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Introduction

In 1900, D. Hilbert formulated his famous 23 problems. In the
problem number 6, he asked: “Can physics be axiomatized?" It
means that he asked if physics can be formalized and/or
axiomatized for to reach a logically perfect system forming a basis
of precise physical reasoning. This challenge was followed by
G. Birkhoff and J. von Neuman in 1930s producing the so-called
logic of quantum mechanics. We are going to addopt a method
and examples of D. J. Foulis, however, we are not restricted to the
logic of quantum mechanics. We are focused on a general situation
with a physical system endowed with states which it can reach. Our
goal is to assign to every such a system the so-called transition
operators completely determining its transition relation. Conditions
under which this assignment works perfectly will be formulated.
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We start with a formalization of a given physical system. Every
physical system is described by certain quantities and states
through them it goes. From the logical point of view, we can
formulate propositions saying what a quantity in a given state is.
Through the paper we assume that these propositions can acquire
only two values, namely either TRUE of FALSE. It is in accordance
with reasoning both in classical physics and in quantum mechanics.
Denote by S the set of states of a given physical system P. It is
given by the nature of P from what state s ∈ S the system P can
go to a state t ∈ S . Hence, there exists a binary relation R on S
such that (s, t) ∈ R . This process is called a transition of P.
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Besides of the previous, the observer of P can formulate
propositions revealing our knowledge about the system. The
truth-values of these propositions depend on states. For example,
the proposition p can be true if the system P is in the state s1 but
false if P is in the state s2. Hence, for each state s ∈ S we can
evaluate the truth-value of p, it is denoted by p(s). As mentioned
above, p(s) ∈ {0, 1} where 0 indicates the truth-value FALSE and
1 indicates TRUE. The set of all truth-values for all propositions
will be called the table. Denote by B the set of propositions about
the physical system P formulated by the observer. We can
introduce the order ≤ on B as follows:

for p, q ∈ B, p ≤ q if and only if p(s) ≤ q(s) for all s ∈ S .

One can immediately check that the contradiction, i.e., the
proposition with constant truth-value 0, is the least element and
the tautology, i.e., the proposition with the constant truth-value 1
is the greatest element of the ordered set (B;≤); this fact will be
expressed by the notation (B;≤, 0, 1) for the bounded ordered set
of propositions about P.
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We summarize our description as follows:
- every physical system P will be identified with the couple (B, S),
where B is the set of propositions about P and S is the set of
states on P;

- the set S is equipped with a binary relation R such that P can go
from s1 to s2 provided (s1, s2) ∈ R ;

- the set B is ordered by values of propositions as shown above.
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Example 1
At first, let us describe a very simple physical system which is a
pendulum. The pendulum can be considered to be a point mass
suspended from a string or rod of negligible mass. The observer
can e.g. distinguish three states as follows:
- s1 means that the pendulum is in the right equilibrium point,
- s2 means that the pendulum is moving,
- s3 means that the pendulum is in the left equilibrium point.
The transition relation R on the set S = {s1, s2, s3} is visualized as
follows.

Figpendul
s1 s2 s3

Figure 1: The transition graph of R
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The set B = {0, p, q, r , p′, q′, r ′, 1} of possible propositions on the
physical system P is as follows:

- 0 means that the pendulum is in no state of S ,
- p means that the pendulum is in the right equilibrium point,
- q means that the pendulum is moving,
- r means that the pendulum is in the left equilibrium point,
- 1 means that the pendulum is in at least one state of S .

Considering B as a classical logic (represented by a Boolean
algebra), we can apply logical connectives conjunction ∧,
disjunction ∨, negation ′ and implication =⇒ to create new
propositions on P. In our case, we can get e.g. p′ = q ∨ r which
means that the pendulum is either moving or in the left equilibrium
point, etc. Altogether, we obtain eight propositions which can be
ordered as follows in the Hasse diagram depicted in Figure 2.
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Figure 2: Logic of experimental propositions B

Hence, our propositions form a Boolean algebra in accordance with
our knowledge that P is a classical physical system and
B = (B;∨,∧,′ , 0, 1) is a classical two-valued logic.
To shed another light on the previous concepts, let us addopt an
example from [7].
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Example 2

For system P = (B,S) we have
B = {0, l , r , n, f , b, l ′, r ′, n′, f ′, b′, 1} and S = {s1, s2, s3, s4, s5}
such that the table is as follows.

0 l r n f b

s1 0 1 0 0 1 0
s2 0 1 0 0 0 1
s3 0 0 1 0 0 1
s4 0 0 1 0 1 0
s5 0 0 0 1 0 0

.

