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An Outline

I. Algebraic Theory of Regular Languages
Varieties of reqular languages, syntactic monoia,
Eilenberg correspondence and its generalizations.

Il. Varieties of Automata
Minimal DFA, closure operators, Eilenberg type
correspondence.

[ll. Automata Enriched with an Algebraic Structure
Ordered automata, meet-automata, DL-automata,
Eilenberg type correspondence.

IV. Presentations of Languages via Automata

V. Syntactic Structures
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A Relationship between DFAs and Monoids

Generalizations of the Eilenberg Correspondence
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Algebraic Theory of Regular Languages Introduction — Eilenberg Correspondence

A Relationship between DFAs and Monoids
Generalizations of the Eilenberg Correspondence

Examples

@ Goal of the study: effective characterizations of certain
natural classes of regular languages.

@ Typical result: a language belongs to a given class iff its
syntactic monoid belongs to a certain class of monoids.
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Algebraic Theory of Regular Languages

Introduction — Eilenberg Correspondence
A Relationship between DFAs and Monoids
Generalizations of the Eilenberg Correspondence

Examples

@ Goal of the study: effective characterizations of certain
natural classes of regular languages.

@ Typical result: a language belongs to a given class iff its
syntactic monoid belongs to a certain class of monoids.

Theorem (Schiitzenberger — 1966)

A regular language L is star-free if and only if its syntactic
monoid is aperiodic.

Theorem (Simon — 1972)

A regular language L is piecewise testable if and only if the
syntactic monoid of L is J -trivial.

@ General framework — Eilenberg correspondence.
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Algebraic Theory of Regular Languages Introduction — Eilenberg Correspondence

A Relationship between DFAs and Monoids
Generalizations of the Eilenberg Correspondence

Varieties of Languages

A variety of languages V associates to every finite alphabet A a
class V(A) of regular languages over A in such a way that
@ V(A) is closed under finite unions, finite intersections and
complements (in particular @, A* € V(A)),
@ V(A) is closed under quotients, i.e.
L e V(A), u,v e A* implies
u'lLlv' ={we A" |uwv e L} € V(A),
@ Vis closed under preimages in morphisms, i.e.
f:B*— A*, L V(A)implies
f~Y(L)={veB|f(v)elL}cV(B).
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Algebraic Theory of Regular Languages Introduction — Eilenberg Correspondence
A Relationship between DFAs and Monoids
Generalizations of the Eilenberg Correspondence

Pseudovarieties of Monoids

Definition

A pseudovariety of finite monoids is a class of finite monoids
closed under submonoids, morphic images and products of
finite families.

@ For aregular language L C A* we define a relation ~; on
A* by the rule u ~; v iff uand v have the same contexts in
L.
Formally: u~. v <= {(p,q) | pug € L} ={(p.q) | pvq € L}.

@ ~ is the syntactic congruence of L and A*/~; = M| is the
syntactic monoid of L.
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Algebraic Theory of Regular Languages Introduction — Eilenberg Correspondence

A Relationship between DFAs and Monoids
Generalizations of the Eilenberg Correspondence

The Eilenberg Correspondence

@ For each pseudovariety of monoids V, we denote «(V) the
variety of regular languages given by

(@(V))(A) ={LC A" [M_ e V}.

@ For each variety of regular languages £, we denote by
B(L) the pseudovariety of monoids generated by syntactic
monoids M, where L € L(A) for some alphabet A.

Theorem (Eilenberg — 1976)

The mappings o and 8 are mutually inverse isomorphisms
between the lattice of all pseudovarieties of finite monoids and
the lattice of all varieties of regular languages.
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Algebraic Theory of Regular Languages Introduction — Eilenberg Correspondence

A Relationship between DFAs and Monoids
Generalizations of the Eilenberg Correspondence

A Formal Definition of a DFA

A deterministic finite automaton over the alphabet A is a
five-tuple A = (Q, A, -, i, F), where
@ Qis a nonempty set of states,

@ - : Q x A— Qis acomplete transition function,
which can be extended to a mapping
T QxA* - Qbyg-A=q, g-(ua)=(q-u)-a,
@ / € Qis the initial state,
@ F C Qs the set of final states.

