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Non-associative residuated lattices [Galatos–Ono. APAL 2010]

A pointed residuated lattice-ordered groupoid with unit A is algebra of
a type LSL = {&, \, /,∧,∨, 0, 1}:

〈A,∧,∨〉 is a lattice
〈A,&, 1〉 is a groupoid with unit 1
for each x, y, z ∈ A:

x & y ≤ z IFF x ≤ z / y IFF y ≤ x \ z

For simplicity we will speak about SL-algebras

SL-algebras form a variety, we will denote it as SL.
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Notable examples

FL-algebras = pointed residuated lattices = ‘associative’
SL-algberas

Algebras of relations, where & is relational composition and

R \ S = (R & Rc)c S / R = (Sc & R)c

`-groups, where a \ b = a−1 & b and b / a = b & a−1

Powersets of monoids, where

X \ Y = {z | X & {z} ⊆ Y} Y / X = {z | {z}& X ⊆ Y}

Ideals of a ring . . .
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Classes of residuated structures

Any quasivariety of SL-algberas with possible additional operators will
be called a class of residuated structures

Subvariets of SL, where & is associative, commutative,
idempotent, divisible, etc.
Integral SL-algebras: those where 1 is a top element of A

Semilinear classes (those generated by their linearly ordered
members)

Hájek’s BL-algebras (associative, commutative, integral, divisible,
semilinear SL-algebras)

MV-algebras (BL-algebras where (x→ 0)→ 0 = x)
Boolean algebras (idempotent MV-algebras)

Plus any of these with additional operators . . .
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A short dictionary

Logic Algebra
language L type
set of formulas FmL set of terms
Lindenbaum algebra FmL term algebra of type L
L-substitution σ endomorphism FmL → FmL
A-evaluation e homomorphism FmL → A
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What is a logic? (as a mathematical object, for us in this talk)

Definition
A logic L is an algebraic closure operator C on FmL s.t. for each
substitution σ:

σ[C(T)] ⊆ C(σ[T])

Definition
A logic L is a finitary structural consequence relation, i.e., a relation
between sets of formulae and formulae s.t.:

T, ϕ `L ϕ (Reflexivity)
If S `L ψ and T, ψ `L ϕ, then T, S `L ϕ (Cut)
If T `L ϕ, then σ[T] `L σ(ϕ) for each substitution σ (Structurality)
If T `L ϕ, then there is a finite T ′ ⊆ T such that T ′ `L ϕ (Finitarity)
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Axiomatization
Axiomatic system AS if given by a set of

axioms Ax, i.e. a set formulas closed under arbitrary substitution,

rules Ru, i.e. a set of pairs T�ϕ for some finite set T ∪ {ϕ} ⊆ FmL
(again closed under arbitrary substitution)

Proof: of a formula ϕ from a set of formulae T in AS is a finite
sequence of formulas ϕ1, . . . , ϕn s.t.

ϕn = ϕ and for each i ≤ n either ϕi ∈ Ax ∪ T or
there is a set S ⊆ {ϕ1, . . . , ϕi−1} and a rule S�ϕi ∈ Ru.

Theorem
We write T `AS ϕ if there is a proof of ϕ from T in AS.
`AS is the least logic L such that
∅ `L ϕ for each ϕ ∈ Ax
S `L ϕ for each S�ϕ ∈ Ru
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The logic of SL-algebras

Theorem
The relation `SL defined as:

T `SL ϕ iff {ψ ∧ 1 ≈ 1 | ψ ∈ T} |=SL ϕ ∧ 1 ≈ 1

is a logic.
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The logic of SL-algebras

Theorem
The relation `SL defined as:

T `SL ϕ iff {ψ ≥ 1 | ψ ∈ T} |=SL ϕ ≥ 1

is a logic.
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Axiomatization SL for SL [Galatos–Ono. APAL, 2010]

Axioms:
ϕ ∧ ψ \ ϕ ϕ ∧ ψ \ ψ (χ \ ϕ) ∧ (χ \ ψ) \ (χ \ ϕ ∧ ψ)
ϕ \ ϕ ∨ ψ ψ \ ϕ ∨ ψ (ϕ \ χ) ∧ (ψ \ χ) \ (ϕ ∨ ψ \ χ)
ϕ \ ((ψ / ϕ) \ ψ) ψ \ (ϕ \ ϕ& ψ) (χ / ϕ) ∧ (χ / ψ) \ (χ / ϕ ∨ ψ)
1 1 \ (ϕ \ ϕ) ϕ \ (1 \ ϕ)