Remember that p′ is a complement of p, i.e., it has 0 in the same
instance where p has 1 and vice versa.

Then the order is vizualized in the following Hasse diagram
depicted in Figure 3.
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Figure 3: Logic of experimental propositions L

Finally, the relation R on S is given as follows

R = {(s1, s2), (s2, s3), (s3, s2), (s3, s5), (s4, s3), (s4, s5), (s5, s5)}.
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It can be vizualized by the following graph of transition.

s1 s2 s3

s4

s5

Figure 4: The transition graph of R
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Our task is as follows. We introduce an operator T from B into 2S

which is constructed by means of the relation R . The question is if
this operator, called transition operator, bears all the information
about system P equipped with the relation R . In other words, if
the relation R can be recovered by applying the operator T . In
what follows, we will get conditions under which the transition
operator has this property. Since these conditions are formulated in
a pure algebraic way, we need to develop an algebraic background.
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Algebraic Tools

Let S be a non-void set. Every subset R ⊆ S ×S is called a relation
on S and we say that the pair (S ,R) is a transition frame. The fact
that (x , y) ∈ R for x , y ∈ S is expressed by the notation xRy .

Let (A;≤) and (B;≤) be ordered sets, f , g : A→ B mappings. We
write f ≤ g if f (a) ≤ g(a), for all a ∈ A. A mapping f is called
order-preserving or monotone if a, b ∈ A and a ≤ b together imply
f (a) ≤ f (b), and order-reflecting if a, b ∈ A and f (a) ≤ f (b)
together imply a ≤ b. A bijective order-preserving and
order-reflecting mapping f : A→ B is called an isomorphism.
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Let (A;≤) and (B;≤) be ordered sets. A mapping f : A→ B is
called residuated if there exists a mapping g : B → A such that

f (a) ≤ b if and only if a ≤ g(b)

for all a ∈ A and b ∈ B .

In this situation, we say that f and g form a residuated pair or that
the pair (f , g) is a (monotone) Galois connection.

Ivan Chajda and Jan Paseka Transition operators assigned to physical systems



Having a bounded poset M = (M;≤, 0, 1) and a non-void set S , we
can produce the direct power MS = (AS ;≤, 0, 1) where the relation
≤ is defined and evaluated on p, q ∈ MS componentwise, i.e.
p ≤ q if p(s) ≤ q(s) for each s ∈ S . Moreover, 0, 1 are such
elements of MS that 0(s) = 0 and 1(s) = 1 for all s ∈ S . Then
MS = (MS ;≤, 0, 1) is a bounded poset as well. For any s ∈ S and
any m = (mt)t∈S ∈ MS we denote by m(s) the s-th projection ms .

Ivan Chajda and Jan Paseka Transition operators assigned to physical systems



We can take the following useful result from [3].

Observation 1 ([3])

Let A and M be bounded posets, S a set and hs : A→ M, s ∈ S ,
morphisms of bounded posets. The following conditions are
equivalent:
(i) ((∀s ∈ S) hs(a) ≤ hs(b)) =⇒ a ≤ b for any elements

a, b ∈ A;
(ii) The map h : A→ MS defined by h(a) = (hs(a))s∈T for all

a ∈ A is order reflecting.

We then say that {hs : A→ M; s ∈ S} is a full set of
order-preserving maps with respect to M. Note that we may in this
case identify A with a bounded subposet of MS since h is an order
reflecting morphism alias embedding of bounded posets. Note that
h(a)(s) = hs(a) for all a ∈ A and all s ∈ S .
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Consider a complete lattice M = (M;≤, 0, 1) and let (S ,R) be a
transition frame. Further, let A = (A;≤, 0, 1) be a bounded
subposet of MS .
Define mappings PR : A→ MS and TR : A→ MS as follows: For
all A ∈ B and all s ∈ S ,

TR(b)(s) =
∧

M{b(t) | sRt} (∗)

and, for all a ∈ A and all t ∈ S ,

PR(a)(t) =
∨

M{a(s) | sRt}. (∗∗)

Then we say that TR (PR) is an upper transition operator (lower
transition operator) constructed by means of the transition frame
(S ,R), respectively.
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For to answer our question given in introduction, we introduce
certain binary relations induced by means of operators mentioned
above. Hence, let A = (A;≤, 0, 1) be bounded poset with a full set
S of morphisms of bounded posets into a non-trivial complete
lattice MS . We may assume that A is a O bounded subposet of
MS .
Let P : A→ O and T : A→ O be morphisms of posets. Let us
define the relations

RT = {(s, t) ∈ S × S | (∀b ∈ B)(T (b)(s) ≤ b(t))} (†)

and

RP = {(s, t) ∈ S × S | (∀a ∈ A)(a(s) ≤ P(a)(t))}. (††)