The automaton A accepts aword u € A*iff i - u € F. The

automaton A recognizes the language
Ly={uecA*|i-ueF}.
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Algebraic Theory of Regular Languages Introduction — Eilenberg Correspondence
A Relationship between DFAs and Monoids
Generalizations of the Eilenberg Correspondence

A Relationship between DFAs and Monoids

If we have a DFA A = (Q, A, -, i, F), then:
@ Each word u € A* performs the transformation 7, : Q — Q
where 7,(q) = q - u for each g € Q.
@ The transition monoid of Ais ({7, |u € A*},0).
@ The transition monoid of the minimal automaton of L is
isomorphic to the syntactic monoid M, of L.
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Algebraic Theory of Regular Languages Introduction — Eilenberg Correspondence

A Relationship between DFAs and Monoids
Generalizations of the Eilenberg Correspondence

Motivations for a Notion of a Variety of Automata

@ Why monoids instead of automata?
@ An equational description of pseudovarieties of monoids by
pseudoidentities.

@ Other algebraic constructions, e.g. products (semidirect,
wreath, Mal’'cev).
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Algebraic Theory of Regular Languages Introduction — Eilenberg Correspondence

A Relationship between DFAs and Monoids
Generalizations of the Eilenberg Correspondence

Motivations for a Notion of a Variety of Automata

@ Why monoids instead of automata?
@ An equational description of pseudovarieties of monoids by
pseudoidentities.
@ Other algebraic constructions, e.g. products (semidirect,
wreath, Mal’cev).
@ Why are we still interested in automata characterizations?
@ Usually, a regular language is given by an automaton. And
computation of the syntactic monoid need not to be
effective (can be exponentially larger).
@ Sometimes a “graph condition” on automata can be easier
to test than an equational condition on monoids.
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Algebraic Theory of Regular Languages Introduction — Eilenberg Correspondence

A Relationship between DFAs and Monoids
Generalizations of the Eilenberg Correspondence

Motivations for a Notion of a Variety of Automata

@ Why monoids instead of automata?
@ An equational description of pseudovarieties of monoids by
pseudoidentities.
@ Other algebraic constructions, e.g. products (semidirect,
wreath, Mal’cev).
@ Why are we still interested in automata characterizations?
@ Usually, a regular language is given by an automaton. And
computation of the syntactic monoid need not to be
effective (can be exponentially larger).
@ Sometimes a “graph condition” on automata can be easier
to test than an equational condition on monoids.

So, basically there are three worlds: classes of languages,
classes of (enriched) semiautomata (no initial and no final
states) and those of appropriate algebraic structures.
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Algebraic Theory of Regular Languages Introduction — Eilenberg Correspondence

A Relationship between DFAs and Monoids
Generalizations of the Eilenberg Correspondence

Generalizations of the Eilenberg Correspondence

Since not all natural classes of regular languages are varieties,
one of the recent directions of the research in algebraic theory
of regular languages is devoted to generalizations of the
Eilenberg correspondence.
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Algebraic Theory of Regular Languages Introduction — Eilenberg Correspondence
A Relationship between DFAs and Monoids
Generalizations of the Eilenberg Correspondence

Generalizations of the Eilenberg Correspondence

Since not all natural classes of regular languages are varieties,
one of the recent directions of the research in algebraic theory
of regular languages is devoted to generalizations of the
Eilenberg correspondence.
@ Pin (1995): Positive varieties of regular languages —
closure under complementation is not required.
Algebraic counterparts are pseudovarieties of finite
ordered monoids.
(Syntactic monoid is implicitly ordered.)
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Algebraic Theory of Regular Languages Introduction — Eilenberg Correspondence

A Relationship between DFAs and Monoids
Generalizations of the Eilenberg Correspondence

Generalizations of the Eilenberg Correspondence

Since not all natural classes of regular languages are varieties,
one of the recent directions of the research in algebraic theory
of regular languages is devoted to generalizations of the
Eilenberg correspondence.

@ Pin (1995): Positive varieties of regular languages —
closure under complementation is not required.
Algebraic counterparts are pseudovarieties of finite
ordered monoids.

(Syntactic monoid is implicitly ordered.)

@ Polak (1999): Conjunctive (and disjunctive) varieties.

@ Straubing (2002): C-varieties of languages.

@ Esik, Larsen (2003): literal varieties of languages.