Rules:
{ϕ,ϕ \ ψ} � ψ {ϕ} � (ϕ \ ψ) \ ψ
{ϕ \ (ψ \ χ)} � ψ \ (χ / ϕ) {ψ / ϕ} � ϕ \ ψ
{ϕ \ ψ} � (ψ \ χ) \ (ϕ \ χ) {ψ \ χ} � (ϕ \ ψ) \ (ϕ \ χ)
{ϕ,ψ} � ϕ ∧ ψ {ψ \ (ϕ \ χ)} � ϕ& ψ \ χ
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A formal definition of substructural logics

We write
ϕ→ ψ instead of ϕ \ ψ
ϕ↔ ψ instead of (ϕ→ ψ) ∧ (ψ → ϕ)

Definition
A logic L in a language L is a substructural logic if
L ⊇ LSL

If T `SL ϕ, then T `L ϕ

for each n, i < n, and each n-ary connective c ∈ L \ LSL holds:

ϕ↔ ψ `L c(χ1, . . . χi, ϕ, . . . , χn)↔ c(χ1, . . . χi, ψ, . . . , χn)

Note: the last condition can be prove for all connectives of LSL
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From substructural logics to
classes of residuated structures

Theorem
Let L be a substructural logic. An L-algebra A is an L-algebra, A ∈ QL,
whenever

1 its LSL-reduct is an SL-algebra and
2 T `L ϕ implies that {ψ ≥ 1 | ψ ∈ T} |=A ϕ ≥ 1

Then QL is a class of residuated structures and

T `L ϕ iff {ψ ≥ 1 | ψ ∈ T} |=QL ϕ ≥ 1
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From substructural logics to
classes of residuated structures and back

Theorem
Let Q be a class of residuated structures of type L ⊇ LSL. Then the
relation LQ defined as:

T `LQ ϕ iff {ψ ≥ 1 | ψ ∈ T} |=Q ϕ ≥ 1

is a substructural logic. And

E |=Q α ≈ β iff {ϕ↔ ψ | ϕ ≈ ψ ∈ E} `LQ α↔ β
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It gets even better

Theorem
The operators Q? and L? are dual-lattice isomorphisms between the
lattice of substructural logics in language L and the lattice of
subquasivarieties of SL-algebras with operators L \ LSL.

ϕ `L ϕ ∧ 1↔ 1 ϕ ∧ 1↔ 1 `L ϕ

ϕ ≈ ψ |=Q (ϕ↔ ψ) ∧ 1 ≈ 1 (ϕ↔ ψ) ∧ 1 ≈ 1 |=Q ϕ ≈ ψ

Note: all these results are just particularization of know facts of
Abstract Algebraic Logic (AAL)
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Examples of substructural logics
Ono’s substructural logics including classical and intuitionistic logic
expansions by additional connectives, e.g. (classical) modalities,
exponentials in linear logic and Baaz’s Delta in fuzzy logics
NOT IN THIS TALK: the fragments of the logics above to
languages containing implication, such as BCK, BCI, psBCK,
BCC, hoop logics, etc.

Special axioms:

usual name s axioms
associativity a (ϕ& ψ) & χ↔ ϕ& (ψ & χ)
exchange e ϕ& ψ → ψ & ϕ

contraction c ϕ→ ϕ& ϕ

weakening w ϕ& ψ → ψ and 0→ ϕ

Logic given by these axioms; let X ⊆ {e, c,w} we define logics

SLX axiomatized by adding axioms from X of those of SL

FLX axiomatized by adding associativity to SLX
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Proof by cases
For classical or intuitionistic logic we have:

Γ, ϕ `L χ Γ, ψ `L χ

Γ ∪ {ϕ ∨ ψ} `L χ

But in FLe it would entail ϕ ∨ ψ `FLe (ϕ ∧ 1) ∨ (ψ ∧ 1), i.e.,

(ϕ ∨ ψ) ∧ 1 ≈ 1 |=QFLe
(ϕ ∧ 1) ∨ (ψ ∧ 1) ≈ 1

which can be easily refuted

On the other hand we can show that:

Γ, ϕ `FLe χ Γ, ψ `FLe χ

Γ ∪ {(ϕ ∧ 1) ∨ (ψ ∧ 1)} `FLe χ

Results in this section are from: Czelakowski. Protoalgebraic Logic,
2000 and C–Noguera. The proof by cases property and its variants in
structural consequence relations. Studia Logica, 2013.
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Generalized disjunctions

Let ∇(p, q,−→r ) be a set of formulas. We write

ϕ∇ψ =
⋃
{∇(ϕ,ψ,−→α ) | −→α ∈ Fm≤ωL }.

