Complete Ω -lattices

Branimir Šešelja

co-authors: Edeghagba Eghosa Elijah and Andreja Tepavčević

Department of Mathematics and Informatics Faculty of Sciences, University of Novi Sad

AAA91, Brno, February 7, 2016

E.E. Edeghagba, B. Šešelja, A. Tepavčević Complete Ω-lattices

æ

- < ∃ >

In sixties of the previous century, Tarski notion of a truth values structure was generalized to Boolean-valued models by D.S. Scott, R.M. Solovay and P. Vopěnka. In this model, truth values are elements of a complete Boolean algebra (e.g., J.L. Bell, *Boolean-Valued Models and Independence Proofs in Set Theory*, (1985) Oxford).

In sixties of the previous century, Tarski notion of a truth values structure was generalized to Boolean-valued models by D.S. Scott, R.M. Solovay and P. Vopěnka. In this model, truth values are elements of a complete Boolean algebra (e.g., J.L. Bell, *Boolean-Valued Models and Independence Proofs in Set Theory*, (1985) Oxford).

Further, in 1977., M.P. Fourman and D.S. Scott (*Sheaves and logic*, Lecture Notes in Mathematics, vol. 753, Springer, Berlin, Heidelberg, New York, 1979, 302–401) introduced models for intuitionistic predicate logic. These were Ω -sets, or Heyting-valued sets, Ω being a Heyting algebra.

In sixties of the previous century, Tarski notion of a truth values structure was generalized to Boolean-valued models by D.S. Scott, R.M. Solovay and P. Vopěnka. In this model, truth values are elements of a complete Boolean algebra (e.g., J.L. Bell, *Boolean-Valued Models and Independence Proofs in Set Theory*, (1985) Oxford).

Further, in 1977., M.P. Fourman and D.S. Scott (*Sheaves and logic*, Lecture Notes in Mathematics, vol. 753, Springer, Berlin, Heidelberg, New York, 1979, 302–401) introduced models for intuitionistic predicate logic. These were Ω -sets, or Heyting-valued sets, Ω being a Heyting algebra.

An Ω -set is a nonempty set equipped with an Ω -valued equality.

This notion has been further applied to non-classical predicate logics e.g.,

イロン イヨン イヨン イヨン

æ

This notion has been further applied to non-classical predicate logics e.g.,

G.P. Monro, *Quasitopoi, logic and Heyting-valued models*, Journal of pure and applied algebra, (1986) 42(2), 141-164,
E. Palmgren, S.J. Vickers, *Partial Horn logic and cartesian categories*, Annals of Pure and Applied Logic, (2007) 145(3), 314-353.

 $\Omega\text{-sets}$ and related notions were also applied to foundations of Fuzzy Set Theory, e.g.:

同 とくほ とくほと

æ

 $\Omega\text{-sets}$ and related notions were also applied to foundations of Fuzzy Set Theory, e.g.:

U. Höhle, *Fuzzy sets and sheaves. Part I: basic concepts*, Fuzzy Sets and Systems, (2007) 158(11),

S. Gottwald, Universes of fuzzy sets and axiomatizations of fuzzy set theory, Part II: Category theoretic approaches, Studia Logica, (2006) 84(1), 23-50. 1143-1174,

R. Bělohlávek, *Fuzzy equational logic*, Archive for Mathematical Logic 41.1 (2002): 83-90,

R. Bělohlávek, Fuzzy Relational Systems: Foundations and

Principles, Kluwer Academic/Plenum Publishers, New York, 2002.

E.E. Edeghagba, B. Šešelja, A. Tepavčević Complete Ω-lattices

A (1) > A (2)

Our basic idea is the generalization of the well known connection:

Our basic idea is the generalization of the well known connection:

- a preorder R on a nonempty set A

Our basic idea is the generalization of the well known connection:

- a preorder R on a nonempty set A
- equivalence $S = R \cap R^{-1}$ on A

Our basic idea is the generalization of the well known connection:

- a preorder R on a nonempty set A
- equivalence $S = R \cap R^{-1}$ on A
- order T on A/S, induced by R.

Our basic idea is the generalization of the well known connection:

- a preorder R on a nonempty set A
- equivalence $S = R \cap R^{-1}$ on A
- order T on A/S, induced by R.

Actually, we replace reflexivity of R by strictness: $(x, y) \in R$ implies $(x, x), (y, y) \in R$.

Our basic idea is the generalization of the well known connection:

- a preorder R on a nonempty set A
- equivalence $S = R \cap R^{-1}$ on A
- order T on A/S, induced by R.

Actually, we replace reflexivity of R by strictness: $(x, y) \in R$ implies $(x, x), (y, y) \in R$. Then S is an equivalence on $B = \{x \mid (x, x) \in R\}$,

Our basic idea is the generalization of the well known connection:

- a preorder R on a nonempty set A
- equivalence $S = R \cap R^{-1}$ on A
- order T on A/S, induced by R.

Actually, we replace reflexivity of R by strictness: $(x, y) \in R$ implies $(x, x), (y, y) \in R$. Then S is an equivalence on $B = \{x \mid (x, x) \in R\}$, and T is an order on B/S.

- ∢ ⊒ →

æ

We equip M with a transitive and strict Ω -valued function R on M.

We equip M with a transitive and strict Ω -valued function R on M. Then, $E(x, y) = R(x, y) \wedge R(y, x)$ defines an Ω -valued equality on M.

We equip M with a transitive and strict Ω -valued function R on M. Then, $E(x, y) = R(x, y) \wedge R(y, x)$ defines an Ω -valued equality on M.

Consequently, we obtain a closure system of quotient structures which are ordered, where these orders are induced by R.

We equip M with a transitive and strict Ω -valued function R on M. Then, $E(x, y) = R(x, y) \wedge R(y, x)$ defines an Ω -valued equality on M.

Consequently, we obtain a closure system of quotient structures which are ordered, where these orders are induced by R.

What we get here, the structure (M, E, R), is an Ω -poset.

We equip M with a transitive and strict Ω -valued function R on M. Then, $E(x, y) = R(x, y) \wedge R(y, x)$ defines an Ω -valued equality on M.

Consequently, we obtain a closure system of quotient structures which are ordered, where these orders are induced by R. What we get here, the structure (M, E, R), is an Ω -poset. Imposing particular conditions on R, we define a complete Ω -lattice.

We equip M with a transitive and strict Ω -valued function R on M. Then, $E(x, y) = R(x, y) \wedge R(y, x)$ defines an Ω -valued equality on M.

Consequently, we obtain a closure system of quotient structures which are ordered, where these orders are induced by R.

What we get here, the structure (M, E, R), is an Ω -poset. Imposing particular conditions on R, we define a complete

Ω -lattice.

In the structure (M, E, R), (M, E) is an Ω -set (a nonempty set and an Ω -valued equality on it).

・ 同 ト ・ ヨ ト ・ ヨ ト

We equip M with a transitive and strict Ω -valued function R on M. Then, $E(x, y) = R(x, y) \wedge R(y, x)$ defines an Ω -valued equality on M.

Consequently, we obtain a closure system of quotient structures which are ordered, where these orders are induced by R.

What we get here, the structure (M, E, R), is an Ω -poset. Imposing particular conditions on R, we define a complete Ω -lattice.

In the structure (M, E, R), (M, E) is an Ω -set (a nonempty set and an Ω -valued equality on it).

→ 同 → → 目 → → 目 →

We equip an Ω -set with operations and with particular formulas acting as identities.