@ Gehrke, Grigorieff, Pin (2008): Lattices of regular
languages.
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Algebraic Theory of Regular Languages

Introduction — Eilenberg Correspondence
A Relationship between DFAs and Monoids
Generalizations of the Eilenberg Correspondence

Variants of Varieties of Regular Languages
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Varieties of Automata A Minimal DFA

The Eilenberg Correspondence for Varieties of Automata

ll. Varieties of Automata
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Varieties of Automata A Minimal DFA
The Eilenberg Correspondence for Varieties of Automata

The Construction of a Minimal DFA by Brzozowski

@ Foralanguage L C A* and u € A*, we define a left
quotient u='L={w e A* |uw € L}.

The canonical deterministic automaton of L is
Dy = (D, A, - L, F),where

@ D ={uL|lue A},

@ g-a=a g, foreachqge D, ac A,

@ ge Fiff A eq.

@ Each state g = u~'L is formed by all words transforming
the state g into a final state.
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Varieties of Automata A Minimal DFA
The Eilenberg Correspondence for Varieties of Automata

An Example of a Canonical Automaton

L=atb"
K=a'L=abt
b~'K = b*
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Varieties of Automata A Minimal DFA
The Eilenberg Correspondence for Varieties of Automata

Preimages in Morphisms, Varieties of Automata

@ Let f: B* — A* be a morphism, We say that (P, B, o) is an
f-subautomaton of (Q, A,-)if PC Qand qob = q- f(b) for
everyge P,be B.

Definition
A variety of semiautomata V associates to every finite alphabet
A a class V(A) of semiautomata (no initial nor final states) over
alphabet A in such a way that
@ V(A) # 0 is closed under disjoint unions, finite direct
products and morphic images,
@ Vs closed under f-subautomata.
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Varieties of Automata A Minimal DFA
The Eilenberg Correspondence for Varieties of Automata

An Eilenberg Type Correspondence

@ For each variety of automata V we denote by «(V) the
variety of regular languages given by

(a(V))(A) = {LC A* | JA = (Q,A,-,i,F) :
L=LsA(QA)€eV(A?}.

@ For each variety of regular languages £ we denote by 3(£)
the variety of automata generated by all DFAs D,, where
L € L(A) for some alphabet A.
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Varieties of Automata A Minimal DFA

The Eilenberg Correspondence for Varieties of Automata

varieties
of automata

varieties
of languages

Theorem (Esik and lto, Chaubard, Pin and Straubing)

The mappings o and 3 are mutually inverse isomorphisms
between the lattice of all varieties of automata and the lattice of
all varieties of regular languages.

@ A version for C-varieties is obvious: we consider
f-subautomata (etc.) just for f € C.

o Esik and lto were working with literal varieties (morphisms
map letters to letters, i.e f(B) C A) and used disjoint union.

@ Chaubard, Pin and Straubing called the automata
C-actions and used trivial automata.
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Varieties of Automata A Minimal DFA
The Eilenberg Correspondence for Varieties of Automata

An Examples — Acyclic Automata

@ One of the conditions in Simon’s characterization of
piecewise testable languages is that a minimal DFA is
acyclic.

@ A content c(u) of aword u € A* is the
set of all letters occurring in u.

@ We say that (Q, A, -) is a acyclic if for each u € A* and
g € Q we have

g-u=qg = (Vaec(u):q-a=q).

@ The class of all acyclic automata is a variety.
@ The corresponding variety of languages (well-known):
(disjoint) unions of the languages of the form

AvartAiaRAs ... A, _q1anA,, where a; ¢ A1 CA.
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Varieties of Automata A Minimal DFA
The Eilenberg Correspondence for Varieties of Automata

An Example — Piecewise Testable Languages

@ In DLT’13 we gave an alternative condition for automata
recognizing piecewise testable languages.

@ We call an acyclic automaton (Q, A, -) locally confluent, if
for each state g € Q and every pair of letters a, b € A,
there is aword w € {a,b}* suchthat (g-a)-w = (q-b) - w.

@ A stronger condition: an acyclic automaton (Q, A, -) is
confluent, if for each state g € Q and every pair of words
u,v,e {a,b}*, there is aword w € {a, b}* such that
(q-u)-w=(q-v)- w.

