Complete Ω-lattices

Branimir Šešelja

co-authors:
 Edeghagba Eghosa Elijah and Andreja Tepavčević

Department of Mathematics and Informatics
Faculty of Sciences, University of Novi Sad

AAA91, Brno, February 7, 2016

Introduction: Ω-sets and structures

Introduction: Ω-sets and structures

In sixties of the previous century, Tarski notion of a truth values structure was generalized to Boolean-valued models by D.S. Scott, R.M. Solovay and P. Vopěnka. In this model, truth values are elements of a complete Boolean algebra (e.g., J.L. Bell, Boolean-Valued Models and Independence Proofs in Set Theory, (1985) Oxford).

Introduction: Ω-sets and structures

In sixties of the previous century, Tarski notion of a truth values structure was generalized to Boolean-valued models by D.S. Scott, R.M. Solovay and P. Vopěnka. In this model, truth values are elements of a complete Boolean algebra (e.g., J.L. Bell, Boolean-Valued Models and Independence Proofs in Set Theory, (1985) Oxford).

Further, in 1977., M.P. Fourman and D.S. Scott (Sheaves and logic, Lecture Notes in Mathematics, vol. 753, Springer, Berlin, Heidelberg, New York, 1979, 302-401) introduced models for intuitionistic predicate logic. These were Ω-sets, or Heyting-valued sets, Ω being a Heyting algebra.

Introduction: Ω-sets and structures

In sixties of the previous century, Tarski notion of a truth values structure was generalized to Boolean-valued models by D.S. Scott, R.M. Solovay and P. Vopěnka. In this model, truth values are elements of a complete Boolean algebra (e.g., J.L. Bell, Boolean-Valued Models and Independence Proofs in Set Theory, (1985) Oxford).

Further, in 1977., M.P. Fourman and D.S. Scott (Sheaves and logic, Lecture Notes in Mathematics, vol. 753, Springer, Berlin, Heidelberg, New York, 1979, 302-401) introduced models for intuitionistic predicate logic. These were Ω-sets, or Heyting-valued sets, Ω being a Heyting algebra.

An Ω-set is a nonempty set equipped with an Ω-valued equality.

This notion has been further applied to non-classical predicate logics e.g.,

This notion has been further applied to non-classical predicate logics e.g.,
G.P. Monro, Quasitopoi, logic and Heyting-valued models, Journal of pure and applied algebra, (1986) 42(2), 141-164,
E. Palmgren, S.J. Vickers, Partial Horn logic and cartesian categories, Annals of Pure and Applied Logic, (2007) 145(3), 314-353.
Ω-sets and related notions were also applied to foundations of Fuzzy Set Theory, e.g.:
Ω-sets and related notions were also applied to foundations of Fuzzy Set Theory, e.g.:
U. Höhle, Fuzzy sets and sheaves. Part I: basic concepts, Fuzzy Sets and Systems, (2007) 158(11),
S. Gottwald, Universes of fuzzy sets and axiomatizations of fuzzy set theory, Part II: Category theoretic approaches, Studia Logica, (2006) 84(1), 23-50. 1143-1174,
R. Bělohlávek, Fuzzy equational logic, Archive for Mathematical Logic 41.1 (2002): 83-90,
R. Bělohlávek, Fuzzy Relational Systems: Foundations and Principles, Kluwer Academic/Plenum Publishers, New York, 2002.

What we present here

What we present here

Our basic idea is the generalization of the well known connection:

What we present here

Our basic idea is the generalization of the well known connection:

- a preorder R on a nonempty set A

What we present here

Our basic idea is the generalization of the well known connection:

- a preorder R on a nonempty set A
- equivalence $S=R \cap R^{-1}$ on A

What we present here

Our basic idea is the generalization of the well known connection:

- a preorder R on a nonempty set A
- equivalence $S=R \cap R^{-1}$ on A
- order T on A / S, induced by R.

What we present here

Our basic idea is the generalization of the well known connection:

- a preorder R on a nonempty set A
- equivalence $S=R \cap R^{-1}$ on A
- order T on A / S, induced by R.

Actually, we replace reflexivity of R by strictness: $(x, y) \in R$ implies $(x, x),(y, y) \in R$.

What we present here

Our basic idea is the generalization of the well known connection:

- a preorder R on a nonempty set A
- equivalence $S=R \cap R^{-1}$ on A
- order T on A / S, induced by R.

Actually, we replace reflexivity of R by strictness:
$(x, y) \in R$ implies $(x, x),(y, y) \in R$.
Then S is an equivalence on $B=\{x \mid(x, x) \in R\}$,

What we present here

Our basic idea is the generalization of the well known connection:

- a preorder R on a nonempty set A
- equivalence $S=R \cap R^{-1}$ on A
- order T on A / S, induced by R.

Actually, we replace reflexivity of R by strictness:
$(x, y) \in R$ implies $(x, x),(y, y) \in R$.
Then S is an equivalence on $B=\{x \mid(x, x) \in R\}$, and T is an order on B / S.

As a generalization, we deal with functions from a nonempty set M to a complete lattice $\Omega-\Omega$-valued relations.

As a generalization, we deal with functions from a nonempty set M to a complete lattice $\Omega-\Omega$-valued relations.
We equip M with a transitive and strict Ω-valued function R on M.

As a generalization, we deal with functions from a nonempty set M to a complete lattice $\Omega-\Omega$-valued relations.
We equip M with a transitive and strict Ω-valued function R on M. Then, $E(x, y)=R(x, y) \wedge R(y, x)$ defines an Ω-valued equality on M.

As a generalization, we deal with functions from a nonempty set M to a complete lattice $\Omega-\Omega$-valued relations.
We equip M with a transitive and strict Ω-valued function R on M. Then, $E(x, y)=R(x, y) \wedge R(y, x)$ defines an Ω-valued equality on M.
Consequently, we obtain a closure system of quotient structures which are ordered, where these orders are induced by R.

As a generalization, we deal with functions from a nonempty set M to a complete lattice $\Omega-\Omega$-valued relations.
We equip M with a transitive and strict Ω-valued function R on M. Then, $E(x, y)=R(x, y) \wedge R(y, x)$ defines an Ω-valued equality on M.
Consequently, we obtain a closure system of quotient structures which are ordered, where these orders are induced by R.
What we get here, the structure (M, E, R), is an Ω-poset.

As a generalization, we deal with functions from a nonempty set M to a complete lattice $\Omega-\Omega$-valued relations.
We equip M with a transitive and strict Ω-valued function R on M. Then, $E(x, y)=R(x, y) \wedge R(y, x)$ defines an Ω-valued equality on M.
Consequently, we obtain a closure system of quotient structures which are ordered, where these orders are induced by R. What we get here, the structure (M, E, R), is an Ω-poset. Imposing particular conditions on R, we define a complete Ω-lattice.