Definition
∇ is a p-disjunction if:

(PD) ϕ `L ϕ∇ψ and ψ `L ϕ∇ψ
(PCP) Γ, ϕ `L χ and Γ, ψ `L χ implies Γ, ϕ∇ψ `L χ

Definition
A logic L is a p-disjunctional if it has a p-disjunction.

We drop the prefix ‘p-’ if there are no parameters −→r in ∇
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Separating examples

Example
∨ is a disjunction in FLew

∨ is not a disjunction in FLe,

but (p ∧ 1) ∨ (q ∧ 1) is
No single formula is a disjunction in G→

but the set {(p→ q)→ q, (q→ p)→ p} is
No finite set of formulas is a disjunction in K

but the set {2np ∨2mq | n,m ≥ 0} is
No set of formulas in two variables is a disjunction in IPC→

but the formula (p→ r)→ ((q→ r)→ r) is a p-disjunction.

Conjecture: The logics SL and FL are not disjunctional;
later we show that they are p-disjunctional

Petr Cintula (ICS CAS) Substructural Logics 21 / 49



Separating examples

Example
∨ is a disjunction in FLew

∨ is not a disjunction in FLe, but (p ∧ 1) ∨ (q ∧ 1) is
No single formula is a disjunction in G→

but the set {(p→ q)→ q, (q→ p)→ p} is
No finite set of formulas is a disjunction in K

but the set {2np ∨2mq | n,m ≥ 0} is
No set of formulas in two variables is a disjunction in IPC→

but the formula (p→ r)→ ((q→ r)→ r) is a p-disjunction.

Conjecture: The logics SL and FL are not disjunctional;
later we show that they are p-disjunctional

Petr Cintula (ICS CAS) Substructural Logics 21 / 49



Separating examples

Example
∨ is a disjunction in FLew

∨ is not a disjunction in FLe, but (p ∧ 1) ∨ (q ∧ 1) is
No single formula is a disjunction in G→

but the set {(p→ q)→ q, (q→ p)→ p} is
No finite set of formulas is a disjunction in K

but the set {2np ∨2mq | n,m ≥ 0} is
No set of formulas in two variables is a disjunction in IPC→

but the formula (p→ r)→ ((q→ r)→ r) is a p-disjunction.

Conjecture: The logics SL and FL are not disjunctional;
later we show that they are p-disjunctional

Petr Cintula (ICS CAS) Substructural Logics 21 / 49



Separating examples

Example
∨ is a disjunction in FLew

∨ is not a disjunction in FLe, but (p ∧ 1) ∨ (q ∧ 1) is
No single formula is a disjunction in G→

but the set {(p→ q)→ q, (q→ p)→ p} is
No finite set of formulas is a disjunction in K

but the set {2np ∨2mq | n,m ≥ 0} is
No set of formulas in two variables is a disjunction in IPC→

but the formula (p→ r)→ ((q→ r)→ r) is a p-disjunction.

Conjecture: The logics SL and FL are not disjunctional;
later we show that they are p-disjunctional

Petr Cintula (ICS CAS) Substructural Logics 21 / 49



Separating examples

Example
∨ is a disjunction in FLew

∨ is not a disjunction in FLe, but (p ∧ 1) ∨ (q ∧ 1) is
No single formula is a disjunction in G→

but the set {(p→ q)→ q, (q→ p)→ p} is
No finite set of formulas is a disjunction in K

but the set {2np ∨2mq | n,m ≥ 0} is
No set of formulas in two variables is a disjunction in IPC→

but the formula (p→ r)→ ((q→ r)→ r) is a p-disjunction.