We equip M with a transitive and strict Ω -valued function R on M. Then, $E(x, y) = R(x, y) \wedge R(y, x)$ defines an Ω -valued equality on M.

Consequently, we obtain a closure system of quotient structures which are ordered, where these orders are induced by R.

What we get here, the structure (M, E, R), is an Ω -poset. Imposing particular conditions on R, we define a complete Ω -lattice.

In the structure (M, E, R), (M, E) is an Ω -set (a nonempty set and an Ω -valued equality on it).

→ 御 → → 注 → → 注 →

We equip an Ω -set with operations and with particular formulas acting as identities.

In this way we obtain an Ω -lattice as an algebraic structure.

We equip M with a transitive and strict Ω -valued function R on M. Then, $E(x, y) = R(x, y) \wedge R(y, x)$ defines an Ω -valued equality on M.

Consequently, we obtain a closure system of quotient structures which are ordered, where these orders are induced by R.

What we get here, the structure (M, E, R), is an Ω -poset. Imposing particular conditions on R, we define a complete Ω -lattice.

In the structure (M, E, R), (M, E) is an Ω -set (a nonempty set and an Ω -valued equality on it).

We equip an Ω -set with operations and with particular formulas acting as identities.

In this way we obtain an Ω -lattice as an algebraic structure. This is not a classical lattice, still classical lattices appear as special quotients with respect to the Ω -valued equality.

E.E. Edeghagba, B. Šešelja, A. Tepavčević Complete Ω-lattices

・ロン ・回 と ・ ヨン ・ ヨン

æ

A complete lattice is here denoted by $(\Omega, \land, \lor, \leqslant, 0, 1)$, with bottom and the top element, 1 and 0 respectively.

A complete lattice is here denoted by $(\Omega, \land, \lor, \leqslant, 0, 1)$, with bottom and the top element, 1 and 0 respectively.

A collection C of subsets of a nonempty set X is called a **closure** system on X, if it is closed under arbitrary set intersections.

A complete lattice is here denoted by $(\Omega, \land, \lor, \leqslant, 0, 1)$, with bottom and the top element, 1 and 0 respectively.

A collection C of subsets of a nonempty set X is called a **closure** system on X, if it is closed under arbitrary set intersections.

A closure system on X contains also X, as the intersection of the empty collection of subsets.

A complete lattice is here denoted by $(\Omega, \land, \lor, \leqslant, 0, 1)$, with bottom and the top element, 1 and 0 respectively.

A collection C of subsets of a nonempty set X is called a **closure** system on X, if it is closed under arbitrary set intersections.

A closure system on X contains also X, as the intersection of the empty collection of subsets.

A closure system is a complete lattice under inclusion.

E.E. Edeghagba, B. Šešelja, A. Tepavčević Complete Ω-lattices

< ≣ >

æ

Let (Ω, \leqslant) be a complete lattice, or a poset if so indicated.

Let (Ω, \leq) be a complete lattice, or a poset if so indicated. An Ω -valued function on a nonempty set X is mapping $\mu: X \to \Omega$.

E.E. Edeghagba, B. Šešelja, A. Tepavčević Complete Ω -lattices

Let (Ω, \leq) be a complete lattice, or a poset if so indicated. An Ω -valued function on a nonempty set X is mapping $\mu: X \to \Omega$.

A mapping $R: X^2 \to \Omega$ (an Ω -function on X^2) is an Ω -valued relation on X.

Ω -valued functions and relations

Let (Ω, \leq) be a complete lattice, or a poset if so indicated. An Ω -valued function on a nonempty set X is mapping $\mu: X \to \Omega$.

A mapping $R: X^2 \to \Omega$ (an Ω -function on X^2) is an Ω -valued relation on X.

If $\mu: X \to \Omega$ is an Ω -valued function on a set X then for $p \in \Omega$, the set

$$\mu_{p} := \{x \in X \mid \mu(x) \ge p\}$$

is a *p*-cut, or a cut set, (cut) of μ .

Ω -valued functions and relations

Let (Ω, \leq) be a complete lattice, or a poset if so indicated. An Ω -valued function on a nonempty set X is mapping $\mu: X \to \Omega$.

A mapping $R: X^2 \to \Omega$ (an Ω -function on X^2) is an Ω -valued relation on X.

If $\mu: X \to \Omega$ is an Ω -valued function on a set X then for $p \in \Omega$, the set

$$\mu_p := \{x \in X \mid \mu(x) \ge p\}$$

is a *p*-cut, or a cut set, (cut) of μ . Obviously,

$$\mu_{p} = \mu^{-1}(\uparrow p).$$

E.E. Edeghagba, B. Šešelja, A. Tepavčević Complete Ω-lattices

・ロ・ ・ 日・ ・ 田・ ・ 田・

In our approach, Ω is a complete lattice $(\Omega, \wedge, \vee, \leq, 0, 1)$.

▲周 → ▲ 国 →

æ

- ∢ ≣ ▶

In our approach, Ω is a complete lattice $(\Omega, \wedge, \lor, \leqslant, 0, 1)$.

An Ω -set is a pair (A, E), where A is a nonempty set, and E is an Ω -valued equality on A, i.e., a mapping $E : M^2 \to \Omega$ satisfying

In our approach, Ω is a complete lattice $(\Omega, \wedge, \lor, \leqslant, 0, 1)$.

An Ω -set is a pair (A, E), where A is a nonempty set, and E is an Ω -valued equality on A, i.e., a mapping $E : M^2 \to \Omega$ satisfying

E(x,y) = E(y,x) – symmetry

向下 イヨト イヨト

In our approach, Ω is a complete lattice $(\Omega, \wedge, \lor, \leqslant, 0, 1)$.

An Ω -set is a pair (A, E), where A is a nonempty set, and E is an Ω -valued equality on A, i.e., a mapping $E : M^2 \to \Omega$ satisfying

$$E(x, y) = E(y, x)$$
 – symmetry
and

In our approach, Ω is a complete lattice $(\Omega, \wedge, \lor, \leqslant, 0, 1)$.

An Ω -set is a pair (A, E), where A is a nonempty set, and E is an Ω -valued equality on A, i.e., a mapping $E : M^2 \to \Omega$ satisfying

$$E(x,y) = E(y,x)$$
 – symmetry
and
 $E(x,y) \wedge E(y,z) \leqslant E(x,z)$ – transitivity.

In our approach, Ω is a complete lattice $(\Omega, \wedge, \lor, \leqslant, 0, 1)$.

An Ω -set is a pair (A, E), where A is a nonempty set, and E is an Ω -valued equality on A, i.e., a mapping $E : M^2 \to \Omega$ satisfying

$$E(x,y) = E(y,x)$$
 – symmetry
and
 $E(x,y) \wedge E(y,z) \leqslant E(x,z)$ – transitivity.

An Ω -valued equality E on a set A fulfills the strictness property:

In our approach, Ω is a complete lattice $(\Omega, \wedge, \lor, \leqslant, 0, 1)$.