As a generalization, we deal with functions from a nonempty set M to a complete lattice $\Omega-\Omega$-valued relations.
We equip M with a transitive and strict Ω-valued function R on M. Then, $E(x, y)=R(x, y) \wedge R(y, x)$ defines an Ω-valued equality on M.
Consequently, we obtain a closure system of quotient structures which are ordered, where these orders are induced by R. What we get here, the structure (M, E, R), is an Ω-poset. Imposing particular conditions on R, we define a complete Ω-lattice.
In the structure $(M, E, R),(M, E)$ is an Ω-set (a nonempty set and an Ω-valued equality on it).

As a generalization, we deal with functions from a nonempty set M to a complete lattice $\Omega-\Omega$-valued relations.
We equip M with a transitive and strict Ω-valued function R on M. Then, $E(x, y)=R(x, y) \wedge R(y, x)$ defines an Ω-valued equality on M.
Consequently, we obtain a closure system of quotient structures which are ordered, where these orders are induced by R. What we get here, the structure (M, E, R), is an Ω-poset. Imposing particular conditions on R, we define a complete Ω-lattice.
In the structure (M, E, R), (M, E) is an Ω-set (a nonempty set and an Ω-valued equality on it).
We equip an Ω-set with operations and with particular formulas acting as identities.

As a generalization, we deal with functions from a nonempty set M to a complete lattice $\Omega-\Omega$-valued relations.
We equip M with a transitive and strict Ω-valued function R on M. Then, $E(x, y)=R(x, y) \wedge R(y, x)$ defines an Ω-valued equality on M.
Consequently, we obtain a closure system of quotient structures which are ordered, where these orders are induced by R.
What we get here, the structure (M, E, R), is an Ω-poset. Imposing particular conditions on R, we define a complete Ω-lattice.
In the structure (M, E, R), (M, E) is an Ω-set (a nonempty set and an Ω-valued equality on it).
We equip an Ω-set with operations and with particular formulas acting as identities.
In this way we obtain an Ω-lattice as an algebraic structure.

As a generalization, we deal with functions from a nonempty set M to a complete lattice $\Omega-\Omega$-valued relations.
We equip M with a transitive and strict Ω-valued function R on M.
Then, $E(x, y)=R(x, y) \wedge R(y, x)$ defines an Ω-valued equality on M.
Consequently, we obtain a closure system of quotient structures which are ordered, where these orders are induced by R.
What we get here, the structure (M, E, R), is an Ω-poset. Imposing particular conditions on R, we define a complete Ω-lattice.
In the structure $(M, E, R),(M, E)$ is an Ω-set (a nonempty set and an Ω-valued equality on it).
We equip an Ω-set with operations and with particular formulas acting as identities.
In this way we obtain an Ω-lattice as an algebraic structure.
This is not a classical lattice, still classical lattices appear as special quotients with respect to the Ω-valued equality.

Preliminaries

Preliminaries

A complete lattice is here denoted by $(\Omega, \wedge, \vee, \leqslant, 0,1)$, with bottom and the top element, 1 and 0 respectively.

Preliminaries

A complete lattice is here denoted by $(\Omega, \wedge, \vee, \leqslant, 0,1)$, with bottom and the top element, 1 and 0 respectively.

A collection \mathcal{C} of subsets of a nonempty set X is called a closure system on X, if it is closed under arbitrary set intersections.

Preliminaries

A complete lattice is here denoted by $(\Omega, \wedge, \vee, \leqslant, 0,1)$, with bottom and the top element, 1 and 0 respectively.

A collection \mathcal{C} of subsets of a nonempty set X is called a closure system on X, if it is closed under arbitrary set intersections.

A closure system on X contains also X, as the intersection of the empty collection of subsets.

Preliminaries

A complete lattice is here denoted by $(\Omega, \wedge, \vee, \leqslant, 0,1)$, with bottom and the top element, 1 and 0 respectively.

A collection \mathcal{C} of subsets of a nonempty set X is called a closure system on X, if it is closed under arbitrary set intersections.

A closure system on X contains also X, as the intersection of the empty collection of subsets.

A closure system is a complete lattice under inclusion.

Ω-valued functions and relations

Ω-valued functions and relations

Let (Ω, \leqslant) be a complete lattice, or a poset if so indicated.

Ω-valued functions and relations

Let (Ω, \leqslant) be a complete lattice, or a poset if so indicated. An Ω-valued function on a nonempty set X is mapping $\mu: X \rightarrow \Omega$.

Ω-valued functions and relations

Let (Ω, \leqslant) be a complete lattice, or a poset if so indicated. An Ω-valued function on a nonempty set X is mapping $\mu: X \rightarrow \Omega$.

A mapping $R: X^{2} \rightarrow \Omega\left(\right.$ an Ω-function on $\left.X^{2}\right)$ is an Ω-valued relation on X.

Ω-valued functions and relations

Let (Ω, \leqslant) be a complete lattice, or a poset if so indicated. An Ω-valued function on a nonempty set X is mapping $\mu: X \rightarrow \Omega$.

A mapping $R: X^{2} \rightarrow \Omega\left(\right.$ an Ω-function on $\left.X^{2}\right)$ is an Ω-valued relation on X.

If $\mu: X \rightarrow \Omega$ is an Ω-valued function on a set X then for $p \in \Omega$, the set

$$
\mu_{p}:=\{x \in X \mid \mu(x) \geqslant p\}
$$

is a p-cut, or a cut set, (cut) of μ.
Ω-valued functions and relations
Let (Ω, \leqslant) be a complete lattice, or a poset if so indicated. An Ω-valued function on a nonempty set X is mapping $\mu: X \rightarrow \Omega$.

A mapping $R: X^{2} \rightarrow \Omega\left(\right.$ an Ω-function on $\left.X^{2}\right)$ is an Ω-valued relation on X.

If $\mu: X \rightarrow \Omega$ is an Ω-valued function on a set X then for $p \in \Omega$, the set

$$
\mu_{p}:=\{x \in X \mid \mu(x) \geqslant p\}
$$

is a p-cut, or a cut set, (cut) of μ.
Obviously,

$$
\mu_{p}=\mu^{-1}(\uparrow p)
$$

Ω-set

Ω-set

In our approach, Ω is a complete lattice $(\Omega, \wedge, \vee, \leqslant, 0,1)$.