Conjecture: The logics SL and FL are not disjunctional;
later we show that they are p-disjunctional

Petr Cintula (ICS CAS) Substructural Logics 21 / 49



Separating examples

Example
∨ is a disjunction in FLew

∨ is not a disjunction in FLe, but (p ∧ 1) ∨ (q ∧ 1) is
No single formula is a disjunction in G→

but the set {(p→ q)→ q, (q→ p)→ p} is
No finite set of formulas is a disjunction in K

but the set {2np ∨2mq | n,m ≥ 0} is
No set of formulas in two variables is a disjunction in IPC→

but the formula (p→ r)→ ((q→ r)→ r) is a p-disjunction.

Conjecture: The logics SL and FL are not disjunctional;
later we show that they are p-disjunctional

Petr Cintula (ICS CAS) Substructural Logics 21 / 49



A little detour to AAL 1: filters

Definition
Let L be a substructural logic in L and A be an L-algebra. A set F ⊆ A
is called L-filter on A if:

T `L ϕ implies that for each A-evaluation e if e[T] ⊆ F then e(ϕ) ∈ F

If the LSL-reduct of A is an SL-algebra then:

A is an L-algebra IFF the set [1〉 is an L-filter

If A is an L-algebra, then [1〉 = {x ∈ A | 1 ≤ x} is the least L-filter
Filters on A form an algebraic closure system

by Fi(X) we denote the filter generated by X

Filters on FmL are the closure system corresponding to L

When seen as a lattice they are isomorphic to the lattice of
QL-relative congruences on A
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Filters in p-disjunctional logics

Theorem
Let L be a logic with a p-disjunction ∇. Then for each L-algebra A and
each X,Y ∪ {x, y} ⊆ A:

Fi(X, x) ∩ Fi(X, y) = Fi(X, x∇Ay)

Theorem
Let L be a substructural logic. TFAE:

1 L is p-disjunctional
2 The lattice of all L-filters on any L-algebra is distributive
3 QL is relative-congruence-distributive

Corollary
For each subvariety V of SL, LV is p-disjunctional logic
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A little detour to AAL 2: RFSI algebras

Let us by QRFSI denote that class of Q-relatively finitely subdirectly
irreducible (RFSI) L-algebras. We know that:

T `L ϕ iff {ψ ≥ 1 | ψ ∈ T} |=(QL)RFSI ϕ ≥ 1

A ∈ (QL)RFSI iff the the filter [1〉 is finitely meet irreducible, i.e.,
there is no pair of filters F,G ⊃ [1〉 s.t. F ∩ G = [1〉.
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∇-prime filters

Definition
A filter F on A is ∇-prime if for every a, b ∈ A, a∇Ab ⊆ F implies a ∈ F

or b ∈ F.

Theorem
Let ∇ be a p-disjunction in L and A and L-algebra. Then A ∈ (QL)RFSI
iff the filter [1〉 is ∇-prime.

Proof:
Assume that A is not RFSI: there are Fi ⊃ [1〉 s.t. [1〉 = F1 ∩ F2. Let
ai ∈ Fi \ [1〉. Thus a1∇a2 ⊆ Fi, i.e., [1〉 is not ∇-prime

Assume that [1〉 is not ∇-prime: there are x, y 6≥ 1 s.t. x∇y ⊆ [1〉. Then
Fi(x),Fi(y) ⊃ [1〉 and:

[1〉 = Fi(x∇y) = Fi(x) ∩ Fi(y) i.e., A is not RFSI.
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A little detour to AAL 3: simple observations

Let AX be an axiomatic system of a logic L, then F is an L filter iff
it is an upset containing 1 and for each rule T�ϕ we have:

for each A-evaluation e if e[T] ⊆ F then e(ϕ) ∈ F

L +A is the extension of L by axioms from A.

QL+A is a relative subvariety of QL axiomatized by {ϕ ≥ 1 | ϕ ∈ A}
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Positive universal formulas

A positive universal formula is built from equations using conjunction
and disjunction.

Lemma (Galatos. Studia Logica, 2004)
A positive universal formula C is equivalent the formula

∨
ϕ∈FC

1 ≤ ϕ

Lemma
Let L be a logic, ∇ a p-disjunction, C a positive universal formula, and
A an L-algebra.

If A |= C, then e[ ∇
ϕ∈FC

ϕ] ≥ 1 for each A-evaluation e.

Furthermore, if [1〉 a ∇-prime, then the converse holds as well.
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Logics given by positive universal classes of algebras

Theorem
Let L be a logic with a p-disjunction ∇ and C a set of positive universal
formulas. Then:

LQ({A an L-algebra | A|=C}) = L + { ∇
ϕ∈FC

ϕ | C ∈ C}.