An Ω -set is a pair (A, E), where A is a nonempty set, and E is an Ω -valued equality on A, i.e., a mapping $E : M^2 \to \Omega$ satisfying

$$egin{aligned} E(x,y) &= E(y,x) - ext{ symmetry} \ ext{and} \ E(x,y) \wedge E(y,z) \leqslant E(x,z) - ext{ transitivity}. \end{aligned}$$

An Ω -valued equality E on a set A fulfills the strictness property: $E(x, y) \leq E(x, x) \wedge E(y, y).$

E.E. Edeghagba, B. Šešelja, A. Tepavčević Complete Ω-lattices

・ロ・・ (日・・ (日・・ (日・)

Let M be a nonempty set and $R: M^2 \to \Omega$ a *transitive* Ω -valued relation on M:

Let *M* be a nonempty set and $R: M^2 \to \Omega$ a *transitive* Ω -valued relation on *M*: $R(x, y) \land R(y, z) \leq R(x, z).$

A ₽

Let M be a nonempty set and $R: M^2 \to \Omega$ a *transitive* Ω -valued relation on M:

 $R(x,y) \wedge R(y,z) \leqslant R(x,z).$

Let also *R* fulfills the *strictness* property:

 $R(x,y) \leqslant R(x,x) \wedge R(y,y).$

Let M be a nonempty set and $R: M^2 \to \Omega$ a *transitive* Ω -valued relation on M:

 $R(x, y) \land R(y, z) \leq R(x, z).$ Let also R fulfills the *strictness* property: $R(x, y) \leq R(x, x) \land R(y, y).$

Define $E: M^2 \to L$ by

Let M be a nonempty set and $R: M^2 \to \Omega$ a *transitive* Ω -valued relation on M:

 $R(x, y) \land R(y, z) \leq R(x, z).$ Let also R fulfills the *strictness* property: $R(x, y) \leq R(x, x) \land R(y, y).$

Define $E: M^2 \to L$ by $E(x, y) := R(x, y) \land R(y, x).$

Let M be a nonempty set and $R: M^2 \to \Omega$ a *transitive* Ω -valued relation on M:

 $R(x, y) \land R(y, z) \leq R(x, z).$ Let also R fulfills the *strictness* property: $R(x, y) \leq R(x, x) \land R(y, y).$

Define $E: M^2 \to L$ by $E(x, y) := R(x, y) \land R(y, x).$ Obviously, E is an Ω -valued equality on M,

Let M be a nonempty set and $R: M^2 \to \Omega$ a *transitive* Ω -valued relation on M:

 $R(x, y) \land R(y, z) \leq R(x, z).$ Let also R fulfills the *strictness* property: $R(x, y) \leq R(x, x) \land R(y, y).$

Define $E : M^2 \to L$ by $E(x, y) := R(x, y) \land R(y, x).$ Obviously, E is an Ω -valued equality on M, hence (M, E) is an Ω -set.

Let M be a nonempty set and $R: M^2 \to \Omega$ a *transitive* Ω -valued relation on M:

 $R(x, y) \land R(y, z) \leq R(x, z).$ Let also R fulfills the *strictness* property: $R(x, y) \leq R(x, x) \land R(y, y).$

Define $E: M^2 \to L$ by $E(x, y) := R(x, y) \land R(y, x)$. Obviously, E is an Ω -valued equality on M, hence (M, E) is an Ω -set. We also say that R is *antisymmetric with respect to* E, i.e., that it is *E*-antisymmetric.

Let M be a nonempty set and $R: M^2 \to \Omega$ a *transitive* Ω -valued relation on M:

 $R(x, y) \land R(y, z) \leq R(x, z).$ Let also R fulfills the *strictness* property: $R(x, y) \leq R(x, x) \land R(y, y).$

Define $E: M^2 \to L$ by $E(x, y) := R(x, y) \land R(y, x).$ Obviously, E is an Ω -valued equality on M, hence (M, E) is an Ω -set. We also say that R is antisymmetric with respect to E, i.e., that it is E-antisymmetric.

Therefore we say that *R* is an Ω -valued order on (M, E).

Let M be a nonempty set and $R: M^2 \to \Omega$ a *transitive* Ω -valued relation on M:

 $R(x, y) \land R(y, z) \leq R(x, z).$ Let also R fulfills the *strictness* property: $R(x, y) \leq R(x, x) \land R(y, y).$

Define $E: M^2 \to L$ by $E(x, y) := R(x, y) \land R(y, x).$ Obviously, E is an Ω -valued equality on M, hence (M, E) is an Ω -set. We also say that R is antisymmetric with respect to E, i.e., that it is E-antisymmetric.

Therefore we say that *R* is an Ω -valued order on (M, E).

Under the above conditions, we say that (M, E, R) is an Ω -poset.

Let (A, E) be an Ω -set.

E.E. Edeghagba, B. Šešelja, A. Tepavčević Complete Ω-lattices

・ロト ・回ト ・モト ・モト

Let
$$(A, E)$$
 be an Ω -set.
Define $\mu : A \to \Omega$ by
 $\mu(x) := E(x, x)$.

E.E. Edeghagba, B. Šešelja, A. Tepavčević Complete Ω-lattices

▲口> ▲圖> ▲注> ▲注>

Let
$$(A, E)$$
 be an Ω -set.
Define $\mu : A \to \Omega$ by
 $\mu(x) := E(x, x)$.

If (A, E) is an Ω -set, then for every $p \in \Omega$, the cut E_p is an equivalence relation on the subset - cut μ_p of A.

- 4 回 2 - 4 回 2 - 4 回 2

Let
$$(A, E)$$
 be an Ω -set.
Define $\mu : A \to \Omega$ by
 $\mu(x) := E(x, x)$.

If (A, E) is an Ω -set, then for every $p \in \Omega$, the cut E_p is an equivalence relation on the subset - cut μ_p of A.

Theorem

Let (M, E, R) be an Ω -poset. Then for every $p \in \Omega$, the quotient structure $(\mu_p/E_p, \leq)$ is a poset, where the relation \leq is defined by

 $[x]_p \leq [y]_p$ if and only if $(x, y) \in R_p$.

E.E. Edeghagba, B. Šešelja, A. Tepavčević Complete Ω-lattices

イロン イヨン イヨン イヨン

An element $u \in M$ is an **upper bound** of A (under R), if for every $a \in A$

$$\bigwedge (\mu(x) \mid x \in A) \leq R(a, u).$$

An element $u \in M$ is an **upper bound** of A (under R), if for every $a \in A$ $\bigwedge (\mu(x) \mid x \in A) \leq R(a, u).$

An element $v \in M$ is a **lower bound** A, if for every $a \in A$

$$\bigwedge (\mu(x) \mid x \in A) \leq R(v, a).$$

伺い イヨト イヨト

E.E. Edeghagba, B. Šešelja, A. Tepavčević Complete Ω-lattices

・ロン ・回 と ・ ヨン ・ ヨン

Then an element $u \in M$ is a **pseudo-supremum** of A, if for every $p \in \Omega$, $p \leq \bigwedge (\mu(x) \mid x \in A)$, the following hold:

- (*i*) *u* is an upper bound of *A* and
- (ii) if there is $u_1 \in M$ such that $p \leq R(a, u_1)$ for every $a \in A$, then $p \leq R(u, u_1)$.

Then an element $u \in M$ is a **pseudo-supremum** of A, if for every $p \in \Omega$, $p \leq \bigwedge (\mu(x) \mid x \in A)$, the following hold:

- (*i*) u is an upper bound of A and
- (ii) if there is $u_1 \in M$ such that $p \leq R(a, u_1)$ for every $a \in A$, then $p \leq R(u, u_1)$.

Dually, an element $v \in M$ is a **pseudo-infimum** of A, if for every $p \in \Omega$, $p \leq \bigwedge (\mu(x) \mid x \in A)$, the following hold:

・回 ・ ・ ヨ ・ ・ ヨ ・

- (j) v is a lower bound of A and
- (jj) if there is $v_1 \in M$ such that $p \leq R(v_1, a)$ for every $a \in A$, then $p \leq R(v_1, v)$.