Ω-set

In our approach, Ω is a complete lattice $(\Omega, \wedge, \vee, \leqslant, 0,1)$.
An Ω-set is a pair (A, E), where A is a nonempty set, and E is an Ω-valued equality on A, i.e., a mapping $E: M^{2} \rightarrow \Omega$ satisfying

Ω-set

In our approach, Ω is a complete lattice $(\Omega, \wedge, \vee, \leqslant, 0,1)$.
An Ω-set is a pair (A, E), where A is a nonempty set, and E is an Ω-valued equality on A, i.e., a mapping $E: M^{2} \rightarrow \Omega$ satisfying
$E(x, y)=E(y, x)$ - symmetry

Ω-set

In our approach, Ω is a complete lattice $(\Omega, \wedge, \vee, \leqslant, 0,1)$.
An Ω-set is a pair (A, E), where A is a nonempty set, and E is an Ω-valued equality on A, i.e., a mapping $E: M^{2} \rightarrow \Omega$ satisfying
$E(x, y)=E(y, x)$ - symmetry and

Ω-set

In our approach, Ω is a complete lattice $(\Omega, \wedge, \vee, \leqslant, 0,1)$.
An Ω-set is a pair (A, E), where A is a nonempty set, and E is an Ω-valued equality on A, i.e., a mapping $E: M^{2} \rightarrow \Omega$ satisfying
$E(x, y)=E(y, x)-$ symmetry and
$E(x, y) \wedge E(y, z) \leqslant E(x, z)-$ transitivity.
Ω-set

In our approach, Ω is a complete lattice $(\Omega, \wedge, \vee, \leqslant, 0,1)$.
An Ω-set is a pair (A, E), where A is a nonempty set, and E is an Ω-valued equality on A, i.e., a mapping $E: M^{2} \rightarrow \Omega$ satisfying
$E(x, y)=E(y, x)-$ symmetry and
$E(x, y) \wedge E(y, z) \leqslant E(x, z)-$ transitivity.

An Ω-valued equality E on a set A fulfills the strictness property:
Ω-set
In our approach, Ω is a complete lattice $(\Omega, \wedge, \vee, \leqslant, 0,1)$.
An Ω-set is a pair (A, E), where A is a nonempty set, and E is an Ω-valued equality on A, i.e., a mapping $E: M^{2} \rightarrow \Omega$ satisfying
$E(x, y)=E(y, x)$ - symmetry and
$E(x, y) \wedge E(y, z) \leqslant E(x, z)$ - transitivity.

An Ω-valued equality E on a set A fulfills the strictness property: $E(x, y) \leqslant E(x, x) \wedge E(y, y)$.
Ω-poset

Ω-poset

Let M be a nonempty set and $R: M^{2} \rightarrow \Omega$ a transitive Ω-valued relation on M :

Ω-poset

Let M be a nonempty set and $R: M^{2} \rightarrow \Omega$ a transitive Ω-valued relation on M :
$R(x, y) \wedge R(y, z) \leqslant R(x, z)$.

Ω-poset

Let M be a nonempty set and $R: M^{2} \rightarrow \Omega$ a transitive Ω-valued relation on M :
$R(x, y) \wedge R(y, z) \leqslant R(x, z)$.
Let also R fulfills the strictness property: $R(x, y) \leqslant R(x, x) \wedge R(y, y)$.

Ω-poset

Let M be a nonempty set and $R: M^{2} \rightarrow \Omega$ a transitive Ω-valued relation on M :
$R(x, y) \wedge R(y, z) \leqslant R(x, z)$.
Let also R fulfills the strictness property: $R(x, y) \leqslant R(x, x) \wedge R(y, y)$.

Define $E: M^{2} \rightarrow L$ by

Ω-poset

Let M be a nonempty set and $R: M^{2} \rightarrow \Omega$ a transitive Ω-valued relation on M :
$R(x, y) \wedge R(y, z) \leqslant R(x, z)$.
Let also R fulfills the strictness property: $R(x, y) \leqslant R(x, x) \wedge R(y, y)$.

Define $E: M^{2} \rightarrow L$ by
$E(x, y):=R(x, y) \wedge R(y, x)$.

Ω-poset

Let M be a nonempty set and $R: M^{2} \rightarrow \Omega$ a transitive Ω-valued relation on M :
$R(x, y) \wedge R(y, z) \leqslant R(x, z)$.
Let also R fulfills the strictness property:
$R(x, y) \leqslant R(x, x) \wedge R(y, y)$.
Define $E: M^{2} \rightarrow L$ by
$E(x, y):=R(x, y) \wedge R(y, x)$.
Obviously, E is an Ω-valued equality on M,

Ω-poset

Let M be a nonempty set and $R: M^{2} \rightarrow \Omega$ a transitive Ω-valued relation on M :
$R(x, y) \wedge R(y, z) \leqslant R(x, z)$.
Let also R fulfills the strictness property:
$R(x, y) \leqslant R(x, x) \wedge R(y, y)$.
Define $E: M^{2} \rightarrow L$ by
$E(x, y):=R(x, y) \wedge R(y, x)$.
Obviously, E is an Ω-valued equality on M, hence (M, E) is an Ω-set.

Ω-poset

Let M be a nonempty set and $R: M^{2} \rightarrow \Omega$ a transitive Ω-valued relation on M :
$R(x, y) \wedge R(y, z) \leqslant R(x, z)$.
Let also R fulfills the strictness property:
$R(x, y) \leqslant R(x, x) \wedge R(y, y)$.
Define $E: M^{2} \rightarrow L$ by
$E(x, y):=R(x, y) \wedge R(y, x)$.
Obviously, E is an Ω-valued equality on M, hence (M, E) is an Ω-set.
We also say that R is antisymmetric with respect to E, i.e., that it is E-antisymmetric.

Ω-poset

Let M be a nonempty set and $R: M^{2} \rightarrow \Omega$ a transitive Ω-valued relation on M :
$R(x, y) \wedge R(y, z) \leqslant R(x, z)$.
Let also R fulfills the strictness property:
$R(x, y) \leqslant R(x, x) \wedge R(y, y)$.
Define $E: M^{2} \rightarrow L$ by
$E(x, y):=R(x, y) \wedge R(y, x)$.
Obviously, E is an Ω-valued equality on M, hence (M, E) is an Ω-set.
We also say that R is antisymmetric with respect to E, i.e., that it is E-antisymmetric.
Therefore we say that R is an Ω-valued order on (M, E).

Ω-poset

Let M be a nonempty set and $R: M^{2} \rightarrow \Omega$ a transitive Ω-valued relation on M :
$R(x, y) \wedge R(y, z) \leqslant R(x, z)$.
Let also R fulfills the strictness property:
$R(x, y) \leqslant R(x, x) \wedge R(y, y)$.
Define $E: M^{2} \rightarrow L$ by
$E(x, y):=R(x, y) \wedge R(y, x)$.
Obviously, E is an Ω-valued equality on M, hence (M, E) is an Ω-set.
We also say that R is antisymmetric with respect to E, i.e., that it is E-antisymmetric.
Therefore we say that R is an Ω-valued order on (M, E).
Under the above conditions, we say that (M, E, R) is an Ω-poset.

Let (A, E) be an Ω-set.

Let (A, E) be an Ω-set.
Define $\mu: A \rightarrow \Omega$ by $\mu(x):=E(x, x)$.

Let (A, E) be an Ω-set.
Define $\mu: A \rightarrow \Omega$ by $\mu(x):=E(x, x)$.

If (A, E) is an Ω-set, then for every $p \in \Omega$, the cut E_{p} is an equivalence relation on the subset - cut μ_{p} of A.

Let (A, E) be an Ω-set.
Define $\mu: A \rightarrow \Omega$ by
$\mu(x):=E(x, x)$.

If (A, E) is an Ω-set, then for every $p \in \Omega$, the cut E_{p} is an equivalence relation on the subset - cut μ_{p} of A.