@ Each acyclic automaton is confluent iff it is locally
confluent.

@ The class of all acyclic confluent automata is a variety
which corresponds to the variety of piecewise testable
languages.
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Varieties of Automata A Minimal DFA
The Eilenberg Correspondence for Varieties of Automata

An Example of a Piecewise Testable Language

a
b
L=atb"
K=a'L=abt
b~'K = b*
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Varieties of Automata A Minimal DFA
The Eilenberg Correspondence for Varieties of Automata

An Example of a Piecewise Testable Language

a
b
L=atb"
K=a'L=abt
b~'K = b*

L = A*aA*bA* N (A*bA*aA*)°
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Ordered Automata
Meet Automata

Automata Enriched with an Algebraic Structure Lattice automata
Hierarchies of Varieties of Piecewise Testable Languages

[ll. Automata Enriched
with
an Algebraic Structure
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Ordered Automata
Meet Automata
Automata Enriched with an Algebraic Structure Lattice automata

Hierarchies of Varieties of Piecewise Testable Languages

A Natural Ordering of the Canonical Automaton

@ For alanguage L C A*, we have defined a the canonical
deterministic automaton: D, = (D, A, -, L, F), where
o D={u'Lluec A},
@ g-a=a'g foreachqge D, acA,
@ geFiffxeaq.
@ Therefore states are ordered by inclusion, which means
that each minimal automaton is implicitly equipped with a
partial order.

@ The action by each letter a is an isotone mapping: for all
states p, g such that p C g we have
p-a=a'pca’q=q-a

@ The final states form an upward closed subset w.r.t. C.
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Ordered Automata
Meet Automata

Automata Enriched with an Algebraic Structure Lattice automata
Hierarchies of Varieties of Piecewise Testable Languages

An Example of an Ordered Automaton

L=atb"
K=a'L=abt
LCK
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Ordered Automata
Meet Automata
Automata Enriched with an Algebraic Structure Lattice automata

Hierarchies of Varieties of Piecewise Testable Languages

An Example of an Ordered Automaton

L=atb"

K=a'L=ab"
(] LK
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Ordered Automata
Meet Automata
Automata Enriched with an Algebraic Structure Lattice automata

Hierarchies of Varieties of Piecewise Testable Languages

An Ordered Automaton

An ordered automaton over the alphabet A is a six-tuple
A= (Q A, <,i,F), where

o A=(Q,A,- i F)isausual DFA;

@ < is a partial order;

@ an action by every letter is an isotone mapping from the
partial ordered set (Q, <) to itself;

® Fisanupwardclosedset,iie. p<q,pe F = qe€F.
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Ordered Automata
Meet Automata
Automata Enriched with an Algebraic Structure Lattice automata

Hierarchies of Varieties of Piecewise Testable Languages

A Transition Monoid of an Ordered Automaton

If we have an ordered automaton (Q, A, -, <), then:

@ we have defined 7, : Q — Q transformation by a word
ue A

@ These transformations can be ordered:
Ww<Ty <= VpeQ:p-yu<p-Ty.

@ An ordered transition monoid.

@ In particular, the ordered transition monoid of the canonical
ordered automaton of L is isomorphic to the syntactic
ordered monoid M, of L.
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Ordered Automata
Meet Automata

Automata Enriched with an Algebraic Structure Lattice automata
Hierarchies of Varieties of Piecewise Testable Languages

Algebraic Constructions on Ordered Automata

Definition
A variety of ordered semiautomata V associates to every finite
alphabet A a class V(A) of ordered semiautomata over
alphabet A in such a way that
@ V(A) # 0 is closed under disjoint union, finite direct
products and morphic images,
@ Vs closed under f-subautomata.
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Ordered Automata

Meet Automata

Lattice automata

Hierarchies of Varieties of Piecewise Testable Languages

An Eilenberg Type Correspondence

Automata Enriched with an Algebraic Structure

Theorem (Pin)

There are mutually inverse isomorphisms between the lattice of
all varieties of ordered automata and the lattice of all positive
varieties of regular languages.

Ondfej Klima and Libor Polak
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Ordered Automata
Meet Automata
Automata Enriched with an Algebraic Structure Lattice automata

Hierarchies of Varieties of Piecewise Testable Languages

The Level 1/2

@ Piecewise testable languages are Boolean combinations of
languages of the form

Ara1A"a A" ... A*a/A*, where ay,...,ay € A, £ >0.