Proposition

Let (M, E, R) be an Ω -poset, let $A \subseteq M$ and $u \in M$ a pseudo-supremum (pseudo-infimum) of $A \subseteq M$. Then $v \in M$ is also a pseudo-supremum (pseudo-infimum) of $A \subseteq M$, if and only if $\bigwedge (\mu(x) \mid x \in A) \leq E(u, v)$.

æ

A (1) > A (1) > A

Proposition

Let (M, E, R) be an Ω -poset, let $A \subseteq M$ and $u \in M$ a pseudo-supremum (pseudo-infimum) of $A \subseteq M$. Then $v \in M$ is also a pseudo-supremum (pseudo-infimum) of $A \subseteq M$, if and only if $\bigwedge(\mu(x) \mid x \in A) \leq E(u, v)$.

For an arbitrary subset $A \subseteq M$, if a pseudo-supremum (pseudo-infimum) exists it is generally not unique.

< 🗇 > < 🖃 >

Proposition

Let (M, E, R) be an Ω -poset, let $A \subseteq M$ and $u \in M$ a pseudo-supremum (pseudo-infimum) of $A \subseteq M$. Then $v \in M$ is also a pseudo-supremum (pseudo-infimum) of $A \subseteq M$, if and only if $\bigwedge(\mu(x) \mid x \in A) \leq E(u, v)$.

For an arbitrary subset $A \subseteq M$, if a pseudo-supremum (pseudo-infimum) exists it is generally not unique.

Two pseudo-suprema u, v of A belong to the same equivalence class μ_p/E_p for every $p \leq \bigwedge (\mu(x) \mid x \in A)$.

A pseudo-top of A, $A \subseteq M$, is an element $t \in A$ such that for every $y \in A$ $\bigwedge(\mu(x) \mid x \in A) \leq R(y, t).$

E.E. Edeghagba, B. Šešelja, A. Tepavčević Complete Ω-lattices

▲周 → ▲ 国 →

æ

A **pseudo-top of** A, $A \subseteq M$, is an element $t \in A$ such that for every $y \in A$ $\wedge (\mu(x) \mid x \in A) \leq R(y, t).$

Dually, a **pseudo-bottom of** A, $A \subseteq M$, is an element $b \in A$, such that for every $y \in A$

 $\bigwedge (\mu(x) \mid x \in A) \leq R(b, y).$

A **pseudo-top of** A, $A \subseteq M$, is an element $t \in A$ such that for every $y \in A$ $\Lambda(\mu(x) \mid x \in A) \leq R(y, t)$.

Dually, a **pseudo-bottom of** A, $A \subseteq M$, is an element $b \in A$, such that for every $y \in A$

$$\bigwedge (\mu(x) \mid x \in A) \leq R(b, y).$$

In particular, if A = M, then the above elements t and b are said to be a **pseudo-top** and a **pseudo-bottom**, respectively, of the whole Ω -poset (M, E, R).

An Ω -poset (M, E, R) is called a **complete** Ω -**lattice** if for every $A \subseteq M$ pseudo-supremum and pseudo-infimum of A exist.

An Ω -poset (M, E, R) is called a **complete** Ω -**lattice** if for every $A \subseteq M$ pseudo-supremum and pseudo-infimum of A exist.

Proposition

A complete Ω -lattice possesses a pseudo-top and a pseudo bottom element.

A (10) > (10)

An Ω -poset (M, E, R) is called a **complete** Ω -**lattice** if for every $A \subseteq M$ pseudo-supremum and pseudo-infimum of A exist.

Proposition

A complete Ω -lattice possesses a pseudo-top and a pseudo bottom element.

Theorem

Let (M, E, R) be a complete Ω -lattice. Then, for every $p \in \Omega$, the poset $(\mu_p/E_p, \leq_p)$ is a complete lattice. In addition, for $A \subseteq M$, if c is a pseudo-infimum of A in (M, E, R), then $[c]_p$ is the infimum of $\{[a]_p \mid a \in A\}$ in the lattice $(\mu_p/E_p, \leq_p)$, for every $p \in \Omega$, such that $A \subseteq \mu_p$. Analogously, if d is a pseudo-supremum of A, then $[d]_p$ is the supremum of $\{[a]_p \mid a \in A\}$ in $(\mu_p/E_p, \leq_p)$.

イロン イヨン イヨン イヨン

Theorem

Let (M, E, R) be an Ω -poset. Then it is a complete Ω -lattice if and only if for every $q \in \Omega$, the poset $(\mu_a/E_a, \leq_a)$ is a complete lattice, and the following holds: for all $A \subseteq M$, $p = \bigwedge (\mu(a) \mid a \in A)$, and $q \leq p$, we have $\inf\{[a]_{E_n} \mid a \in A\} \subseteq \inf\{[a]_{E_n} \mid a \in A\},\$ and $\sup\{[a]_{E_n} \mid a \in A\} \subseteq \sup\{[a]_{E_n} \mid a \in A\},\$ where the infima (suprema) belong to the corresponding posets $(\mu_a/E_a, <_a)$ and $(\mu_p/E_p, <_p)$.

▲圖▶ ▲屋▶ ▲屋▶

Theorem

An Ω -poset (M, E, R) is a complete Ω -lattice, if the following conditions are fulfilled:

(i) a pseudo-infimum exists for every $A \subseteq M$; (ii) every cut μ_p , $p \in \Omega$, possesses a pseudo-top element; (iii) for all $A \subseteq M$, $p = \bigwedge(\mu(a) \mid a \in A)$, and $q \leq p$, if $\sup\{[a]_{E_p} \mid a \in A\}$ and $\sup\{[a]_{E_q} \mid a \in A\}$ exist in the posets $(\mu_q/E_q, \leq_q)$ and $(\mu_p/E_p, \leq_p)$ respectively, then

 $\sup\{[a]_{E_p} \mid a \in A\} \subseteq \sup\{[a]_{E_q} \mid a \in A\}.$

(《圖》 《문》 《문》 - 문

In the following we denote:

$$\Delta(f) := \{x \in M \mid (x, x) \in f\}.$$

E.E. Edeghagba, B. Šešelja, A. Tepavčević Complete Ω-lattices

・ロト ・回ト ・ヨト ・ヨト

In the following we denote:

$$\Delta(f) := \{x \in M \mid (x, x) \in f\}.$$

Theorem

Let $M \neq \emptyset$, and let $\mathcal{F} \subseteq \mathcal{P}(M^2)$ be a closure system over M^2 such that each $f \in \mathcal{F}$ is transitive and strict. Then the following hold. (a) There is a complete lattice Ω and a mapping $R : M^2 \longrightarrow \Omega$ such that \mathcal{F} is a collection of cuts of R and (M, E, R) is an Ω -poset, where $E : M^2 \longrightarrow \Omega$ is defined by $E(x, y) = R(x, y) \land R(y, x)$. (b) Let, in addition, for every $f \in \mathcal{F}$ and for every $A \subseteq \Delta_f$ there is an infimum and a supremum in the relational structure $(\Delta(f), f)$, and for $g \in \mathcal{F}$, such that $f \subseteq g$, the following hold:

if c is an infimum of A in $\Delta(f)$, then c is an infimum of A in $\Delta(g)$;

if c is a supremum of A in $\Delta(f)$, then c is a supremum of A in $\Delta(g)$. Then, (M, E, R) is a complete Ω -lattice.