Theorem

Let (M, E, R) be an Ω-poset. Then for every $p \in \Omega$, the quotient structure $\left(\mu_{p} / E_{p}, \leq\right)$ is a poset, where the relation \leq is defined by

$$
[x]_{p} \leq[y]_{p} \text { if and only if }(x, y) \in R_{p} .
$$

Let (M, E, R) be an Ω-poset and $A \subseteq M$.

Let (M, E, R) be an Ω-poset and $A \subseteq M$.
An element $u \in M$ is an upper bound of A (under R), if for every $a \in A$

$$
\bigwedge(\mu(x) \mid x \in A) \leq R(a, u) .
$$

Let (M, E, R) be an Ω-poset and $A \subseteq M$.
An element $u \in M$ is an upper bound of A (under R), if for every $a \in A$

$$
\bigwedge(\mu(x) \mid x \in A) \leq R(a, u)
$$

An element $v \in M$ is a lower bound A, if for every $a \in A$

$$
\bigwedge(\mu(x) \mid x \in A) \leq R(v, a)
$$

Let (M, E, R) be an Ω-poset and $A \subseteq M$.

Let (M, E, R) be an Ω-poset and $A \subseteq M$.

Then an element $u \in M$ is a pseudo-supremum of A, if for every $p \in \Omega, p \leq \Lambda(\mu(x) \mid x \in A)$, the following hold:
(i) u is an upper bound of A and
(ii) if there is $u_{1} \in M$ such that $p \leq R\left(a, u_{1}\right)$ for every $a \in A$, then $p \leq R\left(u, u_{1}\right)$.

Let (M, E, R) be an Ω-poset and $A \subseteq M$.

Then an element $u \in M$ is a pseudo-supremum of A, if for every $p \in \Omega, p \leq \Lambda(\mu(x) \mid x \in A)$, the following hold:
(i) u is an upper bound of A and
(ii) if there is $u_{1} \in M$ such that $p \leq R\left(a, u_{1}\right)$ for every $a \in A$, then $p \leq R\left(u, u_{1}\right)$.
Dually, an element $v \in M$ is a pseudo-infimum of A, if for every $p \in \Omega, p \leq \Lambda(\mu(x) \mid x \in A)$, the following hold:
(j) v is a lower bound of A and
(jj) if there is $v_{1} \in M$ such that $p \leq R\left(v_{1}, a\right)$ for every $a \in A$, then $p \leq R\left(v_{1}, v\right)$.

Proposition

Let (M, E, R) be an Ω-poset, let $A \subseteq M$ and $u \in M$ a pseudo-supremum (pseudo-infimum) of $A \subseteq M$. Then $v \in M$ is also a pseudo-supremum (pseudo-infimum) of $A \subseteq M$, if and only if $\bigwedge(\mu(x) \mid x \in A) \leq E(u, v)$.

Proposition

Let (M, E, R) be an Ω-poset, let $A \subseteq M$ and $u \in M$ a pseudo-supremum (pseudo-infimum) of $A \subseteq M$. Then $v \in M$ is also a pseudo-supremum (pseudo-infimum) of $A \subseteq M$, if and only if $\bigwedge(\mu(x) \mid x \in A) \leq E(u, v)$.

For an arbitrary subset $A \subseteq M$, if a pseudo-supremum (pseudo-infimum) exists it is generally not unique.

Proposition

Let (M, E, R) be an Ω-poset, let $A \subseteq M$ and $u \in M$ a pseudo-supremum (pseudo-infimum) of $A \subseteq M$. Then $v \in M$ is also a pseudo-supremum (pseudo-infimum) of $A \subseteq M$, if and only if $\bigwedge(\mu(x) \mid x \in A) \leq E(u, v)$.

For an arbitrary subset $A \subseteq M$, if a pseudo-supremum (pseudo-infimum) exists it is generally not unique.

Two pseudo-suprema u, v of A belong to the same equivalence class μ_{p} / E_{p} for every $p \leq \bigwedge(\mu(x) \mid x \in A)$.

A pseudo-top of $A, A \subseteq M$, is an element $t \in A$ such that for every $y \in A$

$$
\bigwedge(\mu(x) \mid x \in A) \leq R(y, t)
$$

A pseudo-top of $A, A \subseteq M$, is an element $t \in A$ such that for every $y \in A$

$$
\bigwedge(\mu(x) \mid x \in A) \leq R(y, t)
$$

Dually, a pseudo-bottom of $A, A \subseteq M$, is an element $b \in A$, such that for every $y \in A$

$$
\bigwedge(\mu(x) \mid x \in A) \leq R(b, y)
$$

A pseudo-top of $A, A \subseteq M$, is an element $t \in A$ such that for every $y \in A$

$$
\bigwedge(\mu(x) \mid x \in A) \leq R(y, t)
$$

Dually, a pseudo-bottom of $A, A \subseteq M$, is an element $b \in A$, such that for every $y \in A$

$$
\Lambda(\mu(x) \mid x \in A) \leq R(b, y)
$$

In particular, if $A=M$, then the above elements t and b are said to be a pseudo-top and a pseudo-bottom, respectively, of the whole Ω-poset (M, E, R).

An Ω-poset (M, E, R) is called a complete Ω-lattice if for every $A \subseteq M$ pseudo-supremum and pseudo-infimum of A exist.

An Ω-poset (M, E, R) is called a complete Ω-lattice if for every $A \subseteq M$ pseudo-supremum and pseudo-infimum of A exist.

Proposition

A complete Ω-lattice possesses a pseudo-top and a pseudo bottom element.

An Ω-poset (M, E, R) is called a complete Ω-lattice if for every $A \subseteq M$ pseudo-supremum and pseudo-infimum of A exist.

Proposition

A complete Ω-lattice possesses a pseudo-top and a pseudo bottom element.

Theorem

Let (M, E, R) be a complete Ω-lattice. Then, for every $p \in \Omega$, the poset $\left(\mu_{p} / E_{p}, \leq_{p}\right)$ is a complete lattice. In addition, for $A \subseteq M$, if c is a pseudo-infimum of A in (M, E, R), then $[c]_{p}$ is the infimum of $\left\{[a]_{p} \mid a \in A\right\}$ in the lattice $\left(\mu_{p} / E_{p}, \leq_{p}\right)$, for every $p \in \Omega$, such that $A \subseteq \mu_{p}$.
Analogously, if d is a pseudo-supremum of A, then $[d]_{p}$ is the supremum of $\left\{[a]_{p} \mid a \in A\right\}$ in $\left(\mu_{p} / E_{p}, \leq_{p}\right)$.

