# - TECHNISCHE UNIVERSITÄT WIEN WIEN 

# Centralisers in algebra and elsewhere 

Mike Behrisch ${ }^{\times}$<br>${ }^{\times}$Institute of Discrete Mathematics and Geometry, Algebra Group, TU Wien

8th September 2016 • Trojanovice

## Disclaimer

## Today all my carrier sets $A$ are finite and non-empty!

## Disclaimer

## Today all my carrier sets $A$ are finite and non-empty!

Assume $A=\{0, \ldots, k-1\}$ if it helps.

## Apologies

I will bore you.

## Apologies

I will bore some of you.

## Sit back, relax and


M. Behrisch

Centralisers in algebra and elsewhere

## Everyone likes groups?

- structure $\langle G ; \odot\rangle$ with a binary operation


## Everyone likes groups?

- structure $\langle G ; \odot\rangle$ with a binary operation (group, semigroup, ring, algebra... )


## Everyone likes groups?

- structure $\langle G ; \odot\rangle$ with a binary operation (group, semigroup, ring, algebra... )
- in general: $\odot$ not commutative, but some elements commute


## Everyone likes groups?

- structure $\langle G ; \odot\rangle$ with a binary operation (group, semigroup, ring, algebra...)
- in general: $\odot$ not commutative, but some elements commute
- binary relation: $x \perp y: \Longleftrightarrow x y=y x$ (i.e. $x \odot y=y \odot x$ )


## Everyone likes groups?

- structure $\langle G ; \odot\rangle$ with a binary operation (group, semigroup, ring, algebra... )
- in general: $\odot$ not commutative, but some elements commute
- binary relation: $x \perp y: \Longleftrightarrow x y=y x$ (i.e. $x \odot y=y \odot x$ )

| Toy example $G=\operatorname{Dih}(3)$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{Dih}(3)=\left\langle r, s \mid r^{3}=s^{2}=e, s r=r^{-1} s\right\rangle$ |  |  |  |  |  |  |
| $r^{0}$ | $r^{0}$ | $r^{1}$ | $r^{2}$ | $r^{0} s$ | $r^{1} s$ | $r^{2} s$ |
| $r^{0}$ | $r^{0}$ | $r^{1}$ | $r^{2}$ | $r^{0} s$ | $r^{1} s$ | $r^{2} s$ |
| $r^{1}$ | $r^{1}$ | $r^{2}$ | $r^{0}$ | $r^{1} s$ | $r^{2} s$ | $r^{0} s$ |
| $r^{2}$ | $r^{2}$ | $r^{0}$ | $r^{1}$ | $r^{2} s$ | $r^{0} s$ | $r^{1} s$ |
| $r^{0} s$ | $r^{0} s$ | $r^{2} s$ | $r^{1} s$ | $r^{0}$ | $r^{2}$ | $r^{1}$ |
| $r^{1} s$ | $r^{1} s$ | $r^{0} s$ | $r^{2} s$ | $r^{1}$ | $r^{0}$ | $r^{2}$ |
| $r^{2} s$ | $r^{2} s$ | $r^{1} s$ | $r^{0} s$ | $r^{2}$ | $r^{1}$ | $r^{0}$ |

## Everyone likes groups?

- structure $\langle G ; \odot\rangle$ with a binary operation (group, semigroup, ring, algebra... )
- in general: $\odot$ not commutative, but some elements commute
- binary relation: $x \perp y: \Longleftrightarrow x y=y x$ (i.e. $x \odot y=y \odot x$ )
Toy example $G=\operatorname{Dih}(3)$

| $\operatorname{Dih}(3)$ | $=\left\langle r, s \mid r^{3}=s^{2}=e, s r=r^{-1} s\right\rangle$ |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| $r^{0}$ | $r^{0}$ | $r^{1}$ | $r^{2}$ | $r^{0} s$ | $r^{1} s$ | $r^{2} s$ |  |
| $r^{0}$ | $r^{0}$ | $r^{1}$ | $r^{2}$ | $r^{0} s$ | $r^{1} s$ | $r^{2} s$ | $\bullet x^{n} \perp x$ |
| $r^{1}$ | $r^{1}$ | $r^{2}$ | $r^{0}$ | $r^{1} s$ | $r^{2} s$ | $r^{0} s$ |  |
| $r^{2}$ | $r^{2}$ | $r^{0}$ | $r^{1}$ | $r^{2} s$ | $r^{0} s$ | $r^{1} s$ |  |
| $r^{0} s$ | $r^{0} s$ | $r^{2} s$ | $r^{1} s$ | $r^{0}$ | $r^{2}$ | $r^{1}$ |  |
| $r^{1} s$ | $r^{1} s$ | $r^{0} s$ | $r^{2} s$ | $r^{1}$ | $r^{0}$ | $r^{2}$ |  |
| $r^{2} s$ | $r^{2} s$ | $r^{1} s$ | $r^{0} s$ | $r^{2}$ | $r^{1}$ | $r^{0}$ |  |

## Everyone likes groups?

- structure $\langle G ; \odot\rangle$ with a binary operation (group, semigroup, ring, algebra... )
- in general: $\odot$ not commutative, but some elements commute
- binary relation: $x \perp y: \Longleftrightarrow x y=y x$ (i.e. $x \odot y=y \odot x$ )

Toy example $G=\operatorname{Dih}(3)$

| $\operatorname{Dih}(3)$ | $=\left\langle r, s \mid r^{3}=s^{2}=e, s r=r^{-1} s\right\rangle$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| $r^{0}$ | $r^{0}$ | $r^{1}$ | $r^{2}$ | $r^{0} s$ | $r^{1} s$ | $r^{2} s$ |  |
| $r^{0}$ | $r^{0}$ | $r^{1}$ | $r^{2}$ | $r^{0} s$ | $r^{1} s$ | $r^{2} s$ | $\bullet x^{n} \perp x$ |
| $r^{1}$ | $r^{1}$ | $r^{2}$ | $r^{0}$ | $r^{1} s$ | $r^{2} s$ | $r^{0} s$ | $\bullet x \perp x$ |
| $r^{2}$ | $r^{2}$ | $r^{0}$ | $r^{1}$ | $r^{2} s$ | $r^{0} s$ | $r^{1} s$ |  |
| $r^{0} s$ | $r^{0} s$ | $r^{2} s$ | $r^{1} s$ | $r^{0}$ | $r^{2}$ | $r^{1}$ |  |
| $r^{1} s$ | $r^{1} s$ | $r^{0} s$ | $r^{2} s$ | $r^{1}$ | $r^{0}$ | $r^{2}$ |  |
| $r^{2} s$ | $r^{2} s$ | $r^{1} s$ | $r^{0} s$ | $r^{2}$ | $r^{1}$ | $r^{0}$ |  |

## Everyone likes groups?

- structure $\langle G ; \odot\rangle$ with a binary operation (group, semigroup, ring, algebra... )
- in general: $\odot$ not commutative, but some elements commute
- binary relation: $x \perp y: \Longleftrightarrow x y=y x$ (i.e. $x \odot y=y \odot x$ )

Toy example $G=\operatorname{Dih}(3)$

| $\operatorname{Dih}(3)$ | $=\langle r, s\|$ | $\left.r^{3}=s^{2}=e, s r=r^{-1} s\right\rangle$ |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $r^{0}$ | $r^{0}$ | $r^{1}$ | $r^{2}$ | $r^{0} s$ | $r^{1} s$ | $r^{2} s$ |  |
| $r^{0}$ | $r^{0}$ | $r^{1}$ | $r^{2}$ | $r^{0} s$ | $r^{1} s$ | $r^{2} s$ | $\bullet x^{n} \perp x$ |
| $r^{1}$ | $r^{1}$ | $r^{2}$ | $r^{0}$ | $r^{1} s$ | $r^{2} s$ | $r^{0} s$ | $\bullet x \perp x$ |
| $r^{2}$ | $r^{2}$ | $r^{0}$ | $r^{1}$ | $r^{2} s$ | $r^{0} s$ | $r^{1} s$ | $\bullet e \perp x$ |
| $r^{0} s$ | $r^{0} s$ | $r^{2} s$ | $r^{1} s$ | $r^{0}$ | $r^{2}$ | $r^{1}$ |  |
| $r^{1} s$ | $r^{1} s$ | $r^{0} s$ | $r^{2} s$ | $r^{1}$ | $r^{0}$ | $r^{2}$ |  |
| $r^{2} s$ | $r^{2} s$ | $r^{1} s$ | $r^{0} s$ | $r^{2}$ | $r^{1}$ | $r^{0}$ |  |

## Everyone likes groups?

- structure $\langle G ; \odot\rangle$ with a binary operation (group, semigroup, ring, algebra... )
- in general: $\odot$ not commutative, but some elements commute
- binary relation: $x \perp y: \Longleftrightarrow x y=y x$ (i.e. $x \odot y=y \odot x$ )

Toy example $G=\operatorname{Dih}(3)$

| $\operatorname{Dih}(3)$ | $=\langle r, s\| r$ | $\left.=s^{2}=e, s r=r^{-1} s\right\rangle$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $r^{0}$ | $r^{0}$ | $r^{1}$ | $r^{2}$ | $r^{0} s$ | $r^{1} s$ | $r^{2} s$ |  |
| $r^{0}$ | $r^{0}$ | $r^{1}$ | $r^{2}$ | $r^{0} s$ | $r^{1} s$ | $r^{2} s$ | $\bullet x^{n} \perp x$ |
| $r^{1}$ | $r^{1}$ | $r^{2}$ | $r^{0}$ | $r^{1} s$ | $r^{2} s$ | $r^{0} s$ | $\bullet x \perp x$ |
| $r^{2}$ | $r^{2}$ | $r^{0}$ | $r^{1}$ | $r^{2} s$ | $r^{0} s$ | $r^{1} s$ | $\bullet e \perp x$ |
| $r^{0} s$ | $r^{0} s$ | $r^{2} s$ | $r^{1} s$ | $r^{0}$ | $r^{2}$ | $r^{1}$ | $\bullet x \perp y \Longleftrightarrow$ |
| $r^{1} s$ | $r^{1} s$ | $r^{0} s$ | $r^{2} s$ | $r^{1}$ | $r^{0}$ | $r^{2}$ | $y \perp x$ |
| $r^{2} s$ | $r^{2} s$ | $r^{1} s$ | $r^{0} s$ | $r^{2}$ | $r^{1}$ | $r^{0}$ |  |

## Observations from our toy example

- $\forall x \in G: e \perp x$


## Observations from our toy example

- $\forall x \in G: e \perp x$
- $\perp$ is symmetric


## Observations from our toy example

- $\forall x \in G: e \perp x$
- $\perp$ is symmetric
- $y \perp x, z \perp x \Longrightarrow y z \perp x$


## Observations from our toy example

- $\forall x \in G: e \perp x$
- $\perp$ is symmetric
- $y \perp x, z \perp x \Longrightarrow y z \perp x$

$$
x(y z)=(x y) z=(y x) z=y(x z)=y(z x)=(y z) x
$$

## Observations from our toy example

- $\forall x \in G: e \perp x$
- $\perp$ is symmetric
- $y \perp x, z \perp x \Longrightarrow y z \perp x$

$$
x(y z)=(x y) z=(y x) z=y(x z)=y(z x)=(y z) x
$$

- $x \perp x$, so $x^{n} \perp x$


## Observations from our toy example

- $\forall x \in G: e \perp x$
- $\perp$ is symmetric
- $y \perp x, z \perp x \Longrightarrow y z \perp x$
$x(y z)=(x y) z=(y x) z=y(x z)=y(z x)=(y z) x$
- $x \perp x$, so $x^{n} \perp x$
- groups: $y \perp x \Longrightarrow y^{-1} \perp x$


## Observations from our toy example

- $\forall x \in G: e \perp x$
- $\perp$ is symmetric
- $y \perp x, z \perp x \Longrightarrow y z \perp x$

$$
x(y z)=(x y) z=(y x) z=y(x z)=y(z x)=(y z) x
$$

- $x \perp x$, so $x^{n} \perp x$
- groups: $y \perp x \Longrightarrow y^{-1} \perp x$ $x y=y x \Longleftrightarrow y^{-1} x=x y^{-1}$


## Observations from our toy example

- $\forall x \in G: e \perp x$
- $\perp$ is symmetric
- $y \perp x, z \perp x \Longrightarrow y z \perp x$

$$
x(y z)=(x y) z=(y x) z=y(x z)=y(z x)=(y z) x
$$

- $x \perp x$, so $x^{n} \perp x$
- groups: $y \perp x \Longrightarrow y^{-1} \perp x$

$$
x y=y x \Longleftrightarrow y^{-1} x=x y^{-1}
$$

## Centralisers

$\langle G ; \odot\rangle$ groupoid, $x \in G, F \subseteq G$.