$\Omega\text{-algebras}$

E.E. Edeghagba, B. Šešelja, A. Tepavčević Complete Ω-lattices

・ロト ・回ト ・ヨト ・ヨト

We use $\Omega\text{-sets}$ as a framework for introducing $\Omega\text{-algebras},$ and $\Omega\text{-relational structures}.$

We use $\Omega\text{-sets}$ as a framework for introducing $\Omega\text{-algebras},$ and $\Omega\text{-relational structures}.$

As above, $\boldsymbol{\Omega}$ is a complete lattice.

We use Ω -sets as a framework for introducing Ω -algebras, and Ω -relational structures. As above, Ω is a complete lattice.

An Ω -algebra is a pair (\mathcal{A}, E) , where $\mathcal{A} = (\mathcal{A}, F)$ is an algebra with the set F of fundamental operations, and (\mathcal{A}, E) is an Ω -set, where Ω -valued equality $E : M^2 \to \Omega$ fulfills

We use $\Omega\text{-sets}$ as a framework for introducing $\Omega\text{-algebras},$ and $\Omega\text{-relational structures}.$

As above, Ω is a complete lattice.

An Ω -algebra is a pair (\mathcal{A}, E) , where $\mathcal{A} = (\mathcal{A}, F)$ is an algebra with the set F of fundamental operations, and (\mathcal{A}, E) is an Ω -set, where Ω -valued equality $E : M^2 \to \Omega$ fulfills $\bigwedge_{i=1}^{n} E(x_i, y_i) \leq E(f(x_1, \dots, x_n), f(y_1, \dots, y_n)), \text{ for an } n\text{-ary operation } f \in F - \text{ compatibility.}$

E.E. Edeghagba, B. Šešelja, A. Tepavčević Complete Ω-lattices

< 🗇 > < 🖃 >

To each Ω -algebra (\mathcal{A}, E) there corresponds the Ω -function $\mu : \mathcal{A} \to \Omega$, defined by:

・ 同 ト ・ 三 ト ・ 三 ト

3

To each Ω -algebra (\mathcal{A}, E) there corresponds the Ω -function $\mu : \mathcal{A} \to \Omega$, defined by: $\mu(x) := E(x, x).$

・ 同 ト ・ ヨ ト ・ ヨ ト …

2

To each Ω -algebra (\mathcal{A}, E) there corresponds the Ω -function $\mu : \mathcal{A} \to \Omega$, defined by: $\mu(x) := E(x, x)$. The following is straightforward.

・ 同 ト ・ ヨ ト ・ ヨ ト …

To each Ω -algebra (\mathcal{A}, E) there corresponds the Ω -function $\mu : \mathcal{A} \to \Omega$, defined by: $\mu(x) := E(x, x)$. The following is straightforward.

For all
$$x_1, \ldots, x_n \in A$$
 and for an n-ary $f \in F$, μ fulfills
$$\bigwedge_{i=1}^{n} \mu(x_i) \leq \mu(f(x_1, \ldots, x_n)) - compatibility.$$

< 🗇 > < 🖃 >

Identities

E.E. Edeghagba, B. Šešelja, A. Tepavčević Complete Ω-lattices

・ロト ・回ト ・モト ・モト

Identities

If (\mathcal{A}, E) is an Ω -algebra, and $u \approx v$ is an identity in the language of the algebra \mathcal{A} , then we say that (\mathcal{A}, E) fulfills the identity $u \approx v$ if $\bigwedge_{i=1}^{n} \mu(x_i) \leq E(f(x_1, \dots, x_n), f(y_1, \dots, y_n)),$ where x_1, \dots, x_n are variables appearing in terms u and v.

Identities

If (\mathcal{A}, E) is an Ω -algebra, and $u \approx v$ is an identity in the language of the algebra \mathcal{A} , then we say that (\mathcal{A}, E) fulfills the identity $u \approx v$ if $\bigwedge_{i=1}^{n} \mu(x_i) \leq E(f(x_1, \dots, x_n), f(y_1, \dots, y_n)),$ where x_1, \dots, x_n are variables appearing in terms u and v.

If (A, E) is an Ω -algebra, and the algebra A satisfies an identity $u \approx v$, then also (A, E) satisfies this identity.

< 🗇 > < 🖃 >

Cut properties

E.E. Edeghagba, B. Šešelja, A. Tepavčević Complete Ω-lattices

문 문 문

Cut properties

Theorem

Let (\mathcal{A}, E) be an Ω -algebra, and Σ a set of identities. Then, (\mathcal{A}, E) fulfils Σ if and only if for every $p \in \Omega$, the cut μ_p is a subalgebra of \mathcal{A} , the cut relation E_p is a congruence on μ_p , and the quotient structure μ_p/E_p satisfies Σ .

A (1) > A (1) > A

E.E. Edeghagba, B. Šešelja, A. Tepavčević Complete Ω-lattices

(4回) (1) (1)

- < ≣ →

Let $(\Omega, \wedge, \lor, \leqslant, 0, 1)$ be a complete lattice.

/⊒ > < ≣ >

Let $(\Omega, \wedge, \vee, \leq, 0, 1)$ be a complete lattice. Further, let (\mathcal{M}, E) be an Ω -bigroupoid, i.e., an Ω -algebra in which $\mathcal{M} = (\mathcal{M}, \sqcap, \sqcup)$ is a bigroupoid – an algebra with two binary operations.

Let $(\Omega, \wedge, \vee, \leq, 0, 1)$ be a complete lattice. Further, let (\mathcal{M}, E) be an Ω -bigroupoid, i.e., an Ω -algebra in which $\mathcal{M} = (\mathcal{M}, \sqcap, \sqcup)$ is a bigroupoid – an algebra with two binary operations.

As already defined, $E: M^2 \to \Omega$ is an Ω -valued equality, and the function $\mu: M \to \Omega$ is given by $\mu(x) = E(x, x)$.

Let $(\Omega, \wedge, \vee, \leq, 0, 1)$ be a complete lattice. Further, let (\mathcal{M}, E) be an Ω -bigroupoid, i.e., an Ω -algebra in which $\mathcal{M} = (\mathcal{M}, \sqcap, \sqcup)$ is a bigroupoid – an algebra with two binary operations.

As already defined, $E: M^2 \to \Omega$ is an Ω -valued equality, and the function $\mu: M \to \Omega$ is given by $\mu(x) = E(x, x)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Then, (\mathcal{M}, E) is an Ω -lattice if the following formulas hold:

Let $(\Omega, \wedge, \vee, \leq, 0, 1)$ be a complete lattice. Further, let (\mathcal{M}, E) be an Ω -bigroupoid, i.e., an Ω -algebra in which $\mathcal{M} = (\mathcal{M}, \sqcap, \sqcup)$ is a bigroupoid – an algebra with two binary operations.

As already defined, $E: M^2 \to \Omega$ is an Ω -valued equality, and the function $\mu: M \to \Omega$ is given by $\mu(x) = E(x, x)$.

