Presented by:

Dr. Khaldoun Al-Zoubi

DEPARTMENT OF MATHEMATICS AND STATISTICS
JORDAN UNIVERSITY OF SCIENCE AND
TECHNOLOGY, JORDAN
E-MAIL: KFZOUBI@JUST.EDU.JO

Introduction

Definition:

Let G be a group with identity e. Then a ring R is a G-graded ring if there exist additive subgroups R_g of R indexed by the elements $g \in G$ such that $R = \bigoplus_{g \in G} R_g$ and $R_g R_h \subseteq R_{gh}$ for all $g, h \in G$.

The elements of R_g are called homogeneous of degree g and all the homogeneous elements are denoted by h(R), i.e. $h(R) = \bigcup_{g \in G} R_g$. If $x \in R$, then x can be written uniquely as $\sum_{g \in G} x_g$, where x_g is called homogeneous component of x in R_g . Moreover, R_g is a subring of R and $1 \in R_g$.

Introduction

Example Let R be any ring and G be any group with identity e. Then R is G-graded by $R_e = R$ and $R_g = 0$ for all $g \in G$ - $\{e\}$. This graduation is called the trivial graduation of R by G.

Example

Let R = K[x], where K is a field, and G = Z. Then R is G-graded by

 $R_0 = K$, $R_i = Kx^i$ for i > 0 and $R_i = 0$ for i < 0. This is called the usual graduation of K[x] by Z.

Definition

Let $R = \bigoplus_{g \in G} R_g$ be a G-graded ring . An ideal I of R is said to

be a graded ideal if $I = \bigoplus_{g \in G} (I \cap R_g) := \bigoplus_{g \in G} I_g$. Thus if $x \in I$, then $x = \sum_{g \in G} x_g$ with $x_g \in I$.

The following example shows that an ideal of a G-graded ring need not be a graded ideal in general.

Example $R = \mathbb{Z}[i]$ (the Gaussian integers) and let $G = \mathbb{Z}_2$. Then R is G-graded ring with $R_0 = \mathbb{Z}$ and $R_1 = i\mathbb{Z}$. Let I be the ideal of R generated by x = (1+i). Then $x_0 = 1$ and $x_1 = i$. Clearly, $x \in I$ while $x_0 \notin I$ because if $x_0 \in I$, then there exists $a + ib \in \mathbb{Z}[i]$ such that 1 = (a + ib)(1 + i), which implies a - b = 1 and a + b = 0. Hence 2a = 1, a contradiction Thus I is not a graded ideal of R.

The concept of graded prime ideal was introduce in[6]. as a generalization of the notion of prime ideal.

Definition:

Let R be a G-graded ring. A proper graded ideal I of R is said to be graded prime ideal of R if whenever a and b are homogenous element of R such that $ab \in I$, then either $a \in I$ or $b \in I$.

Example Let $R = \mathbb{Z}[i]$ (the Gaussian integers) and let $G = \mathbb{Z}_2$. Then R is G-graded ring with $R_0 = \mathbb{Z}$ and $R_1 = i\mathbb{Z}$. Let I = 2R. Then I is graded prime ideal which is not a prime ideal since $(1+i)(1-i) \in I$, $1+i \notin I$ and $1-i \notin I$.

Theorem Let R be a G-graded ring and I be a graded ideal of R. Then I is a graded prime ideal if and only if whenever J_1, J_2 are graded ideals of R with $J_1J_2 \subseteq I$, $J_1 \subseteq I$ or $J_2 \subseteq I$.

Theorem Let I_1, \ldots, I_n be graded ideals of G-graded ring R. Let P be a graded prime ideal such that $\bigcap_{i=1}^n I_i \subseteq P$.

Then $I_i \subseteq P$ for some $1 \le i \le n$.

Definition

Let R be a G-graded ring. A graded prime ideal P of R is said to satisfy the condition (*), if $\{I_{\alpha}\}_{\alpha\in\Delta}$ is a family of graded ideals of R, then P contains $\bigcap_{\alpha\in\Delta}I_{\alpha}$ only if P contains some I_{α} . A graded ring R is said to satisfy the condition (*) if all graded prime ideals of R satisfies the condition (*).

Theorem Let R be a G-graded integral domain. If R satisfies the condition (*), then R is a graded field.

Let R and R' be two G-graded rings. A homomorphism of graded rings $\varphi: R \to R'$ is a homomorphism of rings verifying $\varphi(R_g) \subseteq R'_g$ for every $g \in G$.

Theorem

Let R and R' be two G-graded rings and $\varphi: R \to R'$ be an epimorphism of graded rings. Let P' be a graded prime ideal of R'. Then P' is a graded prime ideal of R' if and only if $\varphi^{-1}(P')$ is a graded prime ideal of R.

Theorem Let R and R' be two G-graded rings and $\varphi: R \to R'$ be an epimorphism of graded rings. If R satisfies the condition (*), then R' satisfies the condition (*).

Corollary Let R be a G-graded ring satisfying the condition (*) and I a graded ideal of R. Then R/I satisfies the condition (*).

A G-graded ring R is said to be a graded Artinian (gr-Artinian) if satisfies the descending chain condition for graded ideals.

Theorem Let R be a G-graded ring. If R is a graded Artinian ring, then R satisfies the condition (*).

Definition A G-graded ring R is said to satisfy the condition

(#) if P is a graded prime ideal of R and $\{I_{\alpha}\}_{\alpha \in \Delta}$ is a family of graded ideals of R such that $I_{\alpha} + P = R$ for all $\alpha \in \Delta$, then $\bigcap_{\alpha \in \Delta} I_{\alpha} \not\subseteq P$.

Theorem

Let R be a G-graded ring. If R satisfies the condition (*), then R satisfies the condition (#).

Theorem Let R and R' be two G-graded ring and $\varphi: R \to R'$ be an epimorphism of graded ring. If R satisfies the condition (#), then R' satisfies the condition (#).

Theorem Let R be a G-graded ring, and $\{I_{\alpha}\}_{{\alpha}\in\Lambda}$ be a family of graded ideals of R. Then the following are equivalent:

- R satisfies the condition (#).
- ii) Every graded maximal ideal M of R satisfies the condition(*).
- iii) For any graded maximal ideal M of R, $M+I_a=R$ implies $M+(\cap_{\alpha\in\Lambda}I_\alpha)=R$

- S.E. Atani: On graded weakly prime ideals, Turk. J. Math. 30 (2006),351-358.
 - 2.S.E. Atani: On graded prime submodules, Chiang Mai. J. Sci. 33 (2008), 3-7.
- R. Hazrat: Graded Rings and Graded Grothendieck Groups, Cambridge University Press, Cambridge, 2016.
- C. Nastasescu and V.F. Oystaeyen: Graded Ring Theory, Mathematical Library 28, North Holand, Amsterdam, 1982.
- C. Nastasescu and V.F. Oystaeyen: Methods of Graded Rings. LNM 1836.
 Berlin-Heidelberg: Springer-Verlag, 2004.
- M. Refai and K. Al-Zoubi: On graded primary ideals, Turk. J. Math. 28 (2004), 217-229.
- R.Y. Sharp: Steps in Commutative Algebra, Cambridge University Press, Cambridge, (1990).
- R. N. Uregen, U. Tekir, and K.H Oral: On the union of graded prime ideals.
 Open Phys. 14 (2016), 114-118.

THANKS FOR YOUR LISTENING