## Observations from our toy example

- $\forall x \in G: e \perp x$
- $\perp$ is symmetric
- $y \perp x, z \perp x \Longrightarrow y z \perp x$

$$
x(y z)=(x y) z=(y x) z=y(x z)=y(z x)=(y z) x
$$

- $x \perp x$, so $x^{n} \perp x$
- groups: $y \perp x \Longrightarrow y^{-1} \perp x$

$$
x y=y x \Longleftrightarrow y^{-1} x=x y^{-1}
$$

## Centralisers

$\langle G ; \odot\rangle$ groupoid, $x \in G, F \subseteq G$.
$x^{*}:=\{y \in G \mid y \perp x\}$

## Observations from our toy example

- $\forall x \in G: e \perp x$
- $\perp$ is symmetric
- $y \perp x, z \perp x \Longrightarrow y z \perp x$

$$
x(y z)=(x y) z=(y x) z=y(x z)=y(z x)=(y z) x
$$

- $x \perp x$, so $x^{n} \perp x$
- groups: $y \perp x \Longrightarrow y^{-1} \perp x$

$$
x y=y x \Longleftrightarrow y^{-1} x=x y^{-1}
$$

## Centralisers

$\langle G ; \odot\rangle$ groupoid, $x \in G, F \subseteq G$.
$x^{*}:=\{y \in G \mid y \perp x\}$
$F^{*}:=\bigcap_{x \in F} x^{*}=\{y \in G \mid \forall x \in F: y \perp x\}$

## Observations from our toy example

- $\forall x \in G: e \perp x$
- $\perp$ is symmetric
- $y \perp x, z \perp x \Longrightarrow y z \perp x$

$$
x(y z)=(x y) z=(y x) z=y(x z)=y(z x)=(y z) x
$$

- $x \perp x$, so $x^{n} \perp x$
- groups: $y \perp x \Longrightarrow y^{-1} \perp x$ $x y=y x \Longleftrightarrow y^{-1} x=x y^{-1}$


## Centralisers

$\langle G ; \odot\rangle$ groupoid, $x \in G, F \subseteq G$.
$x^{*}:=\{y \in G \mid y \perp x\}$
$F^{*}:=\bigcap_{x \in F} x^{*}=\{y \in G \mid \forall x \in F: y \perp x\}$
Centralisers in groups $G$

## Observations from our toy example

- $\forall x \in G: e \perp x$
- $\perp$ is symmetric
- $y \perp x, z \perp x \Longrightarrow y z \perp x$

$$
x(y z)=(x y) z=(y x) z=y(x z)=y(z x)=(y z) x
$$

- $x \perp x$, so $x^{n} \perp x$
- groups: $y \perp x \Longrightarrow y^{-1} \perp x$

$$
x y=y x \Longleftrightarrow y^{-1} x=x y^{-1}
$$

## Centralisers

$\langle G ; \odot\rangle$ groupoid, $x \in G, F \subseteq G$.
$x^{*}:=\{y \in G \mid y \perp x\}$
$F^{*}:=\bigcap_{x \in F} x^{*}=\{y \in G \mid \forall x \in F: y \perp x\}$
Centralisers in groups $G$
$x^{*} \leq G$

## Observations from our toy example

- $\forall x \in G: e \perp x$
- $\perp$ is symmetric
- $y \perp x, z \perp x \Longrightarrow y z \perp x$

$$
x(y z)=(x y) z=(y x) z=y(x z)=y(z x)=(y z) x
$$

- $x \perp x$, so $x^{n} \perp x$
- groups: $y \perp x \Longrightarrow y^{-1} \perp x$

$$
x y=y x \Longleftrightarrow y^{-1} x=x y^{-1}
$$

## Centralisers

$\langle G ; \odot\rangle$ groupoid, $x \in G, F \subseteq G$.
$x^{*}:=\{y \in G \mid y \perp x\}$
$F^{*}:=\bigcap_{x \in F} x^{*}=\{y \in G \mid \forall x \in F: y \perp x\}$
Centralisers in groups $G$

$$
x^{*} \leq G \quad\langle x\rangle_{G} \subseteq x^{*}
$$

## Observations from our toy example

- $\forall x \in G: e \perp x$
- $\perp$ is symmetric
- $y \perp x, z \perp x \Longrightarrow y z \perp x$

$$
x(y z)=(x y) z=(y x) z=y(x z)=y(z x)=(y z) x
$$

- $x \perp x$, so $x^{n} \perp x$
- groups: $y \perp x \Longrightarrow y^{-1} \perp x$

$$
x y=y x \Longleftrightarrow y^{-1} x=x y^{-1}
$$

## Centralisers

$\langle G ; \odot\rangle$ groupoid, $x \in G, F \subseteq G$.
$x^{*}:=\{y \in G \mid y \perp x\}$
$F^{*}:=\bigcap_{x \in F} x^{*}=\{y \in G \mid \forall x \in F: y \perp x\}$
Centralisers in groups $G$

$$
x^{*} \leq G \quad\langle x\rangle_{G} \subseteq x^{*} \quad x^{*}=x^{-1^{*}}
$$

Finishing the toy example

```
G= Dih(3)
```

$\operatorname{Dih}(3)=\left\langle r, s \mid r^{3}=s^{2}=e, s r=r^{-1} s\right\rangle$| $r^{0}$ | $r^{0}$ | $r^{1}$ | $r^{2}$ | $r^{0} s$ | $r^{1} s$ | $r^{2} s$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $r^{0}$ | $r^{0}$ | $r^{1}$ | $r^{2}$ | $r^{0} s$ | $r^{1} s$ | $r^{2} s$ |
| $r^{1}$ | $r^{1}$ | $r^{2}$ | $r^{0}$ | $r^{1} s$ | $r^{2} s$ | $r^{0} s$ |
| $r^{2}$ | $r^{2}$ | $r^{0}$ | $r^{1}$ | $r^{2} s$ | $r^{0} s$ | $r^{1} s$ |
| $r^{0} s$ | $r^{0} s$ | $r^{2} s$ | $r^{1} s$ | $r^{0}$ | $r^{2}$ | $r^{1}$ |
| $r^{1} s$ | $r^{1} s$ | $r^{0} s$ | $r^{2} s$ | $r^{1}$ | $r^{0}$ | $r^{2}$ |
| $r^{2} s$ | $r^{2} s$ | $r^{1} s$ | $r^{0} s$ | $r^{2}$ | $r^{1}$ | $r^{0}$ |

- $e^{*}=\operatorname{Dih}(3)$

Finishing the toy example

```
G= Dih(3)
```

|  | $r^{0}$ | $r^{0}$ | $r^{1}$ | $r^{2}$ | $r^{0} s$ | $r^{1} s$ | $r^{2} s$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{Dih}(3)=\left\langle r, s \mid r^{3}=s^{2}=e, s r=r^{-1} s\right\rangle$ | $r^{0}$ | $r^{0}$ | $r^{1}$ | $r^{2}$ | $r^{0} s$ | $r^{1} s$ | $r^{2} s$ |
|  | $r^{1}$ | $r^{1}$ | $r^{2}$ | $r^{0}$ | $r^{1} s$ | $r^{2} s$ | $r^{0} s$ |
|  | $r^{2}$ | $r^{2}$ | $r^{0}$ | $r^{1}$ | $r^{2} s$ | $r^{0} s$ | $r^{1} s$ |
|  | $r^{0} s$ | $r^{\circ}{ }_{s}$ | $r^{2} s$ | $r^{1} s$ | $r^{0}$ | $r^{2}$ | $r^{1}$ |
|  | $r^{1} s$ | $r^{1} s$ | $r^{0} s$ | $r^{2} s$ | $r^{1}$ | $r^{0}$ | $r^{2}$ |
|  | $r^{2} s$ | $r^{2} s$ | $r^{1} s$ | $r^{0} s$ | $r^{2}$ | $r^{1}$ | $r^{0}$ |

- $e^{*}=\operatorname{Dih}(3)$
- $r^{*}=r^{2^{*}}=\langle r\rangle_{\operatorname{Dih}(3)}=\left\{r^{0}, r^{1}, r^{2}\right\}$

Finishing the toy example

```
G= Dih(3)
```

$\operatorname{Dih}(3)=\left\langle r, s \mid r^{3}=s^{2}=e, s r=r^{-1} s\right\rangle$| $r^{0}$ | $r^{0}$ | $r^{1}$ | $r^{2}$ | $r^{0} s$ | $r^{1} s$ | $r^{2} s$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $r^{0}$ | $r^{0}$ | $r^{1}$ | $r^{2}$ | $r^{0} s$ | $r^{1} s$ |
| $r^{1}$ | $r^{2} s$ |  |  |  |  |  |
| $r^{2}$ | $r^{2}$ | $r^{0}$ | $r^{1} s$ | $r^{2} s$ | $r^{0} s$ |  |
| $r^{2}$ | $r^{0}$ | $r^{1}$ | $r^{2} s$ | $r^{0} s$ | $r^{1} s$ |  |
| $r^{0} s$ | $r^{0}$ | $r^{2} s$ | $r^{1} s$ | $r^{0}$ | $r^{2}$ | $r^{1}$ |
| $r^{1} s$ | $r^{0} s$ | $r^{2} s$ | $r^{1}$ | $r^{0}$ | $r^{2}$ |  |
| $r^{1} s$ | $r^{2}$ |  |  |  |  |  |
| $r^{2} s$ | $r^{2}$ | $r^{1} s$ | $r^{0} s$ | $r^{2}$ | $r^{1}$ | $r^{0}$ |

- $e^{*}=\operatorname{Dih}(3)$
- $r^{*}=r^{2^{*}}=\langle r\rangle_{\operatorname{Dih}(3)}=\left\{r^{0}, r^{1}, r^{2}\right\}$
- $r^{i} s^{*}=\left\langle r^{i} s\right\rangle_{\operatorname{Dih}(3)}=\left\{r^{0}, r^{i} s\right\}$

Finishing the toy example

```
G= Dih(3)
```

|  | $r^{0}$ | $r^{0}$ | $r^{1}$ | $r^{2}$ | $r^{0} s$ | $r^{1} s$ | $r^{2} s$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{Dih}(3)=\left\langle r, s \mid r^{3}=s^{2}=e, s r=r^{-1} s\right\rangle$ | $r^{0}$ | $r^{0}$ | $r^{1}$ | $r^{2}$ | $r^{0} s$ | $r^{1} s$ | $r^{2} s$ |
|  | $r^{1}$ | $r^{1}$ | $r^{2}$ | $r^{0}$ | $r^{1} s$ | $r^{2} s$ | $r^{0} s$ |
|  | $r^{2}$ | $r^{2}$ | $r^{0}$ | $r^{1}$ | $r^{2} s$ | $r^{0} s$ | $r^{1} s$ |
|  | $r^{0} s$ | $r^{0} s$ | $r^{2} s$ | $r^{1} s$ | $r^{0}$ | $r^{2}$ | $r^{1}$ |
|  | $r^{1} s$ | $r^{1} s$ | $r^{0} s$ | $r^{2} s$ | $r^{1}$ | $r^{0}$ | $r^{2}$ |
|  | $r^{2} s$ | $r^{2} s$ | $r^{1} s$ | $r^{0} s$ | $r^{2}$ | $r^{1}$ | $r^{0}$ |

- $e^{*}=\operatorname{Dih}(3)$
- $r^{*}=r^{2^{*}}=\langle r\rangle_{\operatorname{Dih}(3)}=\left\{r^{0}, r^{1}, r^{2}\right\}$
- $r^{i} s^{*}=\left\langle r^{i} s\right\rangle_{\operatorname{Dih}(3)}=\left\{r^{0}, r^{i} s\right\}$
- by intersection: $\{r, s\}^{*}=\left\{r^{0}\right\}$

Finishing the toy example

```
G= Dih(3)
```

$\operatorname{Dih}(3)=\left\langle r, s \mid r^{3}=s^{2}=e, s r=r^{-1} s\right\rangle$

| $r^{0}$ | $r^{0}$ | $r^{1}$ | $r^{2}$ | $r^{0} s$ | $r^{1} s$ | $r^{2} s$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $r^{0}$ | $r^{0}$ | $r^{1}$ | $r^{2}$ | $r^{0} s$ | $r^{1} s$ | $r^{2} s$ |
| $r^{1}$ | $r^{1}$ | $r^{2}$ | $r^{0}$ | $r^{1} s$ | $r^{2} s$ | $r^{0} s$ |
| $r^{2}$ | $r^{2}$ | $r^{0}$ | $r^{1}$ | $r^{2} s$ | $r^{0} s$ | $r^{1} s$ |
| $r^{0} s$ | $r^{0} s$ | $r^{2} s$ | $r^{1} s$ | $r^{0}$ | $r^{2}$ | $r^{1}$ |
| $r^{1} s$ | $r^{1} s$ | $r^{0} s$ | $r^{2} s$ | $r^{1}$ | $r^{0}$ | $r^{2}$ |
| $r^{2} s$ | $r^{2} s$ | $r^{1} s$ | $r^{0} s$ | $r^{2}$ | $r^{1}$ | $r^{0}$ |

- $e^{*}=\operatorname{Dih}(3)$
- $r^{*}=r^{2^{*}}=\langle r\rangle_{\operatorname{Dih}(3)}=\left\{r^{0}, r^{1}, r^{2}\right\}$
- $r^{i} s^{*}=\left\langle r^{i} s\right\rangle_{\operatorname{Dih}(3)}=\left\{r^{0}, r^{i} s\right\}$
- by intersection: $\{r, s\}^{*}=\left\{r^{0}\right\}$
- these are all possible subgroups, so no other centralisers (not a general phenomenon)


## I like functions. . .

... but first quiz: who is this?


## I like functions．．．

．．．but first quiz：who is this？



米田信夫

## I like functions．．．

．．．but first quiz：who is this？

Arthur Cayley


Nobuo Yoneda


米田信夫

Cayley (or Yoneda) says...