Theorem

Let (M, E, R) be an Ω-poset. Then it is a complete Ω-lattice if and only if for every $q \in \Omega$, the poset $\left(\mu_{q} / E_{q}, \leq_{q}\right)$ is a complete lattice, and the following holds: for all $A \subseteq M$, $p=\bigwedge(\mu(a) \mid a \in A)$, and $q \leq p$, we have

$$
\begin{aligned}
& \quad \inf \left\{[a]_{E_{p}} \mid a \in A\right\} \subseteq \inf \left\{[a]_{E_{q}} \mid a \in A\right\}, \\
& \text { and } \quad \sup \left\{[a]_{E_{p}} \mid a \in A\right\} \subseteq \sup \left\{[a]_{E_{q}} \mid a \in A\right\},
\end{aligned}
$$

where the infima (suprema) belong to the corresponding posets $\left(\mu_{q} / E_{q}, \leq_{q}\right)$ and $\left(\mu_{p} / E_{p}, \leq_{p}\right)$.

Theorem

An Ω-poset (M, E, R) is a complete Ω-lattice, if the following conditions are fulfilled:
(i) a pseudo-infimum exists for every $A \subseteq M$;
(ii) every cut $\mu_{p}, p \in \Omega$, possesses a pseudo-top element;
(iii) for all $A \subseteq M, p=\bigwedge(\mu(a) \mid a \in A)$, and $q \leq p$, if $\sup \left\{[a]_{E_{p}} \mid a \in A\right\}$ and $\sup \left\{[a]_{E_{q}} \mid a \in A\right\}$ exist in the posets $\left(\mu_{q} / E_{q}, \leq_{q}\right)$ and $\left(\mu_{p} / E_{p}, \leq_{p}\right)$ respectively, then

$$
\sup \left\{[a]_{E_{p}} \mid a \in A\right\} \subseteq \sup \left\{[a]_{E_{q}} \mid a \in A\right\}
$$

In the following we denote:

$$
\Delta(f):=\{x \in M \mid(x, x) \in f\} .
$$

In the following we denote:

$$
\Delta(f):=\{x \in M \mid(x, x) \in f\} .
$$

Theorem

Let $M \neq \emptyset$, and let $\mathcal{F} \subseteq \mathcal{P}\left(M^{2}\right)$ be a closure system over M^{2} such that each $f \in \mathcal{F}$ is transitive and strict. Then the following hold.
(a) There is a complete lattice Ω and a mapping $R: M^{2} \longrightarrow \Omega$
such that \mathcal{F} is a collection of cuts of R and (M, E, R) is an
Ω-poset, where $E: M^{2} \longrightarrow \Omega$ is defined by
$E(x, y)=R(x, y) \wedge R(y, x)$.
(b) Let, in addition, for every $f \in \mathcal{F}$ and for every $A \subseteq \Delta_{f}$ there is an infimum and a supremum in the relational structure $(\Delta(f), f)$, and for $g \in \mathcal{F}$, such that $f \subseteq g$, the following hold:
if c is an infimum of A in $\Delta(f)$, then c is an infimum of A in $\Delta(g)$;
if c is a supremum of A in $\Delta(f)$, then c is a supremum of A in $\Delta(g)$.
Then, (M, E, R) is a complete Ω-lattice.
Ω-algebras

Ω-algebras

We use Ω-sets as a framework for introducing Ω-algebras, and Ω-relational structures.

Ω-algebras

We use Ω-sets as a framework for introducing Ω-algebras, and Ω-relational structures.
As above, Ω is a complete lattice.

Ω-algebras

We use Ω-sets as a framework for introducing Ω-algebras, and Ω-relational structures.
As above, Ω is a complete lattice.

An Ω-algebra is a pair (\mathcal{A}, E), where $\mathcal{A}=(A, F)$ is an algebra with the set F of fundamental operations, and (A, E) is an Ω-set, where Ω-valued equality $E: M^{2} \rightarrow \Omega$ fulfills

Ω-algebras

We use Ω-sets as a framework for introducing Ω-algebras, and Ω-relational structures.
As above, Ω is a complete lattice.

An Ω-algebra is a pair (\mathcal{A}, E), where $\mathcal{A}=(A, F)$ is an algebra with the set F of fundamental operations, and (A, E) is an Ω-set, where Ω-valued equality $E: M^{2} \rightarrow \Omega$ fulfills
n
$\bigwedge E\left(x_{i}, y_{i}\right) \leqslant E\left(f\left(x_{1}, \ldots, x_{n}\right), f\left(y_{1}, \ldots, y_{n}\right)\right)$, for an n-ary
$i=1$
operation $f \in F-$ compatibility.

We use Ω-valued equalities fulfilling the property $E(x, y)=E(x, x)=E(y, y)$ implies $x=y-$ strong separation.

We use Ω-valued equalities fulfilling the property $E(x, y)=E(x, x)=E(y, y)$ implies $x=y$ - strong separation.

To each Ω-algebra (\mathcal{A}, E) there corresponds the Ω-function $\mu: A \rightarrow \Omega$, defined by:

We use Ω-valued equalities fulfilling the property $E(x, y)=E(x, x)=E(y, y)$ implies $x=y-$ strong separation.

To each Ω-algebra (\mathcal{A}, E) there corresponds the Ω-function $\mu: A \rightarrow \Omega$, defined by:
$\mu(x):=E(x, x)$.

We use Ω-valued equalities fulfilling the property $E(x, y)=E(x, x)=E(y, y)$ implies $x=y$ - strong separation.

To each Ω-algebra (\mathcal{A}, E) there corresponds the Ω-function $\mu: A \rightarrow \Omega$, defined by:
$\mu(x):=E(x, x)$.
The following is straightforward.

We use Ω-valued equalities fulfilling the property
$E(x, y)=E(x, x)=E(y, y)$ implies $x=y-$ strong separation.
To each Ω-algebra (\mathcal{A}, E) there corresponds the Ω-function $\mu: A \rightarrow \Omega$, defined by:
$\mu(x):=E(x, x)$.
The following is straightforward.

For all $x_{1}, \ldots, x_{n} \in A$ and for an n-ary $f \in F, \mu$ fulfills
n
$\bigwedge \mu\left(x_{i}\right) \leqslant \mu\left(f\left(x_{1}, \ldots, x_{n}\right)\right)$ - compatibility.
$i=1$

Identities

Identities

If (\mathcal{A}, E) is an Ω-algebra, and $u \approx v$ is an identity in the language of the algebra \mathcal{A}, then we say that (\mathcal{A}, E) fulfills the identity $u \approx v$ if
$\bigwedge^{n} \mu\left(x_{i}\right) \leqslant E\left(f\left(x_{1}, \ldots, x_{n}\right), f\left(y_{1}, \ldots, y_{n}\right)\right)$,
$i=1$
where x_{1}, \ldots, x_{n} are variables appearing in terms u and v.

Identities

If (\mathcal{A}, E) is an Ω-algebra, and $u \approx v$ is an identity in the language of the algebra \mathcal{A}, then we say that (\mathcal{A}, E) fulfills the identity $u \approx v$ if
n
$\bigwedge \mu\left(x_{i}\right) \leqslant E\left(f\left(x_{1}, \ldots, x_{n}\right), f\left(y_{1}, \ldots, y_{n}\right)\right)$,
$i=1$
where x_{1}, \ldots, x_{n} are variables appearing in terms u and v.