The relations RT and RP on S will be called the T -induced relation
by M and P-induced relation by M, respectively.
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Now, let let (S ,R) be a transition frame and TR , PR operators
constructed by means of the transition frame (S ,R). We can ask
under what conditions the relation R coincides with the relation
RTR

constructed as in (†) or with the relation RPR constructed as
in (††). If this is the case we say that R is recoverable from TR or
that R is recoverable from PR . We say that R is recoverable if it is
recoverable both from TR and PR . The answer will be given in the
next section.
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The transition operator characterizing the physical system

The connection between the relations R and RTR
or R and RPR is

presented in the following lemma.

Lemma 1

Let M be a non-trivial complete lattice and S a non-empty set. Let
A be bounded subposet of MS . Then

(a) R1 ⊆ R2 ⊆ S × S implies TR2 ≤ TR1 and PR1 ≤ PR2 .
(b) If T1,T2 : A→ MS are order-preserving mappings such that

T2 ≤ T1 then RT1 ⊆ RT2 .
(c) If P1,P2 : A→ MS are order-preserving mappings such that

P1 ≤ P2 then RP1 ⊆ RP2 .
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(d) If R ⊆ S × S then R ⊆ RTR
∩ RPR .

(e) If T : A→ MS is an order-preserving mapping then T ≤ TRT
.

(f) If P : A→ MS is an order-preserving mapping then PRP ≤ P .
(g) Both the extremal relations S × S and ∅ are recoverable from

TS×S and T∅ or PS×S and P∅, respectively.
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The connection between relations induced by means of transition
operators T and P is shown in the following lemma and theorem.
We obtain the relationship between transition operators and
transition relations on a physical system P = (B, S).

Lemma 2

Let M be a non-trivial complete lattice and S a non-empty set such
that A is bounded subposet of MS . Let P : A→ MS and
T : A→ MS be morphisms of posets such that, for all a ∈ A and
all b ∈ A,

P(a) ≤ b ⇐⇒ a ≤ T (b).

(a) If P(A) ⊆ A then RT ⊆ RP .
(b) If T (A) ⊆ A then RP ⊆ RT .
(c) If P(A) ⊆ A and T (A) ⊆ A then RT = RP .
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In what follows, we are going to show that the transition relations
on S and the transition operators on B form a Galois connection.
This is important because in every Galois connection one of its
components fully determines the second one and vice versa.

Among other things, the following theorem shows that if a given
transition relation R can be recovered by the upper transition
operator then, under natural conditions, it can be recovered by the
lower transition operator and vice versa.
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Theorem 1

Let M be a non-trivial complete lattice and (S ,R) a transition
frame. Let A be a bounded subposet of MS . Let PR : A→ MS

and TR : A→ MS be operators constructed by means of the
transition frame (S ,R), i.e., the respective parts of the condition
(?) hold for the relation R . Then, for all a ∈ A and all b ∈ A,

PR(a) ≤ b ⇐⇒ a ≤ TR(b).

Moreover, the following holds.
(a) Let for all t ∈ S exist an element bt ∈ A such that, for all

s ∈ S , (s, t) /∈ R , we have
∧

M{bt(u) | sRu} 6≤ bt(t) 6= 1.
Then R = RTR

.
(b) Let for all s ∈ S exist an element as ∈ A such that, for all

t ∈ S , (s, t) /∈ R , we have
∨

M{as(u) | uRt} 6≥ as(s) 6= 0.
Then R = RPR .

(c) If R = RTR
and TR(A) ⊆ A then R = RTR

= RPR .
(d) If R = RPR and PR(A) ⊆ A then R = RTR

= RPR .
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The following two corollaries of Theorem 1 show that if the set B
of propositions on the system (B,S) is large enough, i.e., if it
contains the full set {0, 1}S then the transition relation R can be
recovered by each of the transition operators.

Corollary 1

Let M be a non-trivial complete lattice and (S ,R) a transition
frame. Let B be a bounded subposets of MS such that
{0, 1}S ⊆ B . Let PR : B → MS and TR : B → MS be operators
constructed by means of the transition frame (S ,R), i.e., the
respective parts of the condition (?) hold for the relation R . Then
R = RPR = RTR

.
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Corollary 2

Let M be a non-trivial complete lattice and (S ,R) a transition
frame. Let T̂ , P̂ : MS → MS be operators constructed by means of
(S ,R). Then R = R P̂ = R

T̂
.
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We can illustrate previous results in the following two examples.