- every group is (isomorphic to) a permutation group
- every semigroup is a transformation semigroup
- every monoid is a transformation monoid
- every Menger algebra is a Menger algebra of functions
- every abstract clone is a concrete clone


## I like functions.

Cayley (or Yoneda) says...

- every group is (isomorphic to) a permutation group
- every semigroup is a transformation semigroup
- every monoid is a transformation monoid
- every Menger algebra is a Menger algebra of functions
- every abstract clone is a concrete clone

$$
\begin{array}{lr}
M \leq\langle T(A) ; \circ\rangle \text { transformation monoid } & \\
f^{*}=\{g \in M \mid g \circ f=f \circ g\} & (f \in M) \\
F^{*}=\{g \in M \mid \forall f \in F: g \circ f=f \circ g\} & (F \subseteq M) \\
f \perp g \Longleftrightarrow \forall x \in A: g(f(x))=f(g(x)) & (f, g \in M)
\end{array}
$$

Finitary operations

- For $n \in \mathbb{N}_{+}$a func $f: A^{n} \longrightarrow A$ is a $n$-ary operation on $A$
- $\mathcal{O}_{A}^{(n)}:=A^{A^{n}}$ set of $n$-ary operations on $A$
- $\mathcal{O}_{A}:=\bigcup_{n \in \mathbb{N}_{+}} \mathcal{O}_{A}^{(n)}$ set of all finitary operations on $A$


## I like higher-ary operations even more.

Finitary operations

- For $n \in \mathbb{N}_{+}$a func $f: A^{n} \longrightarrow A$ is a $n$-ary operation on $A$
- $\mathcal{O}_{A}^{(n)}:=A^{A^{n}}$ set of $n$-ary operations on $A$
- $\mathcal{O}_{A}:=\bigcup_{n \in \mathbb{N}_{+}} \mathcal{O}_{A}^{(n)}$ set of all finitary operations on $A$

No nullary operations, so sad. . .

## Commutation for higher-ary operations

Commutation
For $n, m \in \mathbb{N}_{+}, f \in \mathcal{O}_{A}^{(n)}, g \in \mathcal{O}_{A}^{(m)}$, we define
$f \perp g: \Longleftrightarrow$

## Commutation for higher-ary operations

Commutation
For $n, m \in \mathbb{N}_{+}, f \in \mathcal{O}_{A}^{(n)}, g \in \mathcal{O}_{A}^{(m)}$, we define

$$
f \perp g: \Longleftrightarrow \forall X=\left(x_{i, j}\right)_{\substack{1 \leq i \leq i \\ 1 \leq j \leq n}} \in A^{m \times n}:
$$

$$
\begin{array}{cccc}
x_{1,1} & \cdots & x_{1, n} \\
\vdots & \ddots & \vdots \\
x_{m, 1} & \cdots & x_{m, n}
\end{array}
$$

## Commutation for higher-ary operations

## Commutation

For $n, m \in \mathbb{N}_{+}, f \in \mathcal{O}_{A}^{(n)}, g \in \mathcal{O}_{A}^{(m)}$, we define

$$
f \perp g: \Longleftrightarrow \forall X=\left(x_{i, j}\right)_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}} \in A^{m \times n}:
$$

| $g$ <br> $\frown$ |  | $g$ |
| :---: | :---: | :---: |
| $x_{1,1}$ | $\cdots$ | $x_{1, n}$ |
| $\vdots$ | $\ddots$ | $\vdots$ |
| $x_{m, 1}$ | $\cdots$ | $x_{m, n}$ |
| $\smile$ |  | $\smile$ |
| $=$ |  | $=$ |
| $c_{1}$ | $\cdots$ | $c_{n}$ |

## Commutation for higher-ary operations

## Commutation

For $n, m \in \mathbb{N}_{+}, f \in \mathcal{O}_{A}^{(n)}, g \in \mathcal{O}_{A}^{(m)}$, we define

$$
f \perp g: \Longleftrightarrow \forall X=\left(x_{i, j}\right)_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}} \in A^{m \times n}:
$$

$$
\begin{aligned}
& g \quad g \\
& f\left(x_{1,1} \cdots x_{1, n}\right)=r_{1} \\
& f\left(x_{m, 1} \cdots x_{m, n}\right)=r_{m} \\
& \smile \smile \\
& =\quad= \\
& c_{1} \cdots c_{n}
\end{aligned}
$$

## Commutation for higher-ary operations

## Commutation

For $n, m \in \mathbb{N}_{+}, f \in \mathcal{O}_{A}^{(n)}, g \in \mathcal{O}_{A}^{(m)}$, we define

$$
\begin{aligned}
& f \perp g: \Longleftrightarrow \forall X=\left(x_{i, j}\right)_{\substack{1 \leq i \leq m \\
1 \leq j \leq n}} \in A^{m \times n}: \\
& \stackrel{g}{\stackrel{g}{-}} \stackrel{g}{\frown} \stackrel{g}{\frown} \\
& f\left(x_{m, 1} \cdots x_{m, n}\right)=r_{m} \\
& \smile \smile \smile \\
& \begin{array}{ccc}
= & & = \\
f\left(\begin{array}{ccc}
c_{1} & \cdots & c_{n}
\end{array}\right)= \\
y
\end{array}
\end{aligned}
$$

Remarks on the definition

## Remark 1

Defining for $m, n \in \mathbb{N}_{+}, f \in \mathcal{O}_{A}^{(n)}$ and any $X=\left(x_{i, j}\right)_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}} \in A^{m \times n}$

$$
f(X):=\left(\begin{array}{c}
f(X(1, \cdot)) \\
\vdots \\
f(X(m, \cdot))
\end{array}\right)=\left(\begin{array}{c}
f\left(x_{1,1}, \ldots, x_{1, n}\right) \\
\vdots \\
f\left(x_{m, 1}, \ldots, x_{m, n}\right)
\end{array}\right)
$$

## Remark 1

Defining for $m, n \in \mathbb{N}_{+}, f \in \mathcal{O}_{A}^{(n)}$ and any $X=\left(x_{i, j}\right)_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}} \in A^{m \times n}$

$$
f(X):=\left(\begin{array}{c}
f(X(1, \cdot)) \\
\vdots \\
f(X(m, \cdot))
\end{array}\right)=\left(\begin{array}{c}
f\left(x_{1,1}, \ldots, x_{1, n}\right) \\
\vdots \\
f\left(x_{m, 1}, \ldots, x_{m, n}\right)
\end{array}\right)
$$

we have for $f \in \mathcal{O}_{A}^{(n)}, g \in \mathcal{O}_{A}^{(m)}$ :
$f \perp g \Longleftrightarrow \forall Y=\left(y_{i, j}\right)_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}} \in A^{m \times n}: g(f(Y))=f\left(g\left(Y^{T}\right)\right)$.

Remarks on the definition

Remark 1
For $n, m \in \mathbb{N}_{+}, f \in \mathcal{O}_{A}^{(n)}, g \in \mathcal{O}_{A}^{(m)}$ :
$f \perp g \Longleftrightarrow \forall X \in A^{m \times n}: g(f(X))=f\left(g\left(X^{T}\right)\right)$.

Remarks on the definition

Remark 1
For $n, m \in \mathbb{N}_{+}, f \in \mathcal{O}_{A}^{(n)}, g \in \mathcal{O}_{A}^{(m)}$ :
$f \perp g \Longleftrightarrow \forall X \in A^{m \times n}: g(f(X))=f\left(g\left(X^{T}\right)\right)$.
Corollary (since $\left(X^{\top}\right)^{T}=X$ )
For $f, g \in \mathcal{O}_{A}: f \perp g \Longleftrightarrow g \perp f$.

Remarks on the definition

## Remark 1

For $n, m \in \mathbb{N}_{+}, f \in \mathcal{O}_{A}^{(n)}, g \in \mathcal{O}_{A}^{(m)}$ :
$f \perp g \Longleftrightarrow \forall X \in A^{m \times n}: g(f(X))=f\left(g\left(X^{T}\right)\right)$.
Corollary (since $\left(X^{\top}\right)^{T}=X$ )
For $f, g \in \mathcal{O}_{A}: f \perp g \Longleftrightarrow g \perp f$.

## Remark 2

For $n, m \in \mathbb{N}_{+}, f \in \mathcal{O}_{A}^{(n)}, g \in \mathcal{O}_{A}^{(m)}$ :

$$
\begin{aligned}
f \perp g \Longleftrightarrow \forall X \in A^{m \dot{x} n}: \quad & f\left(c_{1}, \ldots, c_{n}\right) \\
= & g\left(r_{1}, \ldots, r_{m}\right) .
\end{aligned}
$$

Remarks on the definition

## Remark 1

For $n, m \in \mathbb{N}_{+}, f \in \mathcal{O}_{A}^{(n)}, g \in \mathcal{O}_{A}^{(m)}$ :
$f \perp g \Longleftrightarrow \forall X \in A^{m \times n}: g(f(X))=f\left(g\left(X^{T}\right)\right)$.
Corollary (since $\left(X^{\top}\right)^{T}=X$ )
For $f, g \in \mathcal{O}_{A}: f \perp g \Longleftrightarrow g \perp f$.

## Remark 2

For $n, m \in \mathbb{N}_{+}, f \in \mathcal{O}_{A}^{(n)}, g \in \mathcal{O}_{A}^{(m)}$ :

$$
\begin{aligned}
f \perp g \Longleftrightarrow \forall X \in A^{m \times n}: \quad & f(g(X(\cdot, 1)), \ldots, g(X(\cdot, n))) \\
= & g(f(X(1, \cdot)), \ldots, f(X(m, \cdot))) .
\end{aligned}
$$

Remarks on the definition

## Remark 1

For $n, m \in \mathbb{N}_{+}, f \in \mathcal{O}_{A}^{(n)}, g \in \mathcal{O}_{A}^{(m)}$ :
$f \perp g \Longleftrightarrow \forall X \in A^{m \times n}: g(f(X))=f\left(g\left(X^{T}\right)\right)$.
Corollary (since $\left(X^{\top}\right)^{T}=X$ )
For $f, g \in \mathcal{O}_{A}: f \perp g \Longleftrightarrow g \perp f$.

## Remark 2

For $n, m \in \mathbb{N}_{+}, f \in \mathcal{O}_{A}^{(n)}, g \in \mathcal{O}_{A}^{(m)}$ :

$$
\begin{aligned}
f \perp g \Longleftrightarrow\langle A ; f, g\rangle \models & f(g(X(\cdot, 1)), \ldots, g(X(\cdot, n))) \\
& \approx g(f(X(1, \cdot)), \ldots, f(X(1, \cdot)))
\end{aligned}
$$

## Relations

Any $\varrho \subseteq A^{m}$

Relations
Any $\varrho \subseteq A^{m}$ $m$-ar relation on $A$

Functions preserve relations
For $n, m \in \mathbb{N}_{+}, f \in \mathcal{O}_{A}^{(n)}, \varrho \subseteq A^{m}$
$f \triangleright \varrho: \Longleftrightarrow$

Relations
Any $\varrho \subseteq A^{m}$ $m$-ary relation on $A$

Functions preserve relations
For $n, m \in \mathbb{N}_{+}, f \in \mathcal{O}_{A}^{(n)}, \varrho \subseteq A^{m}$

$$
f \triangleright \varrho: \Longleftrightarrow \forall X=\left(x_{i, j}\right)_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}} \in A^{m \times n}:
$$

$$
\begin{array}{ccc}
x_{1,1} & \cdots & x_{1, n} \\
\vdots & \ddots & \vdots \\
x_{m, 1} & \cdots & x_{m, n}
\end{array}
$$

Relations
Any $\varrho \subseteq A^{m}$
Functions preserve relations
For $n, m \in \mathbb{N}_{+}, f \in \mathcal{O}_{A}^{(n)}, \varrho \subseteq A^{m}$

$$
f \triangleright \varrho: \Longleftrightarrow \forall X=\left(x_{i, j}\right)_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}} \in A^{m \times n}:
$$

| $\frown$ |  | $\frown$ |
| :---: | :---: | :---: |
| $x_{1,1}$ | $\cdots$ | $x_{1, n}$ |
| $\vdots$ | $\ddots$ | $\vdots$ |
| $x_{m, 1}$ | $\cdots$ | $x_{m, n}$ |
| $\smile$ |  | $\smile$ |
| $๓$ |  | $\oplus$ |
| $\varrho$ | $\cdots$ | $\varrho$ |

Relations
Any $\varrho \subseteq A^{m}$ $m$-ary relation on $A$

Functions preserve relations
For $n, m \in \mathbb{N}_{+}, f \in \mathcal{O}_{A}^{(n)}, \varrho \subseteq A^{m}$

$$
f \triangleright \varrho: \Longleftrightarrow \forall X=\left(x_{i, j}\right)_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}} \in A^{m \times n}:
$$

$$
\begin{aligned}
& f\left(x_{1,1} \cdots x_{1, n}\right)=r_{1} \\
& f\left(x_{m, 1} \cdots x_{m, n}\right)=r_{m} \\
& \begin{array}{ccc}
\Pi & & \cap \\
\varrho & \cdots & \varrho
\end{array}
\end{aligned}
$$