If (\mathcal{A}, E) is an Ω-algebra, and the algebra \mathcal{A} satisfies an identity $u \approx v$, then also (\mathcal{A}, E) satisfies this identity.

Cut properties

Cut properties

Theorem

Let (\mathcal{A}, E) be an Ω-algebra, and Σ a set of identities. Then, (\mathcal{A}, E) fulfils Σ if and only if for every $p \in \Omega$, the cut μ_{p} is a subalgebra of \mathcal{A}, the cut relation E_{p} is a congruence on μ_{p}, and the quotient structure μ_{p} / E_{p} satisfies Σ.

Ω-lattice as an algebra

Ω-lattice as an algebra

Let $(\Omega, \wedge, \vee, \leqslant, 0,1)$ be a complete lattice.

Ω-lattice as an algebra

Let $(\Omega, \wedge, \vee, \leqslant, 0,1)$ be a complete lattice.
Further, let (\mathcal{M}, E) be an Ω-bigroupoid, i.e., an Ω-algebra in which $\mathcal{M}=(M, \sqcap, \sqcup)$ is a bigroupoid - an algebra with two binary operations.

Ω-lattice as an algebra

Let $(\Omega, \wedge, \vee, \leqslant, 0,1)$ be a complete lattice.
Further, let (\mathcal{M}, E) be an Ω-bigroupoid, i.e., an Ω-algebra in which $\mathcal{M}=(M, \sqcap, \sqcup)$ is a bigroupoid - an algebra with two binary operations.

As already defined, $E: M^{2} \rightarrow \Omega$ is an Ω-valued equality, and the function $\mu: M \rightarrow \Omega$ is given by $\mu(x)=E(x, x)$.

Ω-lattice as an algebra

Let $(\Omega, \wedge, \vee, \leqslant, 0,1)$ be a complete lattice.
Further, let (\mathcal{M}, E) be an Ω-bigroupoid, i.e., an Ω-algebra in which $\mathcal{M}=(M, \sqcap, \sqcup)$ is a bigroupoid - an algebra with two binary operations.

As already defined, $E: M^{2} \rightarrow \Omega$ is an Ω-valued equality, and the function $\mu: M \rightarrow \Omega$ is given by $\mu(x)=E(x, x)$.

Then, (\mathcal{M}, E) is an Ω-lattice if the following formulas hold:

Ω-lattice as an algebra

Let $(\Omega, \wedge, \vee, \leqslant, 0,1)$ be a complete lattice.
Further, let (\mathcal{M}, E) be an Ω-bigroupoid, i.e., an Ω-algebra in which $\mathcal{M}=(M, \sqcap, \sqcup)$ is a bigroupoid - an algebra with two binary operations.

As already defined, $E: M^{2} \rightarrow \Omega$ is an Ω-valued equality, and the function $\mu: M \rightarrow \Omega$ is given by $\mu(x)=E(x, x)$.

Then, (\mathcal{M}, E) is an Ω-lattice if the following formulas hold:

```
\(\mu(x) \wedge \mu(y) \leqslant E(x \sqcap y, y \sqcap x)\)
\(\mu(x) \wedge \mu(y) \leqslant E(x \sqcup y, y \sqcup x)\)
\(\mu(x) \wedge \mu(y) \wedge \mu(z) \leqslant E((x \sqcap y) \sqcap z, x \sqcap(y \sqcap z))\)
\(\mu(x) \wedge \mu(y) \wedge \mu(z) \leqslant E((x \sqcup y) \sqcup z, x \sqcup(y \sqcup z))\)
\(\mu(x) \wedge \mu(y) \leqslant E((x \sqcap y) \sqcup x, x)\)
\(\mu(x) \wedge \mu(y) \leqslant E((x \sqcup y) \sqcap x, x)\).
```


Proposition

In an Ω-lattice (\mathcal{M}, E) the idempotent laws $\mu(x) \leqslant E(x \sqcap x, x)$ and $\mu(x) \leqslant E(x \sqcup x, x)$ are fulfilled.

Proposition

In an Ω-lattice (\mathcal{M}, E) the idempotent laws $\mu(x) \leqslant E(x \sqcap x, x)$ and $\mu(x) \leqslant E(x \sqcup x, x)$ are fulfilled.

Proposition

If (\mathcal{M}, E) is an Ω-lattice, then the bigroupoid \mathcal{M} is idempotent with respect to both operations.

If $\mu: M \rightarrow \Omega$, and $p \in \Omega$, then a p-cut, or a cut of μ is a subset μ_{p} of M defined by

$$
\mu_{p}:=\mu^{-1}(\uparrow p) .
$$

If $\mu: M \rightarrow \Omega$, and $p \in \Omega$, then a p-cut, or a cut of μ is a subset μ_{p} of M defined by

$$
\mu_{p}:=\mu^{-1}(\uparrow p) .
$$

Obviously,

$$
\mu_{p}=\{x \in M \mid \mu(x) \geqslant p\} .
$$

If $\mu: M \rightarrow \Omega$, and $p \in \Omega$, then a p-cut, or a cut of μ is a subset μ_{p} of M defined by

$$
\mu_{p}:=\mu^{-1}(\uparrow p) .
$$

Obviously,

$$
\mu_{p}=\{x \in M \mid \mu(x) \geqslant p\} .
$$

Consequently, for $E: M^{2} \rightarrow \Omega, E_{p}$ is a binary relation on M, given by

$$
E_{p}=E^{-1}(\uparrow p)
$$

If $\mu: M \rightarrow \Omega$, and $p \in \Omega$, then a p-cut, or a cut of μ is a subset μ_{p} of M defined by

$$
\mu_{p}:=\mu^{-1}(\uparrow p) .
$$

Obviously,

$$
\mu_{p}=\{x \in M \mid \mu(x) \geqslant p\} .
$$

Consequently, for $E: M^{2} \rightarrow \Omega, E_{p}$ is a binary relation on M, given by

$$
E_{p}=E^{-1}(\uparrow p)
$$

Theorem

Let $\mathcal{M}=(M, \wedge, \vee)$ be a bigroupoid and E an Ω-equality on \mathcal{M}.
Then, (\mathcal{M}, E) is an Ω-lattice if and only if for every $p \in \Omega$, the cut μ_{p} is a subalgebra (sub-bigroupoid) of \mathcal{M}, the cut relation E_{p} is a congruence on μ_{p} and a quotient structure μ_{p} / E_{p} is a lattice.

Order on Ω-lattices

Order on Ω-lattices

Let (M, E) be an Ω-set.

Order on Ω-lattices

Let (M, E) be an Ω-set. The mapping $R: M^{2} \rightarrow \Omega$ fulfilling

Order on Ω-lattices

Let (M, E) be an Ω-set. The mapping $R: M^{2} \rightarrow \Omega$ fulfilling

$$
\begin{aligned}
& R(x, x)=E(x, x) \\
& R(x, y) \wedge R(y, x) \leqslant E(x, y) \quad(E \text {-antisymmetry }) \text { and } \\
& R(x, y) \wedge R(y, z) \leqslant R(x, z)
\end{aligned}
$$

Order on Ω-lattices

Let (M, E) be an Ω-set. The mapping $R: M^{2} \rightarrow \Omega$ fulfilling
$R(x, x)=E(x, x)$,
$R(x, y) \wedge R(y, x) \leqslant E(x, y) \quad$ (E-antisymmetry) and
$R(x, y) \wedge R(y, z) \leqslant R(x, z)$,
is an Ω-valued order on (M, E).