@ Piecewise testable languages form level 1 in
Straubing-Thérien hierarchy.

@ Level 1/2is formed just by finite unions of intersections of
languages above.

@ The corresponding variety of ordered automata is the class
of all ordered automata where actions by letters are
increasing mappings. l.e. ordered automata satisfying:

Vge Q,acA:g-a>q.
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Ordered Automata
Meet Automata

Automata Enriched with an Algebraic Structure Lattice automata
Hierarchies of Varieties of Piecewise Testable Languages

An Example of an Ordered Automaton outside 1/2

L=atb"
K=a'L=abt
LZL-b=1
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Ordered Automata
Meet Automata

Automata Enriched with an Algebraic Structure Lattice automata
Hierarchies of Varieties of Piecewise Testable Languages

1.2 Meet Automata




Ordered Automata
Meet Automata
Automata Enriched with an Algebraic Structure Lattice automata

Hierarchies of Varieties of Piecewise Testable Languages

Intersections of Left Quotients

@ For alanguage L C A* we extend the canonical automaton
(D, A, -), where states are subsets of A*.

@ We can consider intersections of states:

UL = {Nje, Kj | I finite set , Kj € Dy }. If I = then we put
mjel K/ = A"

@ The finite set U, is equipped with the operation intersection
N and we can define (¢, Kj) - @ = (;¢/(K; - a).

@ We have the automaton (Uy, A, -) with semilattice operation
N. Moreover, A* is the largest element in the semilattice
(Ur,N) and it is an absorbing state in (U, A, -).

@ Naturally F = {K | A € K} is closed w.rt. Nand F is
upward closed, i.e. F is afilter.
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Ordered Automata
Meet Automata
Automata Enriched with an Algebraic Structure Lattice automata

Hierarchies of Varieties of Piecewise Testable Languages

An Example of a Meet Automaton

L=a"b"
K=a'L=ab"
Knb*=b"
A=y

Hierarchies of classes of p. t. languages
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Meet Automata
Automata Enriched with an Algebraic Structure Lattice automata

Hierarchies of Varieties of Piecewise Testable Languages

An Example of a Meet Automaton

L=a"b"
K=a'L=ab"
Knb*=b"
A=y
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Ordered Automata
Meet Automata
Automata Enriched with an Algebraic Structure Lattice automata
Hierarchies of Varieties of Piecewise Testable Languages

Meet Automata

Definition

A structure (Q, A, -, A, T) is a meet semiautomaton if
@ (Q,A,-)is aDFA,
@ (Q, N) is a semilattice with the largest element T,

@ actions by letters are endomorphisms of the semilattice
(Q,N),i.e.Vp,ge Q,acA:(pNQ)-a=p-anqg-a
@ T is an absorbing state.

This meet semiautomaton recognizes a language L if there are
i,fe QsuchthatL={uec A*|i-unf=f}
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Ordered Automata
Meet Automata
Automata Enriched with an Algebraic Structure Lattice automata

Hierarchies of Varieties of Piecewise Testable Languages

Varieties of Meet Automata

Definition
A variety of meet semiautomata V associates to every finite
alphabet A a class V(A) of meet semiautomata over alphabet A
in such a way that
@ V(A) # 0 is closed under direct finite products and morphic
images,
@ V is closed under f-subautomata.
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Ordered Automata
Meet Automata
Automata Enriched with an Algebraic Structure Lattice automata

Hierarchies of Varieties of Piecewise Testable Languages

An Eilenberg Type Correspondence

Theorem (Klima, Polak)

There are mutually inverse isomorphisms between the lattice of
all varieties of meet semiautomata and the lattice of all
conjunctive varieties of regular languages.
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Ordered Automata
Meet Automata
Automata Enriched with an Algebraic Structure Lattice automata

Hierarchies of Varieties of Piecewise Testable Languages

Varieties of Meet Automata — An Example

For each alphabet A, a meet automata (Q, A, -, A, T) belongs to
S(A)ifvge Q,ac A: g-a=q-angand

Vge Q,abecA:q-ab=q-anqg-b. (x)

Then S is a variety of meet automata and the corresponding
conjunctive variety of languages S satisfies
S(A)={B" | BC A}U{0}.