Relations
Any $\varrho \subseteq A^{m}$ $m$-ary relation on $A$

Functions preserve relations
For $n, m \in \mathbb{N}_{+}, f \in \mathcal{O}_{A}^{(n)}, \varrho \subseteq A^{m}$

$$
f \triangleright \varrho: \Longleftrightarrow \forall X=\left(x_{i, j}\right)_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}} \in A^{m \times n}:
$$

$$
f\left(x_{1,1} \cdots x_{1, n}\right)=r_{1}
$$

Graph of $g \in \mathcal{O}_{A}^{(m)}$
$g^{\bullet}=\left\{(x, g(x)) \mid x \in A^{m}\right\} \subseteq A^{m+1}$

Relation to commutation

$$
\begin{aligned}
& \text { Graph of } g \in \mathcal{O}_{A}^{(\boldsymbol{m})} \\
& g^{\bullet}=\left\{(x, g(x)) \mid x \in A^{\boldsymbol{m}}\right\} \subseteq A^{\boldsymbol{m}+\boldsymbol{1}}
\end{aligned}
$$

Preserving graphs
For $n, m \in \mathbb{N}_{+}, f \in \mathcal{O}_{A}^{(n)}, g \in \mathcal{O}_{A}^{(m)}$
$f \triangleright g^{\bullet}: \Longleftrightarrow$

Relation to commutation

```
Graph of g\in\mp@subsup{\mathcal{O}}{A}{(m)}
g}={(x,g(x))|x\in\mp@subsup{A}{}{\boldsymbol{m}}}\subseteq\mp@subsup{A}{}{\boldsymbol{m}+\boldsymbol{1}
```


## Preserving graphs

For $n, m \in \mathbb{N}_{+}, f \in \mathcal{O}_{A}^{(n)}, g \in \mathcal{O}_{A}^{(m)}$

$$
f \triangleright g^{\bullet}: \Longleftrightarrow \forall X=\left(x_{i, j}\right)_{\substack{1 \leq i \leq m+1 \\ 1 \leq j \leq n}} \in A^{(m+1) \times n}:
$$

$$
\begin{gathered}
x_{1,1} \\
\vdots \\
\vdots \\
x_{1, n} \\
x_{m, 1}
\end{gathered} \cdots \cdot x_{m, n} \quad \vdots .
$$

Relation to commutation

```
Graph of g\in\mp@subsup{\mathcal{O}}{A}{(m)}
g}={(x,g(x))|x\in\mp@subsup{A}{}{\boldsymbol{m}}}\subseteq\mp@subsup{A}{}{\boldsymbol{m}+\boldsymbol{1}
```


## Preserving graphs

For $n, m \in \mathbb{N}_{+}, f \in \mathcal{O}_{A}^{(n)}, g \in \mathcal{O}_{A}^{(m)}$

$$
f \triangleright g^{\bullet}: \Longleftrightarrow \forall X=\left(x_{i, j}\right)_{\substack{1 \leq i \leq m+1 \\ 1 \leq j \leq n}} \in A^{(m+1) \times n}:
$$

$$
\begin{array}{ccc}
x_{1,1} & \cdots & x_{1, n} \\
\vdots & \ddots & \vdots \\
x_{m, 1} & \cdots & x_{m, n} \\
x_{m+1,1} & \cdots & x_{m+1, n} \\
\oplus & & \oplus \\
g^{\bullet} & \cdots & g^{\bullet}
\end{array}
$$

Relation to commutation

```
Graph of g\in O
g}={(x,g(x))|x\in\mp@subsup{A}{}{\boldsymbol{m}}}\subseteq\mp@subsup{A}{}{\boldsymbol{m}+\boldsymbol{1}
```


## Preserving graphs

For $n, m \in \mathbb{N}_{+}, f \in \mathcal{O}_{A}^{(n)}, g \in \mathcal{O}_{A}^{(m)}$

$$
f \triangleright g^{\bullet}: \Longleftrightarrow \forall X=\left(x_{i, j}\right)_{\substack{1 \leq i \leq m+1 \\ 1 \leq j \leq n}} \in A^{(m+1) \times n}:
$$

$$
\begin{array}{ccc}
\underset{x_{1,1}}{g} & \cdots & \stackrel{x_{1, n}}{g} \\
\vdots & \ddots & \vdots \\
x_{m, 1} & \cdots & x_{m, n} \\
= & & \underbrace{=}_{\bar{m}} \\
c_{1} & \cdots & c_{n} \\
\oplus & & \pi \\
g^{\bullet} & \cdots & g^{\bullet}
\end{array}
$$

Relation to commutation

```
Graph of g\in O
g}={(x,g(x))|x\in\mp@subsup{A}{}{\boldsymbol{m}}}\subseteq\mp@subsup{A}{}{\boldsymbol{m}+\boldsymbol{1}
```


## Preserving graphs

For $n, m \in \mathbb{N}_{+}, f \in \mathcal{O}_{A}^{(n)}, g \in \mathcal{O}_{A}^{(m)}$

$$
\begin{aligned}
& f \triangleright g^{\bullet}: \Longleftrightarrow \forall X=\left(x_{i, j}\right)_{\substack{1 \leq i \leq m+1 \\
1 \leq j \leq n}} \in A^{(m+1) \times n}: \\
& f\left(\stackrel{g}{x_{1,1}} \cdots \stackrel{g}{x_{1, n}}\right)=r_{1} \\
& f\left(x_{m, 1} \cdots x_{m, n}\right)=r_{m} \\
& f\left(\begin{array}{ccc}
\overline{c_{1}} & \cdots & \overline{c_{n}}
\end{array}\right)=y \\
& { }_{g^{\bullet}}^{\infty} \ldots{ }_{g^{\bullet}}^{n}
\end{aligned}
$$

Relation to commutation

```
Graph of g\in O
g}={(x,g(x))|x\in\mp@subsup{A}{}{\boldsymbol{m}}}\subseteq\mp@subsup{A}{}{\boldsymbol{m}+\boldsymbol{1}
```


## Preserving graphs

For $n, m \in \mathbb{N}_{+}, f \in \mathcal{O}_{A}^{(n)}, g \in \mathcal{O}_{A}^{(m)}$

$$
\begin{aligned}
& f \triangleright g^{\bullet}: \Longleftrightarrow \forall X=\left(x_{i, j}\right)_{\substack{1 \leq i \leq m+1 \\
1 \leq j \leq n}} \in A^{(m+1) \times n}:
\end{aligned}
$$

Relation to commutation

```
Graph of g\in O
g}={(x,g(x))|x\in\mp@subsup{A}{}{\boldsymbol{m}}}\subseteq\mp@subsup{A}{}{\boldsymbol{m}+\boldsymbol{1}
```


## Preserving graphs

For $n, m \in \mathbb{N}_{+}, f \in \mathcal{O}_{A}^{(n)}, g \in \mathcal{O}_{A}^{(m)}$

$$
\begin{aligned}
& f \triangleright g^{\bullet}: \Longleftrightarrow \forall X=\left(x_{i, j}\right)_{\substack{1 \leq i \leq m+1 \\
1 \leq j \leq n}} \in A^{(m+1) \times n}:
\end{aligned}
$$

Relation to commutation

```
Graph of g\in O
g}={(x,g(x))|x\in\mp@subsup{A}{}{\boldsymbol{m}}}\subseteq\mp@subsup{A}{}{\boldsymbol{m}+\boldsymbol{1}
```


## Preserving graphs

For $n, m \in \mathbb{N}_{+}, f \in \mathcal{O}_{A}^{(n)}, g \in \mathcal{O}_{A}^{(m)}$

$$
\begin{aligned}
& f \triangleright g^{\bullet}: \Longleftrightarrow \forall X=\left(x_{i, j}\right)_{\substack{1 \leq i \leq m+1 \\
1 \leq j \leq n}} \in A^{(m+1) \times n}:
\end{aligned}
$$

## Galois connections

Pol-Inv Galois correspondence
For $F \subseteq \mathcal{O}_{A}$ (operations) and $Q \subseteq \mathcal{R}_{A}$ (relations) we put

$$
\begin{array}{rr}
\operatorname{Pol}_{A} Q:=\left\{f \in \mathcal{O}_{A} \mid \forall \varrho \in Q: f \triangleright \varrho\right\} & \text { (polymorphisms of } Q \text { ) } \\
\operatorname{Inv}_{A} F:=\left\{\varrho \in \mathcal{R}_{A} \mid \forall f \in F: f \triangleright \varrho\right\} & \text { (invariants of } F \text { ) }
\end{array}
$$

## Galois connections

Pol-Inv Galois correspondence
For $F \subseteq \mathcal{O}_{A}$ (operations) and $Q \subseteq \mathcal{R}_{A}$ (relations) we put

$$
\begin{array}{rr}
\operatorname{Pol}_{A} Q:=\left\{f \in \mathcal{O}_{A} \mid \forall \varrho \in Q: f \triangleright \varrho\right\} & \text { (polymorphisms of } Q \text { ) } \\
\operatorname{lnv}_{A} F:=\left\{\varrho \in \mathcal{R}_{A} \mid \forall f \in F: f \triangleright \varrho\right\} & \text { (invariants of } F \text { ) }
\end{array}
$$

$\mathrm{Pol}_{A} \operatorname{lnv}_{A} F \quad$ clone gen. by $F$ (closure: composition, projs) $\operatorname{lnv}_{A} \mathrm{Pol}_{A} Q$ relational clone gen by $Q$ (closure: pp-definitions)

## Galois connections

Pol - Inv Galois correspondence
For $F \subseteq \mathcal{O}_{A}$ (operations) and $Q \subseteq \mathcal{R}_{A}$ (relations) we put

$$
\begin{array}{rr}
\operatorname{Pol}_{A} Q:=\left\{f \in \mathcal{O}_{A} \mid \forall \varrho \in Q: f \triangleright \varrho\right\} & \text { (polymorphisms of } Q \text { ) } \\
\operatorname{lnv}_{A} F:=\left\{\varrho \in \mathcal{R}_{A} \mid \forall f \in F: f \triangleright \varrho\right\} & \text { (invariants of } F \text { ) }
\end{array}
$$

$\mathrm{Pol}_{A} \operatorname{lnv}_{A} F \quad$ clone gen. by $F$ (closure: composition, projs) $\operatorname{lnv}_{A} \mathrm{Pol}_{A} Q$ relational clone gen by $Q$ (closure: pp-definitions)

Centraliser Galois correspondence
For $F \subseteq \mathcal{O}_{A}$ we put

$$
F^{*}:=\left\{g \in \mathcal{O}_{A} \mid \forall f \in F: g \perp f\right\} \quad \text { (centraliser of } F \text { ) }
$$

## Galois connections

Pol-Inv Galois correspondence
For $F \subseteq \mathcal{O}_{A}$ (operations) and $Q \subseteq \mathcal{R}_{A}$ (relations) we put

$$
\begin{array}{lr}
\operatorname{Pol}_{A} Q:=\left\{f \in \mathcal{O}_{A} \mid \forall \varrho \in Q: f \triangleright \varrho\right\} & \text { (polymorphisms of } Q \text { ) } \\
\operatorname{lnv}_{A} F:=\left\{\varrho \in \mathcal{R}_{A} \mid \forall f \in F: f \triangleright \varrho\right\} & \text { (invariants of } F \text { ) }
\end{array}
$$

$\mathrm{Pol}_{A} \operatorname{lnv}_{A} F \quad$ clone gen. by $F$ (closure: composition, projs) $\operatorname{lnv}_{A} \mathrm{Pol}_{A} Q$ relational clone gen by $Q$ (closure: pp-definitions)

Centraliser Galois correspondence
For $F \subseteq \mathcal{O}_{A}$ we put

$$
F^{*}:=\left\{g \in \mathcal{O}_{A} \mid \forall f \in F: g \perp f\right\} \quad \text { (centraliser of } F \text { ) }
$$

$F^{* *} \quad$ bicentraliser of $F$ (closure: $($ clone + ) pp-definitions)

## Connections

Centralisers \& bicentralisers
For $F \subseteq \mathcal{O}_{A}$ we have

$$
\left(F^{\bullet}:=\{f \bullet \mid f \in F\}\right)
$$

$F^{*}=\mathrm{Pol}_{A} F^{\bullet}$

## Connections

Centralisers \& bicentralisers
For $F \subseteq \mathcal{O}_{A}$ we have

$$
\begin{aligned}
F^{*} & =\operatorname{Pol}_{A} F^{\bullet} \\
& =\left\{g \in \mathcal{O}_{A} \mid g^{\bullet} \in \operatorname{lnv}_{A} F\right\}
\end{aligned}
$$

$$
\left(F^{\bullet}:=\{f \bullet \mid f \in F\}\right)
$$

(centralisers are clones!)

## Connections

Centralisers \& bicentralisers
For $F \subseteq \mathcal{O}_{A}$ we have

$$
\left(F^{\bullet}:=\{f \bullet \mid f \in F\}\right)
$$

$$
\begin{aligned}
F^{*} & =\operatorname{Pol}_{A} F^{\bullet} \\
& =\left\{g \in \mathcal{O}_{A} \mid g^{\bullet} \in \operatorname{lnv}_{A} F\right\} \\
F^{* *} & =\operatorname{Pol}_{A} F^{* \bullet}=\operatorname{Pol}_{A}\left(\mathcal{O}_{A}^{\bullet} \cap \operatorname{lnv}_{A} F\right)
\end{aligned}
$$

(centralisers are clones!)