Order on Ω-lattices

Let (M, E) be an Ω-set. The mapping $R: M^{2} \rightarrow \Omega$ fulfilling
$R(x, x)=E(x, x)$,
$R(x, y) \wedge R(y, x) \leqslant E(x, y) \quad$ (E-antisymmetry) and
$R(x, y) \wedge R(y, z) \leqslant R(x, z)$,
is an Ω-valued order on (M, E).

Theorem

If (\mathcal{M}, E) is an Ω-lattice, then the Ω-valued relation $R: M^{2} \rightarrow L$, such that
$R(x, y):=\mu(x) \wedge \mu(y) \wedge E(x \sqcap y, x)$
is an Ω-valued order on \mathcal{M}. Moreover, for every $p \in \Omega$, the order on the lattice μ_{p} / E_{p} is induced by the cut R_{p} :
$[x]_{E_{p}} \leqslant[y]_{E_{p}}$ if and only if $(x, y) \in R_{p}$.

Let (M, E, R) be an Ω-poset, and $a, b \in M$. An element $c \in M$ is a pseudo-infimum of a, b, if for every $p \in \Omega$ such that $\mu(a) \wedge \mu(b) \geqslant p$, the following holds:

Let (M, E, R) be an Ω-poset, and $a, b \in M$. An element $c \in M$ is a pseudo-infimum of a, b, if for every $p \in \Omega$ such that $\mu(a) \wedge \mu(b) \geqslant p$, the following holds:
(i) $\mu(c) \wedge R(c, a) \wedge R(c, b) \geqslant p$ and
for every $x \in M$
$\mu(x) \wedge R(x, a) \wedge R(x, b) \geqslant p$ implies $R(x, c) \geqslant p$.

Let (M, E, R) be an Ω-poset, and $a, b \in M$. An element $c \in M$ is a pseudo-infimum of a, b, if for every $p \in \Omega$ such that $\mu(a) \wedge \mu(b) \geqslant p$, the following holds:
(i) $\mu(c) \wedge R(c, a) \wedge R(c, b) \geqslant p$ and
for every $x \in M$
$\mu(x) \wedge R(x, a) \wedge R(x, b) \geqslant p$ implies $R(x, c) \geqslant p$.
An element $d \in M$ is a pseudo-supremum of $a, b \in M$, if for every $p \in \Omega$ such that $\mu(a) \wedge \mu(b) \geqslant p$, the following holds:
(ii) $\mu(d) \wedge R(a, d) \wedge R(b, d) \geqslant p$ and
for every $x \in M$
$\mu(x) \wedge R(a, x) \wedge R(b, x) \geqslant p$ implies $R(d, x) \geqslant p$.

Let (M, E, R) be an Ω-poset, and $a, b \in M$. An element $c \in M$ is a pseudo-infimum of a, b, if for every $p \in \Omega$ such that $\mu(a) \wedge \mu(b) \geqslant p$, the following holds:
(i) $\mu(c) \wedge R(c, a) \wedge R(c, b) \geqslant p$ and
for every $x \in M$
$\mu(x) \wedge R(x, a) \wedge R(x, b) \geqslant p$ implies $R(x, c) \geqslant p$.
An element $d \in M$ is a pseudo-supremum of $a, b \in M$, if for every $p \in \Omega$ such that $\mu(a) \wedge \mu(b) \geqslant p$, the following holds:
(ii) $\mu(d) \wedge R(a, d) \wedge R(b, d) \geqslant p$ and
for every $x \in M$
$\mu(x) \wedge R(a, x) \wedge R(b, x) \geqslant p$ implies $R(d, x) \geqslant p$.
Observe that for given $a, b \in M$, a pseudo-infimum and a pseudo-supremum, if they exist, are not unique in general.

We say that an Ω-poset (M, E, R) is an Ω-lattice as an ordered structure, if for every $a, b \in M$ there exist a pseudo-infimum and a pseudo-supremum.

We say that an Ω-poset (M, E, R) is an Ω-lattice as an ordered structure, if for every $a, b \in M$ there exist a pseudo-infimum and a pseudo-supremum.

Proposition

Let (M, E, R) be an Ω-lattice and c, c_{1} pseudo-infima of $a, b \in M$. If for $p \in \Omega, \mu(a) \wedge \mu(b) \geqslant p$, then $E\left(c, c_{1}\right) \geqslant p$. Analogously, if d, d_{1} are pseudo-suprema of a, b and $\mu(a) \wedge \mu(b) \geqslant p$, then $E\left(d, d_{1}\right) \geqslant p$.

We say that an Ω-poset (M, E, R) is an Ω-lattice as an ordered structure, if for every $a, b \in M$ there exist a pseudo-infimum and a pseudo-supremum.

Proposition

Let (M, E, R) be an Ω-lattice and c, c_{1} pseudo-infima of $a, b \in M$. If for $p \in \Omega, \mu(a) \wedge \mu(b) \geqslant p$, then $E\left(c, c_{1}\right) \geqslant p$. Analogously, if d, d_{1} are pseudo-suprema of a, b and $\mu(a) \wedge \mu(b) \geqslant p$, then $E\left(d, d_{1}\right) \geqslant p$.

Obviously, by this Proposition, pseudo-infima (suprima) of two element a, b from μ_{p}, belong to the same equivalence class in μ_{p} / E_{p}.

Theorem

Let (M, E, R) be an Ω-lattice as an ordered structure. Then for every $p \in \Omega$, the poset $\left(\mu_{p} / E_{p}, \leq_{p}\right)$ is a lattice, where the relation \leq_{p} on the quotient set μ_{p} / E_{p} is defined above.

Theorem

Let (M, E, R) be an Ω-lattice as an ordered structure. Then for every $p \in \Omega$, the poset $\left(\mu_{p} / E_{p}, \leq_{p}\right)$ is a lattice, where the relation \leq_{p} on the quotient set μ_{p} / E_{p} is defined above.

Theorem

Let $\mathcal{M}=(M, \sqcap, \sqcup)$ be a bi-groupoid, (\mathcal{M}, E) an Ω-lattice as an algebra in which E is strongly separated, and $R: M^{2} \rightarrow \Omega$ an Ω-valued relation on M defined by $R(x, y):=E(x \sqcap y, x)$. Then, (M, E, R) is an Ω-lattice as an ordered structure.

Let (M, E, R) be an Ω-lattice as an ordered structure.

Let (M, E, R) be an Ω-lattice as an ordered structure. We define two binary operations, Π and \sqcup on M as follows: for every pair a, b of elements from $M, a \sqcap b$ is an arbitrary, fixed pseudo-infimum of a and b, and $a \sqcup b$ is an arbitrary, fixed pseudo-supremum of a and b.

