) ≥ p}

is said to be the p-cut, a cut set or simply a cut of µ.

R : X × X → P is a P-valued (binary) relation on X .

A. Tepavčević Characterization of posets connected to preference structures



Preliminaries

In our investigation we deal with mappings from a non-empty set
X (domain) into a poset P (co-domain) P-valued sets.

Special cases when P is a complete lattice (lattice valued sets) or
the unit interval [0, 1] of real numbers (fuzzy sets).

If µ : X → P is a P-valued set on X then, for p ∈ P, the set

µp := {x ∈ X | µ(x) ≥ p}

is said to be the p-cut, a cut set or simply a cut of µ.

R : X × X → P is a P-valued (binary) relation on X .
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P-valued relations

In the collection RP of all cuts of a P-valued relation R, the
following hold:

(a) If p ≤ q, then Rq ⊆ Rp.

(b) For a, b ∈ X

R(a, b) =
∨
{p ∈ P | (a, b) ∈ Rp}

(The join on the right exists in (P,≤) for all a, b ∈ X and is equal
to R(a, b).)

(c) If Q ⊆ P, and there exists a supremum of Q (
∨
{p | p ∈ Q}),

then ⋂
{Rp | p ∈ Q} = R∨

{p|p∈Q}.

(d) The collection RP is a centralized system.
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Preference relations

Poset valued preference relations

Preferences are binary relations on a set of alternatives.
A preference relation on a set of alternatives A is often
investigated within the framework of a preference structure -
ordered triple (P, I , J), in which P is a strict preference, I
indifference and J incomparability relation on A.
Associated to any classical preference structure without
incomparable elements we could consider a three-valued binary
relation R such that R(a, b) = 1 if (a, b) ∈ P, R(a, b) = 1/2 if
(a, b) ∈ I and R(a, b) = 0 if (b, a) ∈ P.
A more realistic description of relations can be obtained if we
consider R taking values on [0, 1] instead of just {0, 1/2, 1}.
They are called probabilistic relations and they are applied in
decision making, mathematical psychology, etc. They are often
also called reciprocal or ipsodual relation.
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Preference relations

Poset valued preference relations

Let X be the set of alternatives. The mapping R : X × X → [0, 1]
is a reciprocal relation on X if for any a, b ∈ X

R(a, b) + R(b, a) = 1

or, equivalently, R(a, b) = Rc(b, a), where Rc denotes the
complement of R (Rc(x , y) = 1− R(x , y)).

The definition above implies that for any a ∈ X , R(a, a) = 1
2 .

Hence the value 1
2 represents indistinguishability for [0, 1]-valued

reciprocal relations.
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Preference relations

Moreover, for any a, b ∈ X , one of the numbers R(a, b), R(b, a) is
in the interval [0, 12 ], while the other is in [12 , 1].

Also, for a, b, c , d ∈ [0, 1], we have that R(a, b) ≤ R(c, d) implies
R(d , c) ≤ R(b, a).

Hence, in this approach:

R(a, b) = 1/2 indicates indifference between a and b,

R(a, b) = 1 indicates that a is absolutely preferred to b, and

R(a, b) > 1/2 indicates that a is preferred to b to some
degree.
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Preference relations

Let X be a nonempty set (universe of objects) and P a bounded
poset.

The mapping R : X × X → P is a poset-valued reciprocal
preference relation (a P-valued preference relation) on X if for
any a, b, c , d ∈ X ,

R(a, b) ≤ R(c, d) implies R(d , c) ≤ R(b, a) and

if R(a, b) and R(b, a) are not comparable, then R(a, b)∨R(b, a) = 1.

As an immediate consequence, we get that if the mapping
R : X × X → P is a P-valued preference relation, then for any
a, b, c, d ∈ X we have the following equivalence:

R(a, b) ≤ R(c , d) if and only if R(d , c) ≤ R(b, a).
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Preference relations

As another consequence we have the following: R(a, b) is
incomparable with R(c , d) if and only if R(b, a) is incomparable
with R(d , c).

Lemma

Let X be a nonempty set and let P be a poset. If the mapping
R : X × X → P is a P-valued preference relation on X , then for all
a, b, c, d ∈ X , we have that

R(a, b) = R(c , d)⇐⇒ R(d , c) = R(b, a).

For P-valued preference relations in general, there is no single
value representing indistinguishability, corresponding to the value 1

2
from the unit interval case. However, from the definition of a
P-valued preference relation, we obtain a kind of a set of equilibria,
as follows:
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Lemma

Let X be a nonempty set and P a poset. If the mapping
R : X × X → P is a P-valued preference relation on X , then for
any a, b ∈ X the values R(a, a) and R(b, b) are either equal or
incomparable.
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Proposition

Let R be a poset valued preference relation on X . For any
a, b ∈ X , if R(a, b) and R(b, a) are incomparable, then for every
c ∈ X , both R(a, b) and R(b, a) are incomparable with R(c , c).
Further, if R(a, b) ≤ R(c, c) and R(b, a) ≤ R(d , d) for some
c , d ∈ X , then R(a, b) = R(b, a) = R(c, c) = R(d , d).

As consequence, whenever R(a, b) and R(c , c) are comparable,
then R(c , c) is between R(a, b) and R(b, a), with respect to the
order in P.
Thus, the class {R(a, a) | a ∈ P} is a kind of equilibrium for R.
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Corollary

Let R be a P-valued preference relation on X , where P is a
bounded chain. Then, for all a, b, c ∈ X , a 6= b,

R(a, b) ≤ R(c , c) ≤ R(b, a) or R(b, a) ≤ R(c , c) ≤ R(a, b) and

R(a, a) = R(b, b).