## Connections

Centralisers \& bicentralisers
For $F \subseteq \mathcal{O}_{A}$ we have

$$
\left(F^{\bullet}:=\{f \bullet \mid f \in F\}\right)
$$

$$
\begin{aligned}
F^{*} & =\operatorname{Pol}_{A} F^{\bullet} \quad \text { (centralisers are clones!) } \\
& =\left\{g \in \mathcal{O}_{A} \mid g^{\bullet} \in \operatorname{lnv}_{A} F\right\} \\
F^{* *} & =\operatorname{Pol}_{A} F^{* \bullet}=\operatorname{Pol}_{A}\left(\mathcal{O}_{A}^{\bullet} \cap \operatorname{lnv}_{A} F\right) \\
& =\left\{g \in \mathcal{O}_{A} \mid g^{\bullet} \in \operatorname{lnv}_{A} F^{*}\right\}=\left\{g \in \mathcal{O}_{A} \mid g^{\bullet} \in \operatorname{lnv}_{A} \text { Pol }_{A} F^{\bullet}\right\}
\end{aligned}
$$

## Connections

Centralisers \& bicentralisers
For $F \subseteq \mathcal{O}_{A}$ we have

$$
\left(F^{\bullet}:=\{f \bullet \mid f \in F\}\right)
$$

$$
\begin{aligned}
F^{*} & =\operatorname{Pol}_{A} F^{\bullet} \quad \text { (centralisers are clones!) } \\
& =\left\{g \in \mathcal{O}_{A} \mid g^{\bullet} \in \operatorname{lnv}_{A} F\right\} \\
F^{* *} & =\operatorname{Pol}_{A} F^{* \bullet}=\operatorname{Pol}_{A}\left(\mathcal{O}_{A}^{\bullet} \cap \operatorname{lnv}_{A} F\right) \\
& =\left\{g \in \mathcal{O}_{A} \mid g^{\bullet} \in \operatorname{lnv}_{A} F^{*}\right\}=\left\{g \in \mathcal{O}_{A} \mid g^{\bullet} \in \operatorname{lnv}_{A} \operatorname{Pol}_{A} F^{\bullet}\right\}
\end{aligned}
$$

Complete lattices
$\mathcal{L}_{A}$
clones
$\mathcal{C}_{A} \subseteq \mathcal{L}_{A}$ centraliser clones ( $\bigwedge$-subsemilattice)

## Knowledge about these lattices

$|A|=2$
$\left|\mathcal{L}_{A}\right|=\aleph_{0}$
(E. L. Post, 1921/1941)
$|A| \geq 3$
$\left|\mathcal{L}_{A}\right|=2^{\aleph_{0}}$ (Ю. И. Янов $/$
А. А. Мучник, 1959)
$|A| \geq 3$
minimal and maximal clones
(I. G. Rosenberg, 1970,1986)
different bits and pieces
$|A|=2$
$\left|\mathcal{C}_{A}\right|=25$
(А. В. Кузнецов, 1977; et. al.)
$|A|=3$
$\left|\mathcal{C}_{A}\right|=2986$
(А. Ф. Данильченко, 1974-79)
$|A|<\aleph_{0}$
$\left|\mathcal{C}_{A}\right|<\aleph_{0}$
S. Burris, R. Willard, 1987

Unary generated
(W. Harnau, 1974-76;
I. G. Rosenberg, H. Machida)

## We know the basics about centralisers in

## We know the basics about centralisers in

... now lets move on to "elsewhere".

## The algebraist's take on CSP

「
a finite relational signature
T
a finite relational structure of signature $\Gamma$ (template)
CSP(T)... a decision problem
Instance: $\underset{\sim}{\text { V }}$ of signature $\Gamma$
Question: $\operatorname{Hom}(\mathbf{V}, \mathbf{T}) \neq \emptyset$ ?

## The algebraist's take on CSP

「
a finite relational signature
T
a finite relational structure of signature $\Gamma$ (template)
$\operatorname{CSP}(\mathbf{T}) \ldots$ a decision problem
Instance: $\underset{\sim}{\text { of }}$ signature $\Gamma$
Question: $\operatorname{Hom}(\mathbf{V}, \mathbf{T}) \neq \emptyset$ ?
Computer Scientists have a different perspective on $\operatorname{CSP}(\mathbf{T})$ Instance: $\underset{\sim}{\mathbf{V}}=\left\langle V ;\left(R^{\mathbf{V}}\right)_{R \in \Gamma}\right\rangle \leftrightarrow \varphi:=\bigwedge_{R \in \Gamma} \bigwedge_{\boldsymbol{v} \in R^{v}} R(\boldsymbol{v})$
Question: $\exists s: V \longrightarrow T:(T, s) \models \varphi$ ?

## The algebraist's take on CSP

「
a finite relational signature
T a finite relational structure of signature $\Gamma$ (template)
CSP(T)... a decision problem
Instance: $\mathbf{V}$ of signature $\Gamma$
Question: $\operatorname{Hom}(\mathbf{V}, \mathbf{T}) \neq \emptyset$ ?
Computer Scientists have a different perspective on $\operatorname{CSP}(\mathbf{T})$ Instance: $\underset{\sim}{\mathbf{V}}=\left\langle V ;\left(R_{\sim}^{\mathbf{V}}\right)_{R \in \Gamma}\right\rangle \leftrightarrow \varphi:=\bigwedge_{R \in \Gamma} \bigwedge_{\mathbf{v} \in R^{\vee}} R(\boldsymbol{v})$
Question: $\exists s: V \longrightarrow T:(T, s) \models \varphi$ ?
Logicians still have another view on $\operatorname{CSP}(\mathbf{T})$
Instance: $\underset{\sim}{\mathbf{V}}=\left\langle V ;\left(R^{\mathbf{V}}\right)_{R \in \Gamma}\right\rangle \leftrightarrow \psi:=(\exists v)_{v \in V} \bigwedge_{R \in \Gamma} \bigwedge_{v \in R^{V}} R(v)$
Question: $\mathbf{T} \models \psi$, i.e., $\psi \in \mathrm{pp}-\operatorname{Th}(\mathbf{T})$ ?

## Example

$$
\mathrm{T}=\left\langle\{0,1\} ; R^{\mathrm{T}}, S^{\mathrm{T}}\right\rangle ; R^{\mathrm{T}}=\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\} S^{\mathrm{T}}=\leq_{2}
$$

## Example

$$
\mathbf{T}=\left\langle\{0,1\} ; R_{\sim}^{\mathbf{T}}, S^{\mathbf{T}}\right\rangle ; R_{\sim}^{\mathbf{T}}=\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\} S_{\sim}^{\mathbf{T}}=\leq_{2}
$$

One instance, three perspectives

$$
\begin{aligned}
11 & \underset{\sim}{v}
\end{aligned}=\left\langle\{0,1,2\} ; R_{v}^{v}, S v\right\rangle
$$

Q1 $\exists h \in \operatorname{Hom}(\mathrm{~V}, \mathrm{~T})$ ?

## Example

$$
\mathbf{T}=\left\langle\{0,1\} ; R_{\sim}^{\mathbf{T}}, S_{\sim}^{\mathbf{T}}\right\rangle ; R_{\sim}^{\mathbf{T}}=\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\} S_{\sim}^{\mathbf{T}}=\leq_{2}
$$

One instance, three perspectives

$$
\begin{aligned}
11 & \underset{v}{\mathbf{v}}
\end{aligned}=\left\langle\{0,1,2\} ; R^{\mathbf{v}}, S \mathbf{v}\right\rangle .
$$

Q1 $\exists h \in \operatorname{Hom}(\mathrm{~V}, \mathrm{~T})$ ?
$12 \varphi=R\left(x_{0}, x_{1}, x_{1}\right) \wedge R\left(x_{2}, x_{0}, x_{1}\right) \wedge R\left(x_{2}, x_{2}, x_{0}\right) \wedge S\left(x_{0}, x_{2}\right)$
Q2 $\exists h: V \longrightarrow T:(T, h) \models \varphi$ ?

## Example

$$
\mathbf{T}=\left\langle\{0,1\} ; R_{\sim}^{\mathbf{T}}, S_{\sim}^{\mathbf{T}}\right\rangle ; R_{\sim}^{\mathbf{T}}=\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\} S_{\sim}^{\mathbf{T}}=\leq_{2}
$$

One instance, three perspectives

$$
\begin{aligned}
\mid 1 & \underset{v}{\mathbf{v}}
\end{aligned}=\left\langle\{0,1,2\} ; R^{\mathbf{v}}, S_{\sim}^{\mathbf{v}}\right\rangle .
$$

Q1 $\exists h \in \operatorname{Hom}(\mathrm{~V}, \mathrm{~T})$ ?

$$
12 \varphi=R\left(x_{0}, x_{1}, x_{1}\right) \wedge R\left(x_{2}, x_{0}, x_{1}\right) \wedge R\left(x_{2}, x_{2}, x_{0}\right) \wedge S\left(x_{0}, x_{2}\right)
$$

Q2 $\exists h: V \longrightarrow T:(T, h) \models \varphi$ ?
I3 $\psi=\exists x_{0} \exists x_{1} \exists x_{2}: \varphi$
Q3 $\psi \in \mathrm{pp}-\mathrm{Th}(\mathbf{T})$ ?

## Connection to clones

$$
\mathbf{T}_{1}=\left\langle T ; Q_{1}\right\rangle, \mathbf{T}_{2}=\left\langle T ; Q_{2}\right\rangle
$$

templates

## pp-definable templates

$Q_{1} \subseteq \operatorname{lnv}_{T} \operatorname{Pol}_{T} Q_{2} \Longrightarrow \operatorname{CSP}\left(T_{1}\right) \leq_{m} \operatorname{CSP}\left(T_{2}\right)$ $\mathrm{Pol}_{T} Q_{1} \supseteq \operatorname{Pol}_{T} Q_{2} \Longrightarrow \operatorname{CSP}\left(\mathbb{T}_{1}\right) \leq_{m} \operatorname{CSP}\left(\mathbb{T}_{2}\right)$

## Connection to clones

$\mathbf{T}_{1}=\left\langle T ; Q_{1}\right\rangle, \mathbf{T}_{2}=\left\langle T ; Q_{2}\right\rangle$
templates
pp-definable templates
$Q_{1} \subseteq \operatorname{lnv}_{T} \operatorname{Pol}_{T} Q_{2} \Longrightarrow \operatorname{CSP}\left(T_{1}\right) \leq_{m} \operatorname{CSP}\left(T_{2}\right)$
$\mathrm{Pol}_{T} Q_{1} \supseteq \mathrm{Pol}_{T} Q_{2} \Longrightarrow \operatorname{CSP}\left(\mathrm{~T}_{1}\right) \leq_{\mathrm{m}} \operatorname{CSP}\left(\mathrm{T}_{2}\right)$
Reason: substitute pp-definitions (Jeavons, 1998)

$$
\begin{aligned}
\exists x \bigwedge_{i} R_{i}\left(x_{i}\right) & \Longleftrightarrow \exists x \bigwedge_{i} \exists y_{i} \bigwedge_{j(i)} S_{j(i)}\left(\left(x_{i}, y_{i}\right) \circ \alpha_{j(i)}\right) \\
& \Longleftrightarrow \exists x y \bigwedge_{\ell} S_{\ell}\left((x y) \circ \alpha_{\ell}\right)
\end{aligned}
$$

## Connection to clones

$\mathbf{T}_{1}=\left\langle T ; Q_{1}\right\rangle, \mathbf{T}_{2}=\left\langle T ; Q_{2}\right\rangle$
templates
pp-definable templates
$Q_{1} \subseteq \operatorname{lnv}_{T} \operatorname{Pol}_{T} Q_{2} \Longrightarrow \operatorname{CSP}\left(T_{1}\right) \leq_{m} \operatorname{CSP}\left(T_{2}\right)$
$\mathrm{Pol}_{T} Q_{1} \supseteq \operatorname{Pol}_{T} Q_{2} \Longrightarrow \operatorname{CSP}\left(\mathbb{T}_{1}\right) \leq_{m} \operatorname{CSP}\left(\mathbb{T}_{2}\right)$
Reason: substitute pp-definitions (Jeavons, 1998)

$$
\begin{aligned}
\exists x \bigwedge_{i} R_{i}\left(x_{i}\right) & \Longleftrightarrow \exists x \bigwedge_{i} \exists y_{i} \bigwedge_{j(i)} S_{j(i)}\left(\left(x_{i}, y_{i}\right) \circ \alpha_{j(i)}\right) \\
& \Longleftrightarrow \exists x y \bigwedge_{\ell} S_{\ell}\left((x y) \circ \alpha_{\ell}\right)
\end{aligned}
$$

$\mathrm{Pol}_{T} Q_{1}=\operatorname{Pol}_{T} Q_{2} \Longrightarrow \operatorname{CSP}\left(\mathrm{~T}_{1}\right) \equiv_{\mathrm{m}} \operatorname{CSP}\left(\mathrm{T}_{2}\right)$

## CSP dichotomy conjecture

Fix a CSP template T.
Time complexity
CSP $(\mathbf{T})$ is always in NP, some CSP's are in P.

## CSP dichotomy conjecture

Fix a CSP template T.
Time complexity
CSP $(\mathbf{T})$ is always in NP, some CSP's are in P.
CSP dichotomy conjecture (Feder/Vardi, 1998)
Schaefer, 1978: $|T|=2 \Rightarrow \operatorname{CSP}(T)$ in $P$ xor NP-complete. Conjecture: This extends to all finite domains.

