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Outline
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Jaroslav Šeděnka Recovering short ideal generators AAA91, Brno 2016 2 / 19



Cyclotomic field k = Q(ζ)
Let ζm = e2πi/m

k = Q(ζm) is a cyclotomic number field of order m and degree ϕ(m)

Ok = Z[ζm] the ring of integers in k .

There are exactly ϕ(m) different complex embeddings σj : k → C, defined
for each j ∈ {1, . . . ,m − 1} satisfying (j ,m) = 1. These embeddings can
be defined by setting σj(ζm) = ζ jm.
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Log-embedding of k∗ = Q(ζm)∗

We can set n = ϕ(m)/2 and define the log-embedding

Log : k∗ → Rn

α 7−→ (log |σj1(α)|, · · · , log |σjn(α)|)

Important remark

Λ = Log(O×k ) is a full-rank (n-1) lattice in H = (1, . . . , 1)⊥ ⊂ Rn.
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Principal ideals of Ok with short generators

Proposed by several lattice cryptosystems

• Homomorphic encryption Smart and Vercauteren [2010]

• Soliloquy Campbell et al. [2014]

Cryptoanalyzed later

• Soliloquy Campbell et al. [2014]

• Dan Bernstein’s blog post

• Cramer et al. [2015]
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Principal ideals of Ok with short generators

Let g ∈ Ok be a ”short” element, and let I = (g) = gOk be a principal
ideal.
We will consider retrieving g (or other short element) from a arbitrary
element h such as I = (h).

Reduction modulo Λ

We have g = hu for some u ∈ O×k , so

Log(g) ∈ Log(h) + Λ

To minimize the right side is equivalent to solving the Closest Vector
Problem for Log(h) in Λ.
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Lattice L generated by {v1, v2}
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Closest vector problem (CVP)
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Closest vector problem (CVP)
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Solving CVP using U
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Babai’s rounding algorithm

Goal: Given basis B of lattice L and a vector v ∈ span(B), compute
a vector w ∈ L close to v

• Let Rn = span(B), compute the dual basis B† = (B−1)T

• Express v in dual basis as v † = (B†)Ta

• Round coefficient-wise w † = round((B†)Ta)

• Transform w † back to standard basis as w = Bw †
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Finding short generator in Q(ζpr )
As has been shown in Cramer et al. [2015], the canonical basis of

cyclotomic units C ⊂ O×k , defined as bi = ζ i−1
ζ−1 for i 6= 1, (i ,m) = 1 is

suitable for Babai’s rounding algorithm.

All ||b†i || are the same and ||b†i ||2 = O(m−1 log3 m).
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Generalizing the result for k = Q(ζm)

Recovering g from Log(g): double exponential in number of distinct
primes

Babai’s algorithm recovers Log(g) = Log(h) + Log(u), so we know u up to
Ker Log = 〈ζm,−1〉 and [O×k : C ] = 2kh+(m) (showed by Sinnott [1978]).
Here k = 2s−2 + 1− s where s ≥ 2 is the number of distinct primes
dividing m.

We need some small-index subgroup of O×k with a nice basis. So we do
not want too many distinct primes dividing m.

bi is not a basis for units

In general, bi for (i ,m) = 1 do not suffice as generators for C . Adding bjp
and blq would help (in some sense), but these elements are not units.
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Focus on k = Q(ζpq)

[O×k : C ] = h+(pq).

Do we have a simple basis of C?

Yes, under a technical condition: we need p, q to be mutual semi-primitive
roots, that is, 〈p,−1〉 = F∗q and 〈q,−1〉 = F∗p.

Then {zi = ζ ipq − 1; s.t.(i , pq) = 1} is a full set of generators of C .

From now on, we will use m = pq such that p, q satisfy the above
condition.

Caveat!

There are ϕ(pq)/2 generators of Log(C ), but rank(Λ) = ϕ(pq)/2− 1, so
we have one too many elements to get a basis.
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First possible solution
Set n = ϕ(pq)/2.

1. Lift generators to Rn

By using z ′i = zi + t.(1, . . . , 1) as a basis of L ⊂ Rn, we can compute a
dual basis and project it back to H to get a dual basis of Log(C ).

• Prone to numerical instability (how do you pick the right t)?
• Rather unsatisfactory results
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Second possibility

Sacrifice n in index

We can repeat the work of Cramer et al. [2015] and use
Log(bi ) = Log(zi )− Log(z1) as basis of some C ′.

• We get a symmetric basis

• However, [C : C ′] = n.
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Precisely and full-index

Remember, the problem was to find a lattice basis in
(1, . . . , 1)⊥ = H ⊂ Rn from a set of n (one too many!) generators.

There is Gal(k/Q) ∼= (Z/(pqZ))×-action on k , which corresponds to
(Z/(pqZ))×/{±1} ∼= G -action on Log(k∗)

0 −→ IG
ι→ R[G ]

ε−→ R −→ 0

Decompose R[G ] ∼= eR× (1− e)R using ring idempotent e = 1
n

∑
σ∈G σ
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Thank you for your attention.
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