Proof
We set L′ = L + { ∇

ϕ∈FC

ϕ | C ∈ C}; U = {A an L-algebra | A |= C}.

Clearly U ⊆ QL′ , so Q(U) ⊆ QL′ and so L′ ⊆ LQ(U).
Conversely, assume that T 6`L′ ϕ. There is an A ∈ (QL′)RFSI where [1〉 a
∇-prime (because L′ is axiomatic extension of L and so ∇ is
p-disjunction in L′) and an A-model of T s.t. e(ϕ) 6≥ 1.
Then A ∈ U and so T 6`LQ(U) ϕ, i.e. LQ(U) ⊆ L′.
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Quasivarieties given by positive universal classes of
algebras

Corollary
Let L be a logic with a p-disjunction ∇. The quasivariety generated by
the class of L-algebras satisfying a set of positive universal formulas C
is axiomatized (relative to QL) by:

{ϕ ≥ 1 | C ∈ C and ϕ ∈ ∇
ψ∈FC

ψ}

Note that the axiomatized quasivariety is relative subvariety.

A remark: this result can be generalized to Qvs generated by classes
of RFSI L-algebras satisfying a set of disjunctions of quasiequations.
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Intersection of relative subvarieties

Corollary
Let L be a logic with a p-disjunction ∇. The join of two relative
subvarieties QL axiomatized (relative to QL) by E1 and E2 is
axiomatized (relative to QL) by:

{χ ≥ 1 | ϕ1 ≈ ψ1 ∈ E1, ϕ2 ≈ ψ2 ∈ E2, and χ ∈ (ϕ1 ↔ ψ1)∇(ϕ2 ↔ ψ2)}

Note that it is the join both in the lattice of subquasivarieties and
relative subvarieties

Proof
Assume that the set of variables of E1 and E2 are disjoint.
Then A ∈ Q1 ∪Q2 iff A |= (ϕ1 ≈ ψ1) ∨ (ϕ2 ≈ ψ2) for each

ϕ1 ≈ ψ1 ∈ E1, ϕ2 ≈ ψ2 ∈ E2.
Now all we need is: SL |= (ϕ ≈ ψ)⇔ (ϕ↔ ψ) ≥ 1
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First, the simple case

Theorem (C–Noguera. Studia Logica, 2013)
Let L be a substructural logic with an axiomatic system having rules
Ru and let ∇(p, q,−→r ) be a set of formulas such that

ϕ `L ϕ∇ψ ψ `L ϕ∇ψ ψ∇ϕ `L ϕ∇ψ ϕ∇ϕ `L ϕ

Then ∇ is a p-disjunction in L iff for each χ and each T�ϕ ∈ Ru:

{ψ∇χ | ψ ∈ T} `L ϕ∇χ

Corollary
Let L0 be a substructural logic with a p-disjunction ∇ and let L be
axiomatized by adding rules Ru to any axiomatic system of L0.
Then ∇ is a p-disjunction in L iff for each χ and each T�ϕ ∈ Ru:

{ψ∇χ | ψ ∈ T} `L ϕ∇χ

Petr Cintula (ICS CAS) Substructural Logics 32 / 49



Second, a bit more tricky

Let us consider the following rules:

(MP) ϕ,ϕ→ ψ � ψ modus ponens
(Adj) ϕ � ϕ ∧ 1 unit adjunction
(PN) ϕ � λα(ϕ) ϕ � ρα(ϕ) product normality

where

a left conjugate of ϕ is λα(ϕ) = (α \ ϕ& α) ∧ 1
a right conjugate of ϕ is ρα(ϕ) = (α& ϕ / α) ∧ 1

Theorem (Folklore)
Logic The only rules needed in its axiomatization
FLew modus ponens
FLe modus ponens and unit adjunction
FL modus ponens and product normality
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What about SL?
We need more conjugates:

αδ,ε(ϕ) = (δ & ε \ δ & (ε& ϕ))

α′δ,ε(ϕ) = (δ & ε \ (δ & ϕ) & ε)

βδ,ε(ϕ) = (δ \ (ε \ (ε& δ) & ϕ)

β′δ,ε(ϕ) = (δ \ ((δ & ε) & ϕ / ε)

And rules of the form:
ϕ � ηδ,ε(ϕ)

for η ∈ {α, α′, β, β′}

For the proof see: C–Horčík–Noguera. Non-associative substructural
logics and their semilinear extensions: Axiomatization and
completeness properties. The Review of Symbolic Logic, 2013
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Conventions

Let us consider a new propositional variable ?