Then, (\mathcal{M}, E) is an Ω -lattice if the following formulas hold:

$$\begin{split} \mu(x) \wedge \mu(y) &\leq E(x \sqcap y, y \sqcap x) \\ \mu(x) \wedge \mu(y) &\leq E(x \sqcup y, y \sqcup x) \\ \mu(x) \wedge \mu(y) \wedge \mu(z) &\leq E((x \sqcap y) \sqcap z, x \sqcap (y \sqcap z)) \\ \mu(x) \wedge \mu(y) \wedge \mu(z) &\leq E((x \sqcup y) \sqcup z, x \sqcup (y \sqcup z)) \\ \mu(x) \wedge \mu(y) &\leq E((x \sqcap y) \sqcup x, x) \\ \mu(x) \wedge \mu(y) &\leq E((x \sqcup y) \sqcap x, x). \end{split}$$

Proposition

In an Ω -lattice (\mathcal{M}, E) the idempotent laws $\mu(x) \leq E(x \sqcap x, x)$ and $\mu(x) \leq E(x \sqcup x, x)$ are fulfilled.

<->
</>
</>
</>
</>
</l>

- ★ 臣 ▶ - - 臣

Proposition

In an Ω -lattice (\mathcal{M}, E) the idempotent laws $\mu(x) \leq E(x \sqcap x, x)$ and $\mu(x) \leq E(x \sqcup x, x)$ are fulfilled.

Proposition

If (\mathcal{M}, E) is an Ω -lattice, then the bigroupoid \mathcal{M} is idempotent with respect to both operations.

<->
</>
</>
</>
</>
</l>

$$\mu_p := \mu^{-1}(\uparrow p).$$

E.E. Edeghagba, B. Šešelja, A. Tepavčević Complete Ω-lattices

@▶ 《 ≧ ▶

æ

- ∢ ≣ ▶

$$\mu_p := \mu^{-1}(\uparrow p).$$

Obviously,

$$\mu_p = \{ x \in M \mid \mu(x) \ge p \}.$$

同 とくほ とくほと

$$\mu_p := \mu^{-1}(\uparrow p).$$

Obviously,

$$\mu_p = \{ x \in M \mid \mu(x) \ge p \}.$$

Consequently, for $E: M^2 \to \Omega$, E_p is a binary relation on M, given by

$$E_p = E^{-1}(\uparrow p).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

$$\mu_p := \mu^{-1}(\uparrow p).$$

Obviously,

$$\mu_p = \{ x \in M \mid \mu(x) \ge p \}.$$

Consequently, for $E: M^2 \to \Omega$, E_p is a binary relation on M, given by

$$E_p = E^{-1}(\uparrow p).$$

Theorem

Let $\mathcal{M} = (\mathcal{M}, \wedge, \vee)$ be a bigroupoid and E an Ω -equality on \mathcal{M} . Then, (\mathcal{M}, E) is an Ω -lattice if and only if for every $p \in \Omega$, the cut μ_p is a subalgebra (sub-bigroupoid) of \mathcal{M} , the cut relation E_p is a congruence on μ_p and a quotient structure μ_p/E_p is a lattice.

▲祠 → ▲ 臣 → ▲ 臣 →

Order on Ω -lattices

E.E. Edeghagba, B. Šešelja, A. Tepavčević Complete Ω-lattices

・ロト ・回ト ・ヨト ・ヨト

Let (M, E) be an Ω -set.

E.E. Edeghagba, B. Šešelja, A. Tepavčević Complete Ω-lattices

● ▶ < ミ ▶

문 문 문

Let (M, E) be an Ω -set. The mapping $R: M^2 \to \Omega$ fulfilling

E.E. Edeghagba, B. Šešelja, A. Tepavčević Complete Ω-lattices

Let (M, E) be an Ω -set. The mapping $R: M^2 \to \Omega$ fulfilling

$$egin{aligned} R(x,x) &= E(x,x),\ R(x,y) \wedge R(y,x) \leqslant E(x,y) & (E ext{-antisymmetry}) ext{ and }\ R(x,y) \wedge R(y,z) \leqslant R(x,z), \end{aligned}$$

Let (M, E) be an Ω -set. The mapping $R: M^2 \to \Omega$ fulfilling

$$egin{aligned} R(x,x) &= E(x,x),\ R(x,y) \wedge R(y,x) \leqslant E(x,y) & (E ext{-antisymmetry}) ext{ and }\ R(x,y) \wedge R(y,z) \leqslant R(x,z), \end{aligned}$$

is an Ω -valued order on (M, E).

Let (M, E) be an Ω -set. The mapping $R: M^2 \to \Omega$ fulfilling

$$egin{aligned} R(x,x) &= E(x,x), \ R(x,y) \wedge R(y,x) \leqslant E(x,y) & (E ext{-antisymmetry}) ext{ and } \ R(x,y) \wedge R(y,z) \leqslant R(x,z), \end{aligned}$$

is an Ω -valued order on (M, E).

Theorem

If (\mathcal{M}, E) is an Ω -lattice, then the Ω -valued relation $R : M^2 \to L$, such that $R(x, y) := \mu(x) \land \mu(y) \land E(x \sqcap y, x)$ is an Ω -valued order on \mathcal{M} . Moreover, for every $p \in \Omega$, the order on the lattice μ_p/E_p is induced by the cut R_p : $[x]_{E_p} \leq [y]_{E_p}$ if and only if $(x, y) \in R_p$. Let (M, E, R) be an Ω -poset, and $a, b \in M$. An element $c \in M$ is a **pseudo-infimum** of a, b, if for every $p \in \Omega$ such that $\mu(a) \land \mu(b) \ge p$, the following holds: Let (M, E, R) be an Ω -poset, and $a, b \in M$. An element $c \in M$ is a **pseudo-infimum** of a, b, if for every $p \in \Omega$ such that $\mu(a) \land \mu(b) \ge p$, the following holds: (i) $\mu(c) \land R(c, a) \land R(c, b) \ge p$ and for every $x \in M$ $\mu(x) \land R(x, a) \land R(x, b) \ge p$ implies $R(x, c) \ge p$. Let (M, E, R) be an Ω -poset, and $a, b \in M$. An element $c \in M$ is a **pseudo-infimum** of a, b, if for every $p \in \Omega$ such that $\mu(a) \land \mu(b) \ge p$, the following holds: (i) $\mu(c) \land R(c, a) \land R(c, b) \ge p$ and for every $x \in M$ $\mu(x) \land R(x, a) \land R(x, b) \ge p$ implies $R(x, c) \ge p$.

An element $d \in M$ is a **pseudo-supremum** of $a, b \in M$, if for every $p \in \Omega$ such that $\mu(a) \land \mu(b) \ge p$, the following holds: (ii) $\mu(d) \land R(a, d) \land R(b, d) \ge p$ and for every $x \in M$ $\mu(x) \land R(a, x) \land R(b, x) \ge p$ implies $R(d, x) \ge p$.

・ 同 ト ・ 三 ト ・ 三 ト

Let (M, E, R) be an Ω -poset, and $a, b \in M$. An element $c \in M$ is a **pseudo-infimum** of a, b, if for every $p \in \Omega$ such that $\mu(a) \land \mu(b) \ge p$, the following holds: (i) $\mu(c) \land R(c, a) \land R(c, b) \ge p$ and for every $x \in M$ $\mu(x) \land R(x, a) \land R(x, b) \ge p$ implies $R(x, c) \ge p$.

An element $d \in M$ is a **pseudo-supremum** of $a, b \in M$, if for every $p \in \Omega$ such that $\mu(a) \land \mu(b) \ge p$, the following holds: (*ii*) $\mu(d) \land R(a, d) \land R(b, d) \ge p$ and for every $x \in M$ $\mu(x) \land R(a, x) \land R(b, x) \ge p$ implies $R(d, x) \ge p$.

Observe that for given $a, b \in M$, a pseudo-infimum and a pseudo-supremum, if they exist, are not unique in general.