Example 3

Consider the system P = (B,S) of Example 2.
From the table we see the values of B as follows:

0 = (0, 0, 0, 0, 0), l = (1, 1, 0, 0, 0),
r = (0, 0, 1, 1, 0), n = (0, 0, 0, 0, 1),
f = (1, 0, 0, 1, 0), b = (0, 1, 1, 0, 0),
l ′ = (0, 0, 1, 1, 1), r ′ = (1, 1, 0, 0, 1),
n′ = (1, 1, 1, 1, 0), f ′ = (0, 1, 1, 0, 1),
b′ = (1, 0, 0, 1, 1), 1 = (1, 1, 1, 1, 1).

Using our formulas (∗) and (∗∗), we compute the upper transition
operator TR : B → 2S and the lower transition operator
PR : B → 2S as follows:
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Example 3

TR(0) = 0, TR(1) = 1,
TR(l) = (1, 0, 0, 0, 0), TR(l

′) = (0, 0, 0, 1, 1),
TR(r) = (0, 1, 0, 0, 0), TR(r

′) = (1, 0, 1, 0, 1),
TR(n) = n, TR(n

′) = l ,
TR(f ) = 0, TR(f

′) = 1,
TR(b) = l , TR(b

′) = n,

PR(0) = 0, PR(1) = f ′,
PR(l) = b, PR(l

′) = f ′,
PR(r) = f ′, PR(r

′) = f ′,
PR(n) = n, PR(n

′) = f ′,
PR(f ) = f ′, PR(f

′) = f ′,
PR(b) = f ′, PR(b

′) = f ′.

Hence, TR(l),TR(r),TR(l
′) and TR(r

′) do not belong to B , they
only belong to 2S . On the contrary, PR(B) ⊆ B .
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Now, we use TR for computing the binary relation RTR
(by the

formula (†)) and PR for computing the binary relation RPR (by the
formula (††)). We obtain that RTR

= R , i.e., our given relation R
is recoverable by the transition operator TR and hence this operator
is a characteristic of the system P = (B, S).
On the contrary, RPR is given as follows

RPR = {(s1, s2), (s1, s3), (s2, s2), (s2, s3), (s3, s2), (s3, s3), (s3, s5),
(s4, s2), (s4, s3), (s4, s5), (s5, s5)}.
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It can be vizualized by the following transition graph.

s1 s2 s3

s4

s5

Figure 5: The transition graph of RPR
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One can easily see that R ⊆ RPR but R = RTR
6= RPR in

accordance with our Theorem 1 because the condition (b) from this
theorem is not satisfied.
We can now use the same system P = (B, S) as above and,
instead of the relation R on S , we apply the new relation
R2 = RPR . In other words, our system P = (B,S) will have the
transition frame (S ,RPR ). After the computation of the new lower
transition operator PR2 : B → 2S and the relation RPR2 we see that
now R2 = RPR2 .
Let us compute the new upper transition operator TR2 : B → 2S

and the relation RTR2
. It follows that

TR2(0) = 0, TR2(1) = 1,
TR2(l) = 0, TR2(l

′) = n,
TR2(r) = 0, TR2(r

′) = n,
TR2(n) = n, TR2(n

′) = l ,
TR2(f ) = 0, TR2(f

′) = 1,
TR2(b) = l , TR2(b

′) = n.
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Since TR2(B) ⊆ B and PR2(B) ⊆ B we obtain from Theorem 1
and Lemma 2 (c) that RTR2

= RPR2 = R2, i.e., R2 is recoverable
both by the upper transition operator TR2 and by the lower
transition operator PR2 .
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The distinction of the classical physical system from the above
disussed quantum one is that our logic B can easily satisfy the
conditions (?) when taking B = {0, 1}S . This is valid in the case of
our introductory example with a pendulum. When computing the
transition operators TR and PR , they are restricted to B only (i.e.,
none of them goes out from B as in Example 3). In fact, we have

TR(0) = 0, PR(0) = 0,
TR(p) = 0, PR(p) = p′,
TR(q) = 0, PR(q) = q′,
TR(r) = 0, PR(r) = r ′,
TR(p

′) = p, PR(p
′) = 1,

TR(q
′) = q, PR(q

′) = 1,
TR(r

′) = r , PR(r
′) = 1,

TR(1) = 1, PR(1) = 1,
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i.e., PR =′ ◦ TR ◦′. Now, we can construct the transition relations
RTR

and RPR directly by (†) and (††). It is an easy exercise to
check that really

R = RTR
= RPR .

Hence, for a classical system, R can be recovered from the
transition operators of the assigned logic B whenever B is large
enough, i.e., if e.g. B = {0, 1}S .
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The end!

Thank you for your attention!
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