A P-valued preference has a particular impact on the structure of
membership values.
For a P-valued relation R : X × X → P, by Ran(R) we denote the
range of R, i.e., the sub-poset of P, consisting of membership
values under R:

Ran(R) = {p ∈ P | p = R(a, b) for some a, b ∈ X}.
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A. Tepavčević Characterization of posets connected to preference structures



Preference relations

Proposition

Let R be a P-valued preference relation on X with values in a
partially ordered set P. For a, b ∈ X , define

R(a, b)⊥ := R(b, a).

Then, ⊥ is an order reversing involution on a sub-poset Ran(R) of
P. In addition, for any a, b ∈ X , R(a, b) ∨ R(a, b)⊥ exists and for
non-comparable R(a, b) and R(a, b)⊥,

R(a, b) ∨ R(a, b)⊥ = 1.
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Corollary

If R is a P-valued preference relation on X , then the sub-poset
Ran(R) ∪ {0, 1} of P is a weakly orthocomplemented poset under
the unary operation ⊥, defined by R(a, b)⊥ = R(b, a), and with
constant 0 and 1 being respectively the bottom and the top of P,
so that 0⊥ = 1.
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Representation theorem

Remark

By the definition of the operation ⊥ on Ran(R), for every a ∈ X
we have R(a, a)⊥ = R(a, a). Hence, for each p ∈ Ran(R) which is
a value of R(a, a) for some a ∈ X , we have p⊥ = p, i.e., p should
be a fixed point of this operation on Ran(R).

Theorem

Let (P,≤) be a bounded poset with the top 1 and the bottom 0,
and X 6= ∅. Let R : X × X → P be a P-valued relation.
Then, R is a P-valued preference relation on X if and only if there
is an order reversing involution ⊥ on Q = Ran(R) ∪ {0, 1}, such
that the (Q,≤, ⊥, 0, 1) is a weakly orthocomplemented poset,
fulfilling the following:

If R(x , y) = p for some x , y ∈ X , then R(y , x) = p⊥.
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Representation theorem

As a consequence, we have a characterization theorem for posets
having an order reversing involution with fixed points, in terms of
poset valued preferences.

Theorem

Let P be a bounded poset such that there exists a P-valued
preference relation R with Ran(R) = P. Then, there is a unary
operation ⊥ on P under which P is a weakly orthocomplemented
poset with a nonempty set of fixed points.

Following the case of [0, 1]-valued relations, we introduce a
particular P-valued preference relation.
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Representation theorem

Let X be a nonempty set and let (P,≤,⊥, 0, 1) be a weakly
orthocomplemented poset. A mapping R : X × X → P is a
P-valued probabilistic preference relation on X if for any
a, b ∈ X we have that

R(b, a) = R(a, b)⊥.

From the above theorems, it is straightforward that this notion is
equivalent to the previous one. Namely, we have the following.
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Representation theorem

Corollary

Let X be a nonempty set (universe of objects) and let
(P,≤,⊥, 0, 1) be a bounded poset with a unary operation ⊥.
Then, the mapping R : X × X → P is a poset-valued probabilistic
preference relation on Ran(R) ∪ {0, 1} if and only if it is a
poset-valued preference relation on Ran(R) ∪ {0, 1}.

Thus, a reciprocal relation on [0, 1] is a [0, 1]-valued preference
relation with the order reversing involution: x⊥ = 1− x .
Therefore, the concept introduced here over poset generalizes the
classical notion.
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Cuts of poset-valued preferences

For every finite set of alternatives there exists a poset valued
preference relation whose cuts are all crisp relations on this domain.

Theorem

Let X be a finite nonempty set. Then, there is a poset P and a
poset valued preference relation R : X × X → P, such that every
relation on X is a cut of R.
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Cuts of poset-valued sets

The following theorem gives necessary and sufficient conditions
under which a family of subsets on a set is a family of cuts of a
poset-valued set.

Theorem

Let F be a family of subsets of a nonempty set X and let (P,6) be
a poset. Then, there is a poset valued set µ : X −→ P such that
F is its collection of cuts if and only if the following are satisfied:

1 F is closed under centralized intersections and
⋃
F = X .

2 There is an isotone function E : Y −→ P from the poset
(Y ,⊇) to (P,6), where
Y = {Zx | x ∈ X and Zx =

⋂
{f ∈ F | x ∈ f }},

such that for every r ∈ P,
⋃

E−1(↑r ∩ E (Y )) ∈F ,
and the mapping P −→ F , defined by
Φ(r) =

⋃
E−1(↑r ∩ E (Y )) is ’onto’.
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Poset valued intuitionistic sets

Let X be a nonempty set and P be an arbitrary poset. Let
µ : X −→ P and ν : X → P be two functions from X to P.

Then (P, µ, ν) is a poset valued intuitionistic set on set X if for
each x ∈ X ,

µ(x) ↓ ∩ν(x) ↓⊆ S ,

where S is {B} if P has the bottom element B, and S = ∅
otherwise.
The function µ is called the membership function, where µ(x)
represents belonging of an element x to the intuitionistic set and
the function ν is called the non-membership function, ν(x)
representing non-belonging of an element x to the poset valued
intuitionistic set.
For each p ∈ P, two types of cut sets of (P, µ, ν) are defined as
follows:

µp = {x ∈ X | µ(x) ≥ p} and νp = {x ∈ X | ν(x) ≤ p}.
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Theorem

Let X be a non-empty set, (P,≤) a finite poset with the set of
join-irreducible elements J , represented by a subset of {0, 1}J and
let µ : X → P and ν : X → P be two arbitrary functions. Then
(P, µ, ν) is a poset valued intuitionistic set on set X if and only if
µ(x)(i) + ν(x)(i) ≤ 1, for all x ∈ X and all i ∈ J .
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