▲□ → ▲ □ → ▲ □ → …

We say that an Ω -poset (M, E, R) is an Ω -lattice as an ordered structure, if for every $a, b \in M$ there exist a pseudo-infimum and a pseudo-supremum.

We say that an Ω -poset (M, E, R) is an Ω -lattice as an ordered structure, if for every $a, b \in M$ there exist a pseudo-infimum and a pseudo-supremum.

Proposition

Let (M, E, R) be an Ω -lattice and c, c_1 pseudo-infima of $a, b \in M$. If for $p \in \Omega$, $\mu(a) \wedge \mu(b) \ge p$, then $E(c, c_1) \ge p$. Analogously, if d, d_1 are pseudo-suprema of a, b and $\mu(a) \wedge \mu(b) \ge p$, then $E(d, d_1) \ge p$.

< A > < 3

We say that an Ω -poset (M, E, R) is an Ω -lattice as an ordered structure, if for every $a, b \in M$ there exist a pseudo-infimum and a pseudo-supremum.

Proposition

Let (M, E, R) be an Ω -lattice and c, c_1 pseudo-infima of $a, b \in M$. If for $p \in \Omega$, $\mu(a) \land \mu(b) \ge p$, then $E(c, c_1) \ge p$. Analogously, if d, d_1 are pseudo-suprema of a, b and $\mu(a) \land \mu(b) \ge p$, then $E(d, d_1) \ge p$.

Obviously, by this Proposition, pseudo-infima (suprima) of two element a, b from μ_p , belong to the same equivalence class in μ_p/E_p .

イロン イヨン イヨン イヨン

Theorem

Let (M, E, R) be an Ω -lattice as an ordered structure. Then for every $p \in \Omega$, the poset $(\mu_p/E_p, \leq_p)$ is a lattice, where the relation \leq_p on the quotient set μ_p/E_p is defined above.

<->
</>
</>
</>
</>
</l>

- ★ 臣 ▶ - - 臣

Theorem

Let (M, E, R) be an Ω -lattice as an ordered structure. Then for every $p \in \Omega$, the poset $(\mu_p/E_p, \leq_p)$ is a lattice, where the relation \leq_p on the quotient set μ_p/E_p is defined above.

Theorem

Let $\mathcal{M} = (M, \Box, \sqcup)$ be a bi-groupoid, (\mathcal{M}, E) an Ω -lattice as an algebra in which E is strongly separated, and $R : M^2 \to \Omega$ an Ω -valued relation on M defined by $R(x, y) := E(x \Box y, x)$. Then, (M, E, R) is an Ω -lattice as an ordered structure.

イロン イヨン イヨン イヨン

Let (M, E, R) be an Ω -lattice as an ordered structure.

イロン イヨン イヨン イヨン

Let (M, E, R) be an Ω -lattice as an ordered structure. We define two binary operations, \sqcap and \sqcup on M as follows: for every pair a, b of elements from $M, a \sqcap b$ is an arbitrary, fixed pseudo-infimum of a and b, and $a \sqcup b$ is an arbitrary, fixed pseudo-supremum of a and b. Let (M, E, R) be an Ω -lattice as an ordered structure. We define two binary operations, \sqcap and \sqcup on M as follows: for every pair a, b of elements from $M, a \sqcap b$ is an arbitrary, fixed pseudo-infimum of a and b, and $a \sqcup b$ is an arbitrary, fixed pseudo-supremum of a and b.

Assuming Axiom of Choice, by which an element is chosen among all pseudo-infima (suprema) of a and b, the operations \sqcap and \sqcup on M are well defined.

Let (M, E, R) be an Ω -lattice as an ordered structure. We define two binary operations, \sqcap and \sqcup on M as follows: for every pair a, b of elements from $M, a \sqcap b$ is an arbitrary, fixed pseudo-infimum of a and b, and $a \sqcup b$ is an arbitrary, fixed pseudo-supremum of a and b.

Assuming Axiom of Choice, by which an element is chosen among all pseudo-infima (suprema) of *a* and *b*, the operations \sqcap and \sqcup on *M* are well defined.

Theorem

If (M, E, R) is an Ω -lattice as an ordered structure, and $\mathcal{M} = (M, \Box, \sqcup)$ the bi-groupoid in which operations \Box, \sqcup are introduced above, then (\mathcal{M}, E) is an Ω -lattice as an algebra.

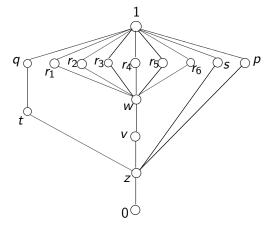
- 4 同 2 4 日 2 4 日 2

Example

E.E. Edeghagba, B. Šešelja, A. Tepavčević Complete Ω-lattices

・ロ・・ (日・・ (日・・ (日・)

Example



Lattice Ω

・ロト ・回ト ・ヨト ・ヨト

æ

E.E. Edeghagba, B. Šešelja, A. Tepavčević Complete Ω-lattices

$$M = \{x_0, x_1, \ldots, x_9, x_{10}\}$$

▲口> ▲圖> ▲注> ▲注>

$$M = \{x_0, x_1, \dots, x_9, x_{10}\}$$

R	<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4	<i>x</i> 5	<i>x</i> 6	<i>x</i> 7	<i>x</i> 8	Xg	<i>x</i> ₁₀
<i>x</i> ₀	p	Z	Ζ	Z	Z	Z	Ζ	Ζ	Ζ	Ζ	р
<i>x</i> ₁	0	q	q	0	0	0	0	0	0	Z	0
<i>x</i> ₂	0	t	q	0	0	0	0	0	0	Z	0
<i>x</i> 3	0	0	0	<i>r</i> ₁	w	w	w	W	W	Z	0
<i>X</i> 4	0	0	0	w	<i>r</i> ₂	w	w	Z	Ζ	Z	0
<i>X</i> 5	0	0	0	w	w	<i>r</i> ₃	w	W	W	Ζ	0
<i>x</i> 6	0	0	0	w	w	w	r ₄	w	w	Ζ	0
<i>X</i> 7	0	0	0	Z	Z	Z	Z	<i>r</i> 5	w	Z	0
<i>x</i> 8	0	0	0	Z	Z	Z	Z	V	<i>r</i> 6	Z	0
Xg	0	0	0	0	0	0	0	0	0	S	0
<i>x</i> ₁₀	Z	Z	Ζ	Z	Z	Z	Ζ	Ζ	Ζ	Ζ	р

・ロ・・日・・日・・日・ うへの

 $E(x, y) = R(x, y) \wedge R(y, x)$

E.E. Edeghagba, B. Šešelja, A. Tepavčević Complete Ω-lattices

 $E(x,y) = R(x,y) \wedge R(y,x)$

Ε	x ₀	<i>x</i> ₁	x ₂	<i>x</i> 3	<i>x</i> 4	<i>X</i> 5	<i>x</i> 6	<i>x</i> 7	<i>x</i> 8	Xg	<i>x</i> ₁₀
<i>x</i> ₀	p	0	0	0	0	0	0	0	0	0	Ζ
<i>x</i> ₁	0	q	t	0	0	0	0	0	0	0	0
<i>x</i> ₂	0	t	q	0	0	0	0	0	0	0	0
<i>x</i> 3	0	0	0	<i>r</i> ₁	w	w	w	Z	Ζ	0	0
<i>X</i> 4	0	0	0	w	<i>r</i> ₂	w	w	Z	Ζ	0	0
<i>x</i> 5	0	0	0	w	w	<i>r</i> ₃	w	Ζ	Ζ	0	0
<i>x</i> 6	0	0	0	w	w	w	<i>r</i> 4	Z	Z	0	0
<i>X</i> 7	0	0	0	Z	Z	Z	Z	<i>r</i> 5	V	0	0
<i>x</i> 8	0	0	0	Z	Z	Z	Z	V	<i>r</i> 6	0	0
Xg	0	0	0	0	0	0	0	0	0	S	0
<i>x</i> ₁₀	Z	0	0	0	0	0	0	0	0	0	р