## CSP dichotomy conjecture

Fix a CSP template T.
Time complexity
$\operatorname{CSP}(\mathbf{T})$ is always in NP, some CSP's are in P.
CSP dichotomy conjecture (Feder/Vardi, 1998)
Schaefer, 1978: $|T|=2 \Rightarrow \operatorname{CSP}(T)$ in $P$ xor NP-complete. Conjecture: This extends to all finite domains.

CSP dichotomy conjecture holds for...
$|T|=2$ Schaefer, 1978
$|T|=3$ Bulatov, 2006
$|T|=4$ Marković et. al., 2011-12
$5 \leq|T| \leq 7$ Жук, 2016

## Making connection with centraliser clones

T a finite algebra of finite signature HomAlg(T) Feder/Madelaine/Stewart, 2004 Instance: A of the same signature as $\mathbf{T}$
Question: $\operatorname{Hom}(\mathbf{A}, \mathbf{T}) \neq \emptyset$ ?

## Making connection with centraliser clones

T a finite algebra of finite signature HomAlg(T) Feder/Madelaine/Stewart, 2004 Instance: $\mathbf{A}$ of the same signature as $\mathbf{T}$ Question: $\operatorname{Hom}(\mathbf{A}, \mathbf{T}) \neq \emptyset$ ?

Lemma for $\mathrm{G}, \underset{\sim}{H}$ with 1 bin rel $\operatorname{Hom}(\mathbf{G}, \mathbf{H}) \neq \emptyset \Longleftrightarrow \operatorname{Hom}\left(\lambda_{2}(\mathbf{G}), \lambda_{2}(\mathbf{H})\right) \neq \emptyset$

## Making connection with centraliser clones

T a finite algebra of finite signature HomAlg(T) Feder/Madelaine/Stewart, 2004 Instance: $\mathbf{A}$ of the same signature as $\mathbf{T}$ Question: $\operatorname{Hom}(\mathbf{A}, \mathbf{T}) \neq \emptyset$ ?

Lemma for $\mathbf{G}, \underset{\sim}{H}$ with 1 bin rel
$\operatorname{Hom}(\mathbf{G}, \mathbf{H}) \neq \emptyset \Longleftrightarrow \operatorname{Hom}\left(\lambda_{2}(\mathbf{G}), \lambda_{2}(\mathbf{H})\right) \neq \emptyset$
Corollary for $\underset{\sim}{\mathrm{H}}$ with 1 bin rel
FMS
$\operatorname{CSP}(\underset{\mathrm{H}}{\mathrm{H}}) \leq_{\mathrm{m}} \operatorname{HomAlg}\left(\lambda_{2}(\underset{\mathrm{H}}{\mathrm{H}})\right.$ )

## Making connection with centraliser clones

T a finite algebra of finite signature HomAlg(T) Feder/Madelaine/Stewart, 2004 Instance: A of the same signature as $\mathbf{T}$ Question: $\operatorname{Hom}(\mathbf{A}, \mathbf{T}) \neq \emptyset$ ?
$\operatorname{CSP}(\mathbf{R}) \equiv_{\mathrm{T}} \operatorname{CSP}(\mathbf{H}(\mathbf{R})) \equiv_{\mathrm{T}} \operatorname{HomAlg}\left(\lambda_{2}(\mathbf{H}(\mathbf{R}))\right)$

## Consequences

$\delta \iota \chi(\mathcal{C})$
$=$ class $\mathcal{C}$ of decision problems enjoys a
P vs NP-complete complexity dichotomy.

## Consequences

## $\delta \iota \chi(\mathcal{C})$

$=$ class $\mathcal{C}$ of decision problems enjoys a
P vs NP-complete complexity dichotomy.
From the constructions by Feder/Madelaine/Stewart $\delta \iota \chi($ HomAlg $) \Longrightarrow$

## Consequences

$\delta \iota \chi(\mathcal{C})$
$=$ class $\mathcal{C}$ of decision problems enjoys a
P vs NP-complete complexity dichotomy.
From the constructions by Feder/Madelaine/Stewart $\delta \iota \chi$ (HomAlg) $\Longrightarrow$
$\delta \iota \chi$ (HomAlg with 2 unary ops) $\Longrightarrow$

## Consequences

$\delta \iota \chi(\mathcal{C})$
$=$ class $\mathcal{C}$ of decision problems enjoys a
P vs NP-complete complexity dichotomy.
From the constructions by Feder/Madelaine/Stewart $\delta \iota \chi$ (HomAlg) $\Longrightarrow$
$\delta \iota \chi$ (HomAlg with 2 unary ops) $\Longrightarrow$
$\delta \iota \chi$ (CSP with 1 bin rel) $\Longrightarrow$

## Consequences

$\delta \iota \chi(\mathcal{C})$
$=$ class $\mathcal{C}$ of decision problems enjoys a
P vs NP-complete complexity dichotomy.

From the constructions by Feder/Madelaine/Stewart
$\delta \iota \chi$ (HomAlg) $\Longrightarrow$
$\delta \iota \chi$ (HomAlg with 2 unary ops) $\Longrightarrow$
$\delta \iota \chi$ (CSP with 1 bin rel) $\Longrightarrow$
$\delta \iota \chi$ (CSP any rel signature)

## Consequences

$\delta \iota \chi(\mathcal{C})$
$=$ class $\mathcal{C}$ of decision problems enjoys a
P vs NP-complete complexity dichotomy.

From the constructions by Feder/Madelaine/Stewart $\delta \iota \chi$ (HomAlg) $\Longrightarrow$
$\delta \iota \chi$ (HomAlg with 2 unary ops) $\Longrightarrow$
$\delta \iota \chi(C S P$ with 1 bin rel) $\Longrightarrow$
$\delta \iota \chi$ (CSP any rel signature)

Theorem for $\mathrm{A}=\langle A ; F\rangle$ with $F \subseteq \mathcal{O}_{A}^{(\leq 1)}$

## Consequences

$\delta \iota \chi(\mathcal{C})$
$=$ class $\mathcal{C}$ of decision problems enjoys a
P vs NP-complete complexity dichotomy.

From the constructions by Feder/Madelaine/Stewart $\delta \iota \chi$ (HomAlg) $\Longrightarrow$
$\delta \iota \chi$ (HomAlg with 2 unary ops) $\Longrightarrow$
$\delta \iota \chi($ CSP with 1 bin rel) $\Longrightarrow$
$\delta \iota \chi$ (CSP any rel signature) $\Longrightarrow$
$\delta \iota \chi($ CSP with function graphs $) \Longrightarrow$

Theorem for $\mathrm{A}=\langle A ; F\rangle$ with $F \subseteq \mathcal{O}_{A}^{(\leq 1)}$

## Consequences

$\delta \iota \chi(\mathcal{C})$
$=$ class $\mathcal{C}$ of decision problems enjoys a
P vs NP-complete complexity dichotomy.

From the constructions by Feder/Madelaine/Stewart $\delta \iota \chi$ (HomAlg) $\Longrightarrow$
$\delta \iota \chi$ (HomAlg with 2 unary ops) $\Longrightarrow$
$\delta \iota \chi($ CSP with 1 bin rel) $\Longrightarrow$
$\delta \iota \chi$ (CSP any rel signature) $\Longrightarrow$
$\delta \iota \chi($ CSP with function graphs) $\Longrightarrow$
$\delta \iota \chi($ CSP with graphs of unary functions $) \Longrightarrow$

Theorem for $\mathrm{A}=\langle A ; F\rangle$ with $F \subseteq \mathcal{O}_{A}^{(\leq 1)}$

## Consequences

$\delta \iota \chi(\mathcal{C})$
$=$ class $\mathcal{C}$ of decision problems enjoys a
P vs NP-complete complexity dichotomy.
From the constructions by Feder/Madelaine/Stewart
$\delta \iota \chi($ HomAlg $) \Longrightarrow$
$\delta \iota \chi($ HomAlg with 2 unary ops $) \Longrightarrow$
$\delta \iota \chi($ CSP with 1 bin rel $) \Longrightarrow$
$\delta \iota \chi($ CSP any rel signature $) \Longrightarrow$
$\delta \iota \chi($ CSP with function graphs $) \Longrightarrow$
$\delta \iota \chi($ CSP with graphs of unary functions $) \Longrightarrow$
$\delta \iota \chi($ CSP with graphs of 2 unary functions $) \Longrightarrow$

Theorem for $\mathrm{A}=\langle A ; F\rangle$ with $F \subseteq \mathcal{O}_{A}^{(\leq 1)}$ $\operatorname{HomAlg}(\mathbf{A}) \equiv_{\mathrm{m}} \operatorname{CSP}\left(\left\langle A ; F^{\bullet}\right\rangle\right)$

## Consequences



Theorem for $\mathrm{A}=\langle A ; F\rangle$ with $F \subseteq \mathcal{O}_{A}^{(\leq 1)}$ $\operatorname{HomAlg}(\mathbf{A}) \equiv_{\mathrm{m}} \operatorname{CSP}\left(\left\langle A ; F^{\bullet}\right\rangle\right)$

## Consequences

$\delta \iota \chi(\mathcal{C})$
$=$ class $\mathcal{C}$ of decision problems enjoys a
P vs NP-complete complexity dichotomy.
From the constructions by Feder/Madelaine/Stewart $\delta \iota \chi$ (HomAlg) $\Longrightarrow$
$\delta \iota \chi$ (HomAlg with 2 unary ops) $\Longrightarrow$
$\delta \iota \chi$ (CSP with 1 bin rel) $\Longrightarrow$
$\delta \iota \chi($ CSP any rel signature $) \Longrightarrow$
$\delta \iota \chi$ (CSP with function graphs) $\Longrightarrow$
$\delta \iota \chi$ (CSP with graphs of unary functions) $\Longrightarrow$
$\delta \iota \chi($ CSP with graphs of 2 unary functions $) \Longrightarrow$
$\delta \iota \chi$ (HomAlg with 2 unary ops)
Theorem for $\mathrm{A}=\langle A ; F\rangle$ with $F \subseteq \mathcal{O}_{A}^{(\leq 1)}$

## Interpretation

Bad news
Establishing dichotomy for CSP with function graphs (even only of 2 unary ops) is as bad as as establishing dichotomy for the whole relational CSP.

## Interpretation

Bad news
Establishing dichotomy for CSP with function graphs (even only of 2 unary ops) is as bad as as establishing dichotomy for the whole relational CSP.

## Good news

To get dichotomy for the whole relational CSP it suffices to have it for CSP with function graphs (even only of 2 unary ops).

## Interpretation

Bad news
Establishing dichotomy for CSP with function graphs (even only of 2 unary ops) is as bad as as establishing dichotomy for the whole relational CSP.

## Good news

To get dichotomy for the whole relational CSP it suffices to have it for CSP with function graphs (even only of 2 unary ops).

Complexity of $\operatorname{CSP}\left(\left\langle A ; F^{\bullet}\right\rangle\right)$ determined by $\operatorname{Pol}_{A} F^{\bullet}=F^{*}$.
...I am not going to solve CSP-dichotomy, though.

## What I am going to do

## What I am going to do



## What I am going to do

I have a dream

## What I am going to do

I want to prove

## What I am going to do

I want to prove a
Theorem
$|A|=k \geq 3 \Longrightarrow \forall F \in \mathcal{C}_{A}: F=F^{(k)^{* *}}$

## What I am going to do

I want to prove a
Theorem, perhaps
$|A|=k \geq 3 \Longrightarrow \forall F \in \mathcal{C}_{A}: F=F^{(k)^{* *}}$

## What I am going to do

I want to prove a
Theorem, perhaps, some day
$|A|=k \geq 3 \Longrightarrow \forall F \in \mathcal{C}_{A}: F=F^{(k)^{* *}}$
(Burris-Willard conjecture)

## What I am going to do

I want to prove a
Theorem, perhaps, some day, but not today...
$|A|=k \geq 3 \Longrightarrow \forall F \in \mathcal{C}_{A}: F=F^{(k)^{* *}}$
(Burris-Willard conjecture)

## What I am going to do

I want to prove a
Theorem today...
$|A|=k \geq 3 \Longrightarrow \forall F \in \mathcal{C}_{A}: F=F^{\left(k^{k}\right)^{* *}}$

# STOP <br> FASTEN YOUR <br> Wirl oly SEAT BELTS 

## A lemma on invariant relations

$Q \subseteq \mathcal{R}_{A}, \varrho \in \mathcal{R}_{A}$
For $m \geq|\varrho|$ TFAE
$Q \subseteq \mathcal{R}_{A}, \varrho \in \mathcal{R}_{A}$
For $m \geq|\varrho|$ TFAE
(1) $\varrho \in \operatorname{lnv}_{A} \mathrm{Pol}_{A} Q$
( $\varrho$ is pp-definable)
$Q \subseteq \mathcal{R}_{A}, \varrho \in \mathcal{R}_{A}$
For $m \geq|\varrho|$ TFAE
(1) $\varrho \in \operatorname{lnv}_{A} \mathrm{Pol}_{A} Q$
( $\varrho$ is pp-definable)
(2) $\varrho \in \operatorname{lnv}_{A} \mathrm{Pol}_{A}^{(m)} Q$

## A lemma on invariant relations

$Q \subseteq \mathcal{R}_{A}, \varrho \in \mathcal{R}_{A}$
For $m \geq|\varrho|$ TFAE
(1) $\varrho \in \operatorname{lnv}_{A} \mathrm{Pol}_{A} Q$
( $\varrho$ is pp-definable)
(2) $\varrho \in \operatorname{lnv}_{A} \mathrm{Pol}_{A}^{(m)} Q$

## Proof (sketch)

- $\operatorname{lnv}_{A} \operatorname{Pol}_{A}^{(m)} Q=\operatorname{lnv}_{A} \operatorname{Pol}_{A}^{(\leq m)} Q$
- If $\varrho \notin \operatorname{lnv}_{A} \mathrm{Pol}_{A} Q$, i.e. $\mathrm{Pol}_{A}\{\varrho\} \nsupseteq \mathrm{Pol}_{A} Q$, then $\exists f \in \mathrm{Pol}_{A} Q: \quad f \not{ }^{2}$.
- If $f$ is a counterexample of large arity ( $>m$ ), identification of variables gives a counterexample $\tilde{f}$ of smaller arity


## Corollaries

## Generally

Let $k:=|A|$.