@ S is a conjunctive variety of languages.

@ For all B C A, the canonical meet automaton of L = B* is
U, = (UL, A, -,n, A*) and it has just three states: B*, A*, ().
We see B* - a € {B*, 0} and U, satisfies (x).
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Ordered Automata
Meet Automata
Automata Enriched with an Algebraic Structure Lattice automata
Hierarchies of Varieties of Piecewise Testable Languages

An Example

o Let (Q,A, -, A, T) be a meet automaton satisfying
Vge Q,a,bc AU{A\} : g-ab=qg-anqg-b. (%)

And we choose i, f € Q.
@ For a,b,c € Awe have

(g-a)-bc=(q-a)-bA(g-a)-c=qg-anqg-bArg-cC.

® Ingeneralq-ay...an=q-a;N...\Nq-apand (forqg=1)
wehaveay...apel < ajclL,...,ape L.
® We can denote B = LN A and we have L = B*.

@ Note that an equational characterization is that syntactic
semiring satisfies the equality xy = x A y.
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Ordered Automata
Meet Automata

Automata Enriched with an Algebraic Structure Lattice automata
Hierarchies of Varieties of Piecewise Testable Languages

1.3 Lattice automata
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Meet Automata
Automata Enriched with an Algebraic Structure Lattice automata
Hierarchies of Varieties of Piecewise Testable Languages

The Canonical Lattice Automaton of a Language

@ For alanguage L C A* we extend the canonical meet
automaton (U, A, -, A, A*) by unions of states:
Wi = {Uje, M; | I finite set , M; € U}

If I =0 then we put U;c, M; = 0.

@ The finite set W, is equipped with the operations
intersection N and union U (due to distributive laws).
We can define (U, M) - a = U¢/(M; - a).

@ We have the automaton (W, A, -) and a distributive lattice
(W, n,U). Moreover, A* is the largest element, () is the
smallest element — both are absorbing states in (W, A, -).

@ Naturally F = {M | A € M} is closed w.r.t. N, upward
closed, and My UM, € F implies My € F or M, € F.

l.e. F is an ultrafilter. In other words the intersection of all
elements in F (the minimum in F) is join-irreducible.
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Ordered Automata
Meet Automata
Automata Enriched with an Algebraic Structure Lattice automata

Hierarchies of Varieties of Piecewise Testable Languages

An Example of a Canonical Lattice Automaton

a
b

L=atb*
K=a'L=abt=LUb"
Kan=Kub*=K+ X\
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An Example of a Canonical Lattice Automaton

L=atb*
K=a'L=abt=LUb"
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A Lattice Automata — a Formal Definition

Definition (new)

A structure (i, P, Q,A,-,A,V, L, T) is a lattice automaton if
@iePCQ,
@ (Q,A, ) is aDFA,

@ (Q, A, V) is a distributive lattice with the minimum element
| and the largest element T,

@ actions by letters are endomorphisms of the lattice
(Q, A, V),

@ T and L are absorbing states,

@ P is the set of all states reachable from i,

@ the lattice Q is generated by the set P.
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Languages Recognized by a Lattice Automaton

@ A DL-automaton (i, P, Q,A,-,A,V, L, T) recognizes a
language L if there are j € P,f € Q such that fis a
join-irreducible and L = {u € A* | j- u > f}.
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An Eilenberg Type Correspondence

Definition (new)
Let C be a “Straubing” class of morphisms. A weak C-variety of

languages V associates to every finite alphabet A a class V(A)
of regular languages over A in such a way that

@ V(A) is closed under quotients,
@ Vis closed under preimages in morphisms from C.

Theorem (new)

There are mutually inverse isomorphisms between the lattice of
all C-varieties of lattice semiautomata and the lattice of all weak
C-varieties of regular languages.
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An Eilenberg Type Correspondence — An Example

Let V be a class of languages such that
V(A) = {A*aA* | aec A} U {A*}.

@ V(A) is not closed under intersections nor unions, i.e. V is
not a conjunctive (nor disjunctive) variety of languages.

@ Letf:B* - A*,ac A, L= A*aA*, then f~'(L) = B*DB*
where D = {d € B | f(d) contains a}.
Therefore we should consider only f’'s such that

Vb,ce B:b+#c = c(f(b))Nec(f(c)) =0.