 Quotient lattices:

・ロト ・回ト ・モト ・モト

Quotient lattices:

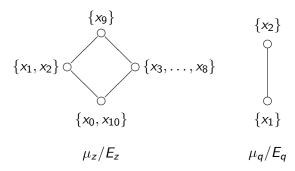
$$\begin{split} \mu_z/E_z &= \{\{x_0, x_{10}\}, \{x_1, x_2\}, \{x_3, \dots, x_8\}, \{x_9\}\}, - \text{Boolean lattice}; \\ \mu_q/E_q &= \{\{x_1\}, \{x_2\}\}; \end{split}$$

the other quotient structures are one-element lattices.

向下 イヨト イヨト

Quotient lattices:
$$\begin{split} &\mu_z/E_z = \{\{x_0, x_{10}\}, \{x_1, x_2\}, \{x_3, \dots, x_8\}, \{x_9\}\}, - \text{Boolean lattice}; \\ &\mu_q/E_q = \{\{x_1\}, \{x_2\}\}; \end{split}$$

the other quotient structures are one-element lattices.



個 と く ヨ と く ヨ と

Π	<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4	<i>x</i> 5	<i>x</i> 6	<i>X</i> 7	<i>x</i> 8	Xg	<i>x</i> ₁₀
<i>x</i> 0	<i>x</i> ₀	<i>x</i> 0	<i>x</i> 0	<i>x</i> 0	<i>x</i> ₀	<i>x</i> 0	<i>x</i> ₀				
<i>x</i> ₁	<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₁	<i>x</i> ₁₀	<i>x</i> ₁	<i>x</i> ₁₀					
<i>x</i> ₂	<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 0	<i>x</i> ₁₀	<i>x</i> ₂	<i>x</i> ₁₀				
<i>x</i> 3	<i>x</i> ₀	<i>x</i> ₁₀	<i>x</i> ₁₀	<i>x</i> 3	<i>x</i> ₁₀						
<i>x</i> 4	<i>x</i> ₀	<i>x</i> ₁₀	<i>x</i> ₁₀	<i>x</i> 3	<i>x</i> 4	<i>x</i> 3	<i>x</i> 4	<i>x</i> 4	<i>x</i> 4	<i>x</i> 4	<i>x</i> ₁₀
<i>X</i> 5	<i>x</i> ₀	<i>x</i> ₁₀	<i>x</i> ₁₀	<i>x</i> 3	<i>x</i> 3	<i>X</i> 5	<i>x</i> ₁₀				
<i>x</i> 6	<i>x</i> ₀	<i>x</i> ₁₀	<i>x</i> ₁₀	<i>x</i> 3	<i>x</i> 4	<i>X</i> 5	<i>x</i> 6	<i>X</i> 4	<i>x</i> 6	<i>x</i> 6	<i>x</i> ₁₀
X7	<i>x</i> ₀	<i>x</i> ₁₀	<i>x</i> ₁₀	<i>x</i> 3	<i>x</i> 4	<i>X</i> 5	<i>X</i> 4	<i>X</i> 7	<i>X</i> 7	<i>X</i> 7	<i>x</i> ₁₀
<i>x</i> 8	<i>x</i> ₀	<i>x</i> ₀	<i>x</i> ₀	<i>x</i> 3	<i>x</i> 4	<i>X</i> 5	<i>x</i> 6	<i>x</i> 7	<i>x</i> 8	<i>x</i> 8	<i>x</i> ₁₀
Xg	<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>X</i> 5	<i>x</i> 6	<i>x</i> 7	<i>x</i> 8	X9	<i>x</i> ₁₀
<i>x</i> ₁₀	x ₀	<i>x</i> ₁₀	<i>x</i> ₁₀	<i>x</i> ₁₀	x ₁₀	<i>x</i> ₁₀	<i>x</i> ₁₀	<i>x</i> ₁₀	x ₁₀	<i>x</i> ₁₀	<i>x</i> ₁₀

	<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>x</i> 5	<i>x</i> ₆	x ₇	<i>x</i> ₈	X9	x ₁₀
<i>x</i> ₀	<i>x</i> 0	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	<i>x</i> 5	<i>x</i> ₆	X7	<i>x</i> 8	<i>X</i> 9	x ₁₀
<i>x</i> ₁	<i>x</i> ₁	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 9	<i>X</i> 9	<i>x</i> ₁					
<i>x</i> ₂	<i>x</i> ₂	<i>x</i> ₂	<i>x</i> ₂	X9	<i>X</i> 9	<i>X</i> 9	<i>x</i> ₂				
<i>x</i> 3	<i>x</i> 3	<i>X</i> 9	<i>X</i> 9	<i>x</i> 3	<i>x</i> 4	<i>x</i> 5	<i>x</i> 6	<i>x</i> 7	<i>x</i> 8	<i>X</i> 9	<i>x</i> 3
<i>X</i> 4	<i>x</i> 4	<i>X</i> 9	<i>X</i> 9	<i>x</i> 4	<i>x</i> 4	<i>x</i> 6	<i>x</i> 6	<i>x</i> 7	<i>x</i> 8	<i>X</i> 9	<i>x</i> 4
<i>X</i> 5	<i>X</i> 5	<i>X</i> 9	<i>X</i> 9	<i>X</i> 5	<i>x</i> 6	<i>X</i> 5	<i>x</i> 6	<i>x</i> 7	<i>x</i> 8	<i>X</i> 9	<i>X</i> 5
<i>x</i> 6	<i>x</i> ₆	<i>X</i> 9	<i>X</i> 9	<i>x</i> ₆	<i>x</i> 6	<i>x</i> ₆	<i>x</i> ₆	<i>x</i> 8	<i>x</i> 8	<i>X</i> 9	<i>x</i> ₆
<i>x</i> ₇	<i>x</i> ₇	<i>X</i> 9	<i>X</i> 9	<i>x</i> 7	<i>x</i> 7	<i>x</i> ₇	<i>x</i> 8	<i>x</i> ₇	<i>x</i> 8	<i>X</i> 9	<i>x</i> ₇
<i>x</i> 8	<i>x</i> 8	<i>X</i> 9	<i>X</i> 9	<i>x</i> 8	<i>X</i> 9	<i>x</i> 8					
<i>X</i> 9	<i>X</i> 9	<i>X</i> 9	<i>X</i> 9	<i>X</i> 9	<i>X</i> 9	<i>X</i> 9	<i>X</i> 9	<i>X</i> 9	<i>X</i> 9	<i>X</i> 9	<i>X</i> 9
<i>x</i> ₁₀	<i>x</i> ₁₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4	<i>x</i> 5	<i>x</i> 6	X7	<i>x</i> 8	<i>X</i> 9	<i>x</i> ₁₀

▲口> ▲圖> ▲注> ▲注>

Thank you for the attention !

イロン イヨン イヨン イヨン

æ

E.E. Edeghagba, B. Šešelja, A. Tepavčević Complete Ω-lattices