## Corollaries

Generally
Let $k:=|A|$.
Corollary 1 for $\Sigma \subseteq \mathcal{O}_{A}$
$\ell \geq k^{n} \Longrightarrow \Sigma^{* *(n)}=\Sigma^{*(\ell)^{*(n)}}$

## Corollaries

Generally
Let $k:=|A|$.
Corollary 1 for $\Sigma \subseteq \mathcal{O}_{A}$
$\ell \geq k^{n} \Longrightarrow \Sigma^{* *(n)}=\Sigma^{*(\ell)^{*(n)}}$
Proof: Let $f \in \mathcal{O}_{A}^{(n)}$, then $\left|f^{\bullet}\right|=\left|A^{n}\right|=k^{n} \leq \ell$

## Corollaries

Generally
Let $k:=|A|$.
Corollary 1 for $\Sigma \subseteq \mathcal{O}_{A}$
$\ell \geq k^{n} \Longrightarrow \Sigma^{* *(n)}=\Sigma^{*(\ell)^{*(n)}}$
Proof: Let $f \in \mathcal{O}_{A}^{(n)}$, then $|f \bullet|=\left|A^{n}\right|=k^{n} \leq \ell$

$$
f \in \Sigma^{* *}
$$

## Corollaries

## Generally

Let $k:=|A|$.
Corollary 1 for $\Sigma \subseteq \mathcal{O}_{A}$
$\ell \geq k^{n} \Longrightarrow \Sigma^{* *(n)}=\Sigma^{*(\ell)^{*(n)}}$
Proof: Let $f \in \mathcal{O}_{A}^{(n)}$, then $\left|f^{\bullet}\right|=\left|A^{n}\right|=k^{n} \leq \ell$

$$
f \in \Sigma^{* *} \Longleftrightarrow f^{\bullet} \in \operatorname{lnv}_{A} \operatorname{Pol}_{A} \Sigma^{\bullet}
$$

## Corollaries

## Generally

Let $k:=|A|$.
Corollary 1 for $\Sigma \subseteq \mathcal{O}_{A}$
$\ell \geq k^{n} \Longrightarrow \Sigma^{* *(n)}=\Sigma^{*(\ell) *(n)}$
Proof: Let $f \in \mathcal{O}_{A}^{(n)}$, then $\left|f^{\bullet}\right|=\left|A^{n}\right|=k^{n} \leq \ell$

$$
\begin{aligned}
f \in \Sigma^{* *} & \Longleftrightarrow f^{\bullet} \in \operatorname{lnv}_{A} \operatorname{Pol}_{A} \Sigma^{\bullet} \\
& \Longleftrightarrow f^{\bullet} \in \operatorname{lnv}_{A} \operatorname{Pol}_{A}^{(\ell)} \Sigma^{\bullet}
\end{aligned}
$$

## Corollaries

## Generally

Let $k:=|A|$.
Corollary 1 for $\Sigma \subseteq \mathcal{O}_{A}$
$\ell \geq k^{n} \Longrightarrow \Sigma^{* *(n)}=\Sigma^{*(\ell)^{*(n)}}$
Proof: Let $f \in \mathcal{O}_{A}^{(n)}$, then $\left|f^{\bullet}\right|=\left|A^{n}\right|=k^{n} \leq \ell$

$$
\begin{aligned}
f \in \Sigma^{* *} & \Longleftrightarrow f^{\bullet} \in \operatorname{lnv}_{A} \operatorname{Pol}_{A} \Sigma^{\bullet} \\
& \Longleftrightarrow f^{\bullet} \in \operatorname{Inv}_{A} \operatorname{Pol}_{A}^{(\ell)} \Sigma^{\bullet} \\
& \Longleftrightarrow f \in\left(\operatorname{Pol}_{A}^{(\ell)} \Sigma^{\bullet}\right)^{*}
\end{aligned}
$$

## Corollaries

## Generally

Let $k:=|A|$.
Corollary 1 for $\Sigma \subseteq \mathcal{O}_{A}$
$\ell \geq k^{n} \Longrightarrow \Sigma^{* *(n)}=\Sigma^{*(\ell)^{*(n)}}$
Proof: Let $f \in \mathcal{O}_{A}^{(n)}$, then $\left|f^{\bullet}\right|=\left|A^{n}\right|=k^{n} \leq \ell$

$$
\begin{aligned}
f \in \Sigma^{* *} & \Longleftrightarrow f^{\bullet} \in \operatorname{lnv}_{A} \operatorname{Pol}_{A} \Sigma^{\bullet} \\
& \Longleftrightarrow f^{\bullet} \in \operatorname{lnv}_{A} \operatorname{PoI}_{A}^{(\ell)} \Sigma^{\bullet} \\
& \Longleftrightarrow f \in\left(\operatorname{Pol}_{A}^{(\ell)} \Sigma^{\bullet}\right)^{*}=\left(\Sigma^{*(\ell)}\right)^{*}
\end{aligned}
$$

## Corollaries (continued)

Corollary 2 for $\Sigma \subseteq \mathcal{O}_{A}, n \in \mathbb{N}_{+}$
$\ell \geq k^{n}-1 \Longrightarrow \operatorname{Inv}_{A}^{(n)} \operatorname{Pol}_{A} \Sigma^{\bullet}=\operatorname{lnv}_{A}^{(n)} \Sigma^{*(\ell)}$

## Corollaries (continued)

Corollary 2 for $\Sigma \subseteq \mathcal{O}_{A}, n \in \mathbb{N}_{+}$
$\ell \geq k^{n}-1 \Longrightarrow \operatorname{Inv}_{A}^{(n)} \operatorname{Pol}_{A} \Sigma^{\bullet}=\operatorname{lnv}_{A}^{(n)} \Sigma^{*(\ell)}$
Proof: Let $\varrho \subset A^{n}$, then $|\varrho| \leq k^{n}-1 \leq \ell$

## Corollaries (continued)

Corollary 2 for $\Sigma \subseteq \mathcal{O}_{A}, n \in \mathbb{N}_{+}$
$\ell \geq k^{n}-1 \Longrightarrow \operatorname{Inv}_{A}^{(n)} \operatorname{Pol}_{A} \Sigma^{\bullet}=\operatorname{lnv}_{A}^{(n)} \Sigma^{*(\ell)}$
Proof: Let $\varrho \subset A^{n}$, then $|\varrho| \leq k^{n}-1 \leq \ell$ $\varrho \in \operatorname{Inv}_{A}^{(n)} \operatorname{Pol}_{A} \Sigma^{\bullet}$

## Corollaries (continued)

Corollary 2 for $\Sigma \subseteq \mathcal{O}_{A}, n \in \mathbb{N}_{+}$
$\ell \geq k^{n}-1 \Longrightarrow \operatorname{Inv}_{A}^{(n)} \operatorname{Pol}_{A} \Sigma^{\bullet}=\operatorname{lnv}_{A}^{(n)} \Sigma^{*(\ell)}$
Proof: Let $\varrho \subset A^{n}$, then $|\varrho| \leq k^{n}-1 \leq \ell$ $\varrho \in \operatorname{Inv}_{A}^{(n)} \mathrm{Pol}_{A} \Sigma^{\bullet} \Longleftrightarrow \varrho \in \operatorname{Inv}_{A}^{(n)} \mathrm{Pol}_{A}^{(\ell)} \Sigma^{\bullet}$

## Corollaries (continued)

Corollary 2 for $\Sigma \subseteq \mathcal{O}_{A}, n \in \mathbb{N}_{+}$
$\ell \geq k^{n}-1 \Longrightarrow \operatorname{Inv}_{A}^{(n)} \operatorname{Pol}_{A} \Sigma^{\bullet}=\operatorname{lnv}_{A}^{(n)} \Sigma^{*(\ell)}$
Proof: Let $\varrho \subset A^{n}$, then $|\varrho| \leq k^{n}-1 \leq \ell$
$\varrho \in \operatorname{lnv}_{A}^{(n)} \operatorname{Pol}_{A} \Sigma^{\bullet} \Longleftrightarrow \varrho \in \operatorname{lnv}_{A}^{(n)} \operatorname{Pol}_{A}^{(\ell)} \Sigma^{\bullet}=\operatorname{lnv}_{A} \Sigma^{*(\ell)}$

Recall: for $\ell \geq k^{n}, n \in \mathbb{N}_{+}$

$$
\Sigma^{* *(n)}=\Sigma^{*(\ell)^{*(n)}} \quad \operatorname{lnv}_{A}^{(n)} \operatorname{Pol}_{A} \Sigma^{\bullet}=\operatorname{lnv}_{A}^{(n)} \Sigma^{*(\ell)}
$$

Recall: for $\ell \geq k^{n}, n \in \mathbb{N}_{+}$

$$
\Sigma^{* *(n)}=\Sigma^{*(\ell)^{*(n)}} \quad \operatorname{Inv}_{A}^{(n)} \operatorname{Pol}_{A} \Sigma^{\bullet}=\operatorname{lnv}_{A}^{(n)} \Sigma^{*(\ell)}
$$

Theorem (Pöschel, 2013(?), unpublished)
where

$$
\forall \Sigma \subseteq \mathcal{O}_{A}: \quad \Sigma^{*}=\langle\Sigma\rangle^{(k)^{*}} \cap \operatorname{Pol}_{A} Q_{\langle\Sigma\rangle}
$$

- $\langle\Sigma\rangle$ is any closure $\langle\Sigma\rangle_{\mathrm{I}, \mathrm{F}} \subseteq\langle\Sigma\rangle \subseteq \Sigma^{* *}$
- $Q_{G} \subseteq \operatorname{lnv}_{A}^{(4)}$ Pol $_{A} G^{\bullet}$ for $G \subseteq \mathcal{O}_{A}$.

Recall: for $\ell \geq k^{n}, n \in \mathbb{N}_{+}$

$$
\Sigma^{* *(n)}=\Sigma^{*(\ell)^{*(n)}} \quad \operatorname{Inv}_{A}^{(n)} \operatorname{Pol}_{A} \Sigma^{\bullet}=\operatorname{lnv}_{A}^{(n)} \Sigma^{*(\ell)}
$$

Theorem (Pöschel, 2013(?), unpublished)
where

$$
\forall \Sigma \subseteq \mathcal{O}_{A}: \quad \Sigma^{*}=\langle\Sigma\rangle^{(k)^{*}} \cap \operatorname{Pol}_{A} Q_{\langle\Sigma\rangle}
$$

- $\langle\Sigma\rangle$ is any closure $\langle\Sigma\rangle_{\mathrm{I}, \mathrm{F}} \subseteq\langle\Sigma\rangle \subseteq \Sigma^{* *}$
- $Q_{G} \subseteq \ln v_{A}^{(4)} \operatorname{Pol}_{A} G^{\bullet}$ for $G \subseteq \mathcal{O}_{A}$.

Corollary for $\langle\Sigma\rangle=\Sigma$
$\Sigma^{*}=\Sigma^{(k)^{*}} \cap \mathrm{Pol}_{A} Q_{\Sigma}=\Sigma^{(k)^{*}} \cap \mathrm{Pol}_{A} \operatorname{lnv}_{A}^{(4)} \mathrm{Pol}_{A} \Sigma^{\bullet}$

Recall: for $\ell \geq k^{n}, n \in \mathbb{N}_{+}$

$$
\Sigma^{* *(n)}=\Sigma^{*(\ell)^{*(n)}} \quad \operatorname{lnv}_{A}^{(n)} \operatorname{Pol}_{A} \Sigma^{\bullet}=\operatorname{lnv}_{A}^{(n)} \Sigma^{*(\ell)}
$$

Theorem (Pöschel, 2013(?), unpublished)
where

$$
\forall \Sigma \subseteq \mathcal{O}_{A}: \quad \Sigma^{*}=\langle\Sigma\rangle^{(k)^{*}} \cap \operatorname{Pol}_{A} Q_{\langle\Sigma\rangle}
$$

- $\langle\Sigma\rangle$ is any closure $\langle\Sigma\rangle_{\mathrm{I}, \mathrm{F}} \subseteq\langle\Sigma\rangle \subseteq \Sigma^{* *}$
- $Q_{G} \subseteq \operatorname{lnv}_{A}^{(4)} P_{P_{A}} G^{\bullet}$ for $G \subseteq \mathcal{O}_{A}$.