@ Vis a weak C-variety for such morphisms.
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An Example

@ Since (A*aA*)¢ = B* for B= A\ {a} we can take the dual
condition characterizing the conjunctive variety S given by
S(A) ={B* | BC A} U {0}, namely

Vge Q,a,bc AU{\} : g-ab=qg-avqg-b. (x)
® In particularg-a > q.
@ Another property is the following

Vge Q,abcA:a#b = q-anq-b=q. (xx)

o IfL=A*a1A*U.---UA*a,A* for a4, ..., a, different letters,
n>2thenlL-a;NL-a = A*# L, i.e. the canonical
DL-automaton of L does not satisfy the condition (xx) .

@ The equational description of the property (xx)is x Ay =1
with substitutions from the restricted class C.
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In DLT 2008 we studied the following classes of languages:
Let k a natural number, a monomial over an alphabet A is the
language A*aiA*as ... a/A*, | < k. Let By be the set of all
Boolean combinations of monomials, let Py be finite
intersections of finite unions of them and let Dy consist of their
finite unions.

We obtained sequences of Boolean varieties, positive varieties
and of disjunctive ones. The major problems concern the
decidability of a given L in a given class.

Another hierarchies are given by

Vi(A) = {A"BiA*B, .. .BA | I <k, By,....B,C A}

and Wx(A)={P'Q°|r+s<k, P,QC A} . The decidability
question are immediately solved when looking at minimal DFAs.
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Presentations of Classes of Languages via Automata

Using some injectivity conditions

A language L over A'is reversible if it is accepted by a NFA
A=(Q,AE,ILF), EC Qx Ax Q, not necessarily complete,
nor necessarily | / |= 1 such that the action of each ac Aon Q
is both deterministic a codeterministic.

L is bideterministic if moreover A can be taken with

| I|=| F|=1.

We denote the above classes by R and BD.

Further, L € P(A) if there exists a complete DFA A recognising
L, not necessarily minimal for L, such that there is maximally
one absorbing state in A and this case it is non-final and each
a € Atransforms the non-absorbing states injectively.
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Presentations of Classes of Languages via Automata

Using forbidden patterns

Following Ivan, a pattern is a triple P = (V, E, /) where (V,E) is
a finite oriented graph and / labels the edges by variables from
the set X. A semiautomaton A = (Q, A, -) admits P if there
exists an injective mapping f : V — Q and a mapping

h: X — AT such that: for each (p, q) € E, we have

f(p) - h(I(p, q)) = f(q). Otherwise A avoids P.
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Using forbidden patterns

Following Ivan, a pattern is a triple P = (V, E, /) where (V,E) is
a finite oriented graph and / labels the edges by variables from
the set X. A semiautomaton A = (Q, A, -) admits P if there
exists an injective mapping f : V — Q and a mapping

h: X — AT such that: for each (p, q) € E, we have

f(p) - h(I(p, q)) = f(q). Otherwise A avoids P.

Examples:

Pd— ({p.aq}.{(p,p),(q,9)}. 1), I(p.P) =1(q,q) = x

= ({p, q},{(p,p), (P, q)}, 1), I(p,p) = x,I(p,q) =
7’9 = {p:aq}:{(p,p), (P,9),(q,9)}, 1), I(p, p) = X, /(p, q)
y,1(q,9) = x.
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Using forbidden patterns Il

Ivan shows that the languages for which the minimal complete
DFAs avoids those patterns are exactly finite or cofinite,
definite, reverse definite and generalized definite languages,
respectively.
In several Pin’s papers one can find another kind of conditions:
InaDFA A= (Q,A,- i F)there are
® (1)nop,q,r € Q, p+# q+# rfor which there are u, v € A*
withp-u=q-u=q,q-v=r,
® (2)nop,q,r,s,te Q, p+#tforwhich there are u,v € A*
such that
p-u=qu=p,qQv=rv=qru=su=ssv=tv=l
® 3)nop,q,r,sc Q,p ¢ F,s c F for which there are
u,ve A*suchthatqg-v=p,q-u=r-u=r,r-v=s,
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Presentations of Classes of Languages via Automata

Using forbidden patterns Il

® (4 nop,q,r € Q, q+# rforwhich there are u, v € A* with
p-v=pp-u=q-u=q,q-v=r-v=r.
Pin also observed that (2) and (3) in minimal DFA charactrerize
the class P from the last subsection.