Let (M, E, R) be an Ω-lattice as an ordered structure. We define two binary operations, Π and \sqcup on M as follows: for every pair a, b of elements from $M, a \sqcap b$ is an arbitrary, fixed pseudo-infimum of a and b, and $a \sqcup b$ is an arbitrary, fixed pseudo-supremum of a and b.

Assuming Axiom of Choice, by which an element is chosen among all pseudo-infima (suprema) of a and b, the operations \sqcap and \sqcup on M are well defined.

Let (M, E, R) be an Ω-lattice as an ordered structure. We define two binary operations, Π and \sqcup on M as follows: for every pair a, b of elements from $M, a \sqcap b$ is an arbitrary, fixed pseudo-infimum of a and b, and $a \sqcup b$ is an arbitrary, fixed pseudo-supremum of a and b.

Assuming Axiom of Choice, by which an element is chosen among all pseudo-infima (suprema) of a and b, the operations \sqcap and \sqcup on M are well defined.

Theorem

If (M, E, R) is an Ω-lattice as an ordered structure, and $\mathcal{M}=(M, \sqcap, \sqcup)$ the bi-groupoid in which operations \sqcap, \sqcup are introduced above, then (\mathcal{M}, E) is an Ω-lattice as an algebra.

Example

Example

Lattice Ω
$M=\left\{x_{0}, x_{1}, \ldots, x_{9}, x_{10}\right\}$

$$
M=\left\{x_{0}, x_{1}, \ldots, x_{9}, x_{10}\right\}
$$

R	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}	x_{10}
x_{0}	p	z	p								
x_{1}	0	q	q	0	0	0	0	0	0	z	0
x_{2}	0	t	q	0	0	0	0	0	0	z	0
x_{3}	0	0	0	r_{1}	w	w	w	w	w	z	0
x_{4}	0	0	0	w	r_{2}	w	w	z	z	z	0
x_{5}	0	0	0	w	w	r_{3}	w	w	w	z	0
x_{6}	0	0	0	w	w	w	r_{4}	w	w	z	0
x_{7}	0	0	0	z	z	z	z	r_{5}	w	z	0
x_{8}	0	0	0	z	z	z	z	v	r_{6}	z	0
x_{9}	0	0	0	0	0	0	0	0	0	s	0
x_{10}	z	p									

$$
E(x, y)=R(x, y) \wedge R(y, x)
$$

$$
E(x, y)=R(x, y) \wedge R(y, x)
$$

E	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}	x_{10}
x_{0}	p	0	0	0	0	0	0	0	0	0	z
x_{1}	0	q	t	0	0	0	0	0	0	0	0
x_{2}	0	t	q	0	0	0	0	0	0	0	0
x_{3}	0	0	0	r_{1}	w	w	w	z	z	0	0
x_{4}	0	0	0	w	r_{2}	w	w	z	z	0	0
x_{5}	0	0	0	w	w	r_{3}	w	z	z	0	0
x_{6}	0	0	0	w	w	w	r_{4}	z	z	0	0
x_{7}	0	0	0	z	z	z	z	r_{5}	v	0	0
x_{8}	0	0	0	z	z	z	z	v	r_{6}	0	0
x_{9}	0	0	0	0	0	0	0	0	0	s	0
x_{10}	z	0	0	0	0	0	0	0	0	0	p

Quotient lattices:
E.E. Edeghagba, B. Šešelja, A. Tepavčević

Quotient lattices:
$\mu_{z} / E_{z}=\left\{\left\{x_{0}, x_{10}\right\},\left\{x_{1}, x_{2}\right\},\left\{x_{3}, \ldots, x_{8}\right\},\left\{x_{9}\right\}\right\},-$ Boolean lattice; $\mu_{q} / E_{q}=\left\{\left\{x_{1}\right\},\left\{x_{2}\right\}\right\}$;
the other quotient structures are one-element lattices.

Quotient lattices:
$\mu_{z} / E_{z}=\left\{\left\{x_{0}, x_{10}\right\},\left\{x_{1}, x_{2}\right\},\left\{x_{3}, \ldots, x_{8}\right\},\left\{x_{9}\right\}\right\},-$ Boolean lattice; $\mu_{q} / E_{q}=\left\{\left\{x_{1}\right\},\left\{x_{2}\right\}\right\} ;$
the other quotient structures are one-element lattices.

\sqcap	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}	x_{10}
x_{0}											
x_{1}	x_{0}	x_{1}	x_{1}	x_{10}	x_{10}	x_{10}	x_{10}	x_{10}	x_{10}	x_{1}	x_{10}
x_{2}	x_{0}	x_{1}	x_{2}	x_{0}	x_{10}	x_{10}	x_{10}	x_{10}	x_{10}	x_{2}	x_{10}
x_{3}	x_{0}	x_{10}	x_{10}	x_{3}	x_{10}						
x_{4}	x_{0}	x_{10}	x_{10}	x_{3}	x_{4}	x_{3}	x_{4}	x_{4}	x_{4}	x_{4}	x_{10}
x_{5}	x_{0}	x_{10}	x_{10}	x_{3}	x_{3}	x_{5}	x_{5}	x_{5}	x_{5}	x_{5}	x_{10}
x_{6}	x_{0}	x_{10}	x_{10}	x_{3}	x_{4}	x_{5}	x_{6}	x_{4}	x_{6}	x_{6}	x_{10}
x_{7}	x_{0}	x_{10}	x_{10}	x_{3}	x_{4}	x_{5}	x_{4}	x_{7}	x_{7}	x_{7}	x_{10}
x_{8}	x_{0}	x_{0}	x_{0}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{8}	x_{10}
x_{9}	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}	x_{10}
x_{10}	x_{0}	x_{10}									

\sqcup	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}	x_{10}
x_{0}	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}	x_{10}
x_{1}	x_{1}	x_{1}	x_{2}	x_{9}	x_{1}						
x_{2}	x_{2}	x_{2}	x_{2}	x_{9}	x_{2}						
x_{3}	x_{3}	x_{9}	x_{9}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}	x_{3}
x_{4}	x_{4}	x_{9}	x_{9}	x_{4}	x_{4}	x_{6}	x_{6}	x_{7}	x_{8}	x_{9}	x_{4}
x_{5}	x_{5}	x_{9}	x_{9}	x_{5}	x_{6}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}	x_{5}
x_{6}	x_{6}	x_{9}	x_{9}	x_{6}	x_{6}	x_{6}	x_{6}	x_{8}	x_{8}	x_{9}	x_{6}
x_{7}	x_{7}	x_{9}	x_{9}	x_{7}	x_{7}	x_{7}	x_{8}	x_{7}	x_{8}	x_{9}	x_{7}
x_{8}	x_{8}	x_{9}	x_{9}	x_{8}	x_{8}	x_{8}	x_{8}	x_{8}	x_{8}	x_{9}	x_{8}
x_{9}											
x_{10}	x_{10}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}	x_{10}

Thank you for the attention!