Corollary for $\langle\Sigma\rangle=\Sigma$
$\Sigma^{*}=\Sigma^{(k)^{*}} \cap \mathrm{Pol}_{A} Q_{\Sigma}=\Sigma^{(k)}{ }^{*} \cap \mathrm{Pol}_{A} \operatorname{lnv}_{A}^{(4)} \mathrm{Pol}_{A} \Sigma^{\bullet}$
For $k \geq 4, F \in \mathcal{C}_{A}, \Sigma=F^{*}, \ell \geq k^{k} \geq k^{4}$

$$
F=\Sigma^{*}
$$

Recall: for $\ell \geq k^{n}, n \in \mathbb{N}_{+}$

$$
\Sigma^{* *(n)}=\Sigma^{*(\ell)^{*(n)}} \quad \operatorname{Inv}_{A}^{(n)} \operatorname{Pol}_{A} \Sigma^{\bullet}=\operatorname{lnv}_{A}^{(n)} \Sigma^{*(\ell)}
$$

Theorem (Pöschel, 2013(?), unpublished)
where

$$
\forall \Sigma \subseteq \mathcal{O}_{A}: \quad \Sigma^{*}=\langle\Sigma\rangle^{(k)^{*}} \cap \operatorname{Pol}_{A} Q_{\langle\Sigma\rangle}
$$

- $\langle\Sigma\rangle$ is any closure $\langle\Sigma\rangle_{\mathrm{I}, \mathrm{F}} \subseteq\langle\Sigma\rangle \subseteq \Sigma^{* *}$
- $Q_{G} \subseteq \operatorname{lnv}_{A}^{(4)} P^{P o l_{A}} G^{\bullet}$ for $G \subseteq \mathcal{O}_{\mathbf{A}}$.

Corollary for $\langle\Sigma\rangle=\Sigma$
$\Sigma^{*}=\Sigma^{(k)^{*}} \cap \operatorname{Pol}_{A} Q_{\Sigma}=\Sigma^{(k)^{*}} \cap \operatorname{Pol}_{A} \operatorname{Inv}_{A}^{(4)} \mathrm{Pol}_{A} \Sigma^{\bullet}$
For $k \geq 4, F \in \mathcal{C}_{A}, \Sigma=F^{*}, \ell \geq k^{k} \geq k^{4}$

$$
F=\Sigma^{*}=\Sigma^{* *(k)^{*}} \cap \operatorname{Pol}_{A} \operatorname{lnv}_{A}^{(4)} \operatorname{Pol}_{A} \Sigma^{\bullet}
$$

Recall: for $\ell \geq k^{n}, n \in \mathbb{N}_{+}$

$$
\Sigma^{* *(n)}=\Sigma^{*(\ell)^{*(n)}} \quad \operatorname{Inv}_{A}^{(n)} \operatorname{Pol}_{A} \Sigma^{\bullet}=\operatorname{lnv}_{A}^{(n)} \Sigma^{*(\ell)}
$$

Theorem (Pöschel, 2013(?), unpublished)
where

$$
\forall \Sigma \subseteq \mathcal{O}_{A}: \quad \Sigma^{*}=\langle\Sigma\rangle^{(k)^{*}} \cap \operatorname{Pol}_{A} Q_{\langle\Sigma\rangle}
$$

- $\langle\Sigma\rangle$ is any closure $\langle\Sigma\rangle_{\mathrm{I}, \mathrm{F}} \subseteq\langle\Sigma\rangle \subseteq \Sigma^{* *}$
- $Q_{G} \subseteq \operatorname{lnv}_{A}^{(4)} P^{P o l_{A}} G^{\bullet}$ for $G \subseteq \mathcal{O}_{\mathbf{A}}$.

Corollary for $\langle\Sigma\rangle=\Sigma$
$\Sigma^{*}=\Sigma^{(k)^{*}} \cap \mathrm{Pol}_{A} Q_{\Sigma}=\Sigma^{(k)^{*}} \cap \mathrm{Pol}_{A} \operatorname{lnv}_{A}^{(4)} \mathrm{Pol}_{A} \Sigma^{\bullet}$
For $k \geq 4, F \in \mathcal{C}_{A}, \Sigma=F^{*}, \ell \geq k^{k} \geq k^{4}$

$$
\begin{aligned}
F=\Sigma^{*} & =\Sigma^{* *(k)^{*}} \cap \operatorname{Pol}_{A} \operatorname{lnv}_{A}^{(4)} \operatorname{Pol}_{A} \Sigma^{\bullet} \\
& =\Sigma^{*(\ell)^{*(k)^{*}} \cap \operatorname{Pol}_{A} \operatorname{lnv} v_{A}^{(4)} \Sigma^{*(\ell)}}
\end{aligned}
$$

Recall: for $\ell \geq k^{n}, n \in \mathbb{N}_{+}$

$$
\Sigma^{* *(n)}=\Sigma^{*(\ell)^{*(n)}} \quad \operatorname{Inv}_{A}^{(n)} \operatorname{Pol}_{A} \Sigma^{\bullet}=\operatorname{lnv}_{A}^{(n)} \Sigma^{*(\ell)}
$$

Theorem (Pöschel, 2013(?), unpublished)
where

$$
\forall \Sigma \subseteq \mathcal{O}_{A}: \quad \Sigma^{*}=\langle\Sigma\rangle^{(k)^{*}} \cap \operatorname{Pol}_{A} Q_{\langle\Sigma\rangle}
$$

- $\langle\Sigma\rangle$ is any closure $\langle\Sigma\rangle_{\mathrm{I}, \mathrm{F}} \subseteq\langle\Sigma\rangle \subseteq \Sigma^{* *}$
- $Q_{G} \subseteq \operatorname{lnv}_{A}^{(4)} P^{P o l_{A}} G^{\bullet}$ for $G \subseteq \mathcal{O}_{\mathbf{A}}$.

Corollary for $\langle\Sigma\rangle=\Sigma$
$\Sigma^{*}=\Sigma^{(k)^{*}} \cap \mathrm{Pol}_{A} Q_{\Sigma}=\Sigma^{(k)^{*}} \cap \mathrm{Pol}_{A} \operatorname{lnv}_{A}^{(4)} \mathrm{Pol}_{A} \Sigma^{\bullet}$
For $k \geq 4, F \in \mathcal{C}_{A}, \Sigma=F^{*}, \ell \geq k^{k} \geq k^{4}$

$$
\begin{aligned}
F=\Sigma^{*} & =\Sigma^{* *(k)^{*}} \cap \operatorname{PoI}_{A} \operatorname{lnv}_{A}^{(4)} \operatorname{Pol}_{A} \Sigma^{\bullet} \\
& =\Sigma^{*(\ell)^{*(k)^{*}} \cap \operatorname{PoI}_{A} \operatorname{lnv}_{A}^{(4)} \Sigma^{*(\ell)}} \\
& =F^{(\ell)^{*(k)^{*}} \cap \operatorname{Pol}_{A} \operatorname{lnv}_{A}^{(4)} F^{(\ell)}}
\end{aligned}
$$

## Finally

For $F \in \mathcal{C}_{A}, \ell \geq k^{k}, k \geq 4$, let $G:=F^{(\ell)^{* *}}$
Note $G^{(\ell)}=F^{(\ell) * *(\ell)}=F^{* *(\ell)^{* *(\ell)}}=F^{* *(\ell)}=F^{(\ell)}$.

## Finally

For $F \in \mathcal{C}_{A}, \ell \geq k^{k}, k \geq 4$, let $G:=F^{(\ell)^{* *}}$
Note $G^{(\ell)}=F^{(\ell) * *(\ell)}=F^{* *(\ell)^{* *(\ell)}}=F^{* *(\ell)}=F^{(\ell)}$. Thus $F=F^{(\ell)^{*(k)^{*}} \cap \mathrm{Pol}_{A} \operatorname{lnv}_{A}^{(4)} F^{(\ell)}=G^{(\ell)^{*(k)^{*}} \cap \mathrm{Pol}_{A} \operatorname{lnv}}{ }_{A}^{(4)} G^{(\ell)}=G . ~ . ~ . ~ . ~}$

## Finally

For $F \in \mathcal{C}_{A}, \ell \geq k^{k}, k \geq 4$, let $G:=F^{(\ell)^{* *}}$
Note $G^{(\ell)}=F^{(\ell) * *(\ell)}=F^{* *(\ell)^{* *(\ell)}}=F^{* *(\ell)}=F^{(\ell)}$. Thus $F=F^{(\ell)^{*(k)^{*}} \cap \mathrm{Pol}_{A} \operatorname{lnv}_{A}^{(4)} F^{(\ell)}=G^{(\ell)^{*(k)^{*}} \cap \mathrm{Pol}_{A} \operatorname{lnv}}{ }_{A}^{(4)} G^{(\ell)}=G . ~ . ~ . ~ . ~}$

Characterisation
For $n \geq k$ TFAE

- $\forall F \in \mathcal{C}_{A}: F=F^{(n)^{* *}}$
- $\forall F \in \mathcal{C}_{A}: F^{*}=F^{(k)^{*}} \cap \operatorname{Pol}_{A} Q_{\left\langle F^{(n)}\right\rangle}$


## Finally

For $F \in \mathcal{C}_{A}, \ell \geq k^{k}, k \geq 4$, let $G:=F^{(\ell)^{* *}}$
Note $G^{(\ell)}=F^{(\ell)^{* *(\ell)}}=F^{* *(\ell) * *(\ell)}=F^{* *(\ell)}=F^{(\ell)}$. Thus
$F=F^{(\ell)}{ }^{*(k)^{*}} \cap \mathrm{Pol}_{A} \operatorname{lnv}_{A}^{(4)} F^{(\ell)}=G^{(\ell) *(k)^{*}} \cap \mathrm{Pol}_{A} \operatorname{lnv}_{A}^{(4)} G^{(\ell)}=G$.

Characterisation
For $n \geq k$ TFAE

- $\forall F \in \mathcal{C}_{A}: F=F^{(n)^{* *}}$
- $\forall F \in \mathcal{C}_{A}: F^{*}=F^{(k)^{*}} \cap \operatorname{Pol}_{A} Q_{\langle F(n)\rangle}$

Corollary for $F \in \mathcal{C}_{A}$
$\left.F^{*}=F^{(k)^{*}} \cap \operatorname{Pol}_{A} Q_{\langle F}\left(k^{k}\right)\right\rangle$

## Discussion

We used
$\forall F \in \mathcal{C}_{A}: \quad F^{*}=F^{(k)^{*}} \cap \operatorname{Pol}_{A} Q_{F}$,

We used

$$
\forall F \in \mathcal{C}_{A}: \quad F^{*}=F^{(k)^{*}} \cap \operatorname{Pol}_{A} Q_{F}, \quad Q_{F} \subseteq \operatorname{lnv}_{A}^{(4)} \mathrm{Pol}_{A} F^{\bullet}
$$

We used

$$
\forall F \in \mathcal{C}_{A}: \quad F^{*}=F^{(k)^{*}} \cap \operatorname{Pol}_{A} Q_{F}, \quad Q_{F} \subseteq \operatorname{lnv}_{A}^{(4)} \operatorname{Pol}_{A} F^{\bullet}
$$ "from the dual side" $\rightsquigarrow k^{k}$

We used

$$
\forall F \in \mathcal{C}_{A}: \quad F^{*}=F^{(k)^{*}} \cap \operatorname{Pol}_{A} Q_{F}, \quad Q_{F} \subseteq \operatorname{lnv}_{A}^{(4)} \operatorname{Pol}_{A} F^{\bullet}
$$ "from the dual side" $\rightsquigarrow k^{k}$

We could also exploit
$\forall F \in \mathcal{C}_{A}: \quad F^{*}=F^{(k)^{*}} \cap \operatorname{Pol}_{A} Q_{\left\langle F^{(n)}\right\rangle}$

## Discussion

We used

$$
\forall F \in \mathcal{C}_{A}: \quad F^{*}=F^{(k)^{*}} \cap \operatorname{Pol}_{A} Q_{F}, \quad Q_{F} \subseteq \operatorname{lnv}_{A}^{(4)} \operatorname{Pol}_{A} F^{\bullet}
$$ "from the dual side" $\rightsquigarrow k^{k}$

We could also exploit
$\forall F \in \mathcal{C}_{A}: \quad F^{*}=F^{(k)^{*}} \cap \operatorname{Pol}_{A} Q_{\langle F(n)}$ and try to reduce the arity from $n=k^{k}$

## Discussion

We used

$$
\forall F \in \mathcal{C}_{A}: \quad F^{*}=F^{(k)^{*}} \cap \operatorname{Pol}_{A} Q_{F}, \quad Q_{F} \subseteq \operatorname{lnv}_{A}^{(4)} \operatorname{Pol}_{A} F^{\bullet}
$$ "from the dual side" $\rightsquigarrow k^{k}$

We could also exploit
$\forall F \in \mathcal{C}_{A}: \quad F^{*}=F^{(k)^{*}} \cap \operatorname{Pol}_{A} Q_{\langle F(n)}$
and try to reduce the arity from $n=k^{k}$
$\Longrightarrow$ Requires understanding of $Q_{F}$.

## Commutation of binary operations

## Commutation of binary operations

Does the following equation hold?

$$
\begin{array}{lllll}
f(g(t & , y & ), g(f & , a & )) \approx \\
g(f(t & , f & ), f(y & , a & )) ?
\end{array}
$$

## Commutation of binary operations

Does the following equation hold?
$f(g($ thanks, your $), g($ for, attention $)) \approx$
$g(f($ thanks, for $), f($ your, attention $))$ ?