Ondfrej Klima and Libor Polak Hierarchies of classes of p. t. languages



Presentations of Classes of Languages via Automata

Using meet automata

See OK and LP, On varieties of meet automata, Theor.
Computer Science (407), 2008
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V. Syntactic Structures
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Presentations of Classes of Languages via Automata

Basic algebras

Monoids. Let F be the free groupoid over an alphabet A with
neutral element . We define inductively the actions of
elements of F on 24" :

Lox=L Loa=a 'L, Lo(u-v)=(Lou)ov.

Put u p v iff (for each L C A*, we have Lo u = Lo v). Clearly,
A* = F/pis a free monoid over A.
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Basic algebras

Monoids. Let F be the free groupoid over an alphabet A with
neutral element \. We define inductively the actions of
elements of F on 24" :

Lox=L Loa=a 'L, Lo(u-v)=(Lou)ov.
Put u p v iff (for each L C A*, we have Lo u = Lo v). Clearly,
A* = F/pis a free monoid over A.

Semirings. Let F’ be the absolutely free over A with respect to
the operational symbols -, A\ and A.

vy, Lo(unv)=(Lou)n(Lov).

Put u o' viff (for each L C A*, we have Lo u = Lo v). Clearly,
AP = F'// is a free semiring over A.

Its elements can be represented as finite subsets of A* with the
obvious multiplication and the operation of the union.
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Presentations of Classes of Languages via Automata

lattice-algebras. Let F” be the absolutely free over A with
respect to the operational symbols -, A\, A and V.

vy Lo(uvv)=(Lou)uU(Lov).

Put u p” v iff (for each L C A*, we have Lo u = Lo v). On can
show that A° = F"/p" is a free distributive lattice over A*. The
elements can be represented as

{{U171,...,U1,g1}, .. .,{Uk71,...,uk7gk}}, Ui € A*

with incomparable inner sets. The interpretation is
(uggN...) V- V(U1 A...). Itis equiped also with a
(mysterious) multiplication, namely extend the multiplication
from A* to A° using

U (VAW)=U- VAU - W, (UANV)- w=U - wAV -w
for U,V, W e A°, w € A*. Similarly for the operation V.
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Presentations of Classes of Languages via Automata

Syntactic structures

Let L C A* be a regular language.
Monoids. For u, v € A*, put

u~viffyp,ge A*(puge L<=pvgel).

Equivalently, V p € A* p~'Lou=p~'Lov. Then A*/~ is the
syntactic monoid of L.
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Syntactic structures

Let L C A* be a regular language.
Monoids. For u, v € A*, put

u~viffyp,ge A*(puge L<=pvgel).

Equivalently, V p € A* p~'Lou=p~'Lov. Then A*/~ is the
syntactic monoid of L.

Semirings. For U = {uy,...,ux}, V= {wv,...,v} € AY, put
U~ Viff

Vp,ge A"(puigel,...,puxge L<—=pvigel,...,pvigel).

Equivalently, V p c A* p~'Lo U =p~"'Lo V. Then AP/~ is the
syntactic semiring of L.
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lattice-algebras.

Let
U={U,...,U},

U1 :{U1,17-~~7U1,m1}7~~-7Uk :{uk,‘h’”auk,mk}a

V={Vq,..., Vu},
V1 :{V171,...,V17n1},...,Vg:{VgJ,...,Vg’nl}.
Put U ~" ViffV p,q e A*
(pUige Lor ...orpUkge L= pVige Lor ... orpVgel).

Equivalently, V p € A* p~ Lol = p~'Lo V. Then A°/~" is the
syntactic lattice-algebra of L.
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General lattice-algebras

Not every finite monoid is isomorphic to a syntactic one,...

So, a finite lattice-algebra is a finite distributive lattice with a
multiplication and and a chosen subset (L, -, A, V, P) such that
the lattice (L, A, V) is generated by P* and the distibributivities
above hold for L and P*.

Acceptance ...

C-pseudovarieties ...

Kunc ...

Eilenberg ...
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