We write δ(ϕ) for a formula resulting from δ by replacing all ? by ϕ.

Definition (Iterated Γ-formulae)
Let Γ be a set of ?-formulae. We define the sets of ?-formulae Γ∗ as
the smallest set s.t. :

? ∈ Γ∗,
δ(χ) ∈ Γ∗ for each δ ∈ Γ and each χ ∈ Γ∗.

The rest of this section is based on C–Horčík–Noguera. RSL, 2013
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Petr Cintula (ICS CAS) Substructural Logics 35 / 49



Main definition

Definition
L is almost (MP)-based w.r.t. a set of basic deduction terms bDT if it
has an axiomatic system where

there are no rules with three or more premises
there is only one rule with two premises: modus ponens
the remaining rules are from {ϕ ` χ(ϕ) | ϕ ∈ Fm, χ ∈ bDT}
for each β ∈ bDT there is β′ ∈ bDT∗ s.t.:

`L β
′(ϕ→ ψ)→ (β(ϕ)→ β(ψ)).
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Almost-Implicational Deduction Theorem

Definition (Conjuncted Γ-formulae)
Let Γ be a set of ?-formulae. We define the sets of ?-formulae Π(Γ) as
the smallest set containing Γ ∪ {1} and closed under &.

Theorem
Let L be almost (MP)-based w.r.t. a set of basic deductive terms bDT.
Then for each set Γ ∪ {ϕ,ψ} of formulae:

Γ, ϕ `L ψ iff Γ `L δ(ϕ)→ ψ for some δ ∈ Π(bDT∗).
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Filter generation

Theorem
Let L be almost (MP)-based w.r.t. a set of basic deductive terms bDT.
Then for each set Γ ∪ {ϕ,ψ} of formulae:

Γ, ϕ `L ψ iff Γ `L δ(ϕ)→ ψ for some δ ∈ Π(bDT∗).

ΓA(x) = {δ(x, a1, . . . , an) | δ(?, p1, . . . , pn) ∈ Γ and a1, . . . , an ∈ A}

ΓA(X) = Π(
⋃
{ΓA(x) | x ∈ X})

Corollary
Let L be almost (MP)-based w.r.t. a set of basic deductive terms bDT.
Let A be an L-algebra and X ⊆ A. Then

FiAL(X) = {a ∈ A | a ≥ y for some y ∈ (Π(bDT∗))A(X)}
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Disjunction in almost (MP)-based logics

Theorem
Let L be almost (MP)-based w.r.t. a set of basic deductive terms bDT.
Then

∇L = {α(p) ∨ β(q) | α, β ∈ (bDT ∪ {? ∧ 1})∗}

is a (p-)disjunction in L.
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Semilinear logics

Let us by Q`
L denote the class of linearly ordered L-algebras.

Definition
A substructural logic L is called semilinear if

T `L ϕ iff {ψ ≥ 1 | ψ ∈ T} |=Q`
L
ϕ ≥ 1

This section is based on C–Horčík–Noguera. RSL, 2013

Note: some of the results hold in much wider setting.
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Characterizations of substructural semilinear logics

Theorem
Let L be a substructural logic. TFAE:

1 L is semilinear
2 QL = Q(Q`

L)

3 Q`
L = (QL)RFSI

4 Each L-algebra is a subdirect product of L-chains
5 Any L-filter in an L-algebra is an intersection of linear ones

a filter F is linear if x→ y ∈ F or y→ x ∈ F, for each x, y
6 The following metarule holds:

T, ϕ→ ψ `L χ T, ψ → ϕ `L χ

T `L χ
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Characterizations of substructural semilinear logics

Theorem
Let L be a substructural logic and an axiomatic system AX . TFAE:

1 L is semilinear,
2 L proves (ϕ→ ψ) ∨ (ψ → ϕ) and enjoys the metarule:

T, ϕ `L χ T, ψ `L χ

T, ϕ ∨ ψ `L χ

3 L proves (ϕ→ ψ) ∨ (ψ → ϕ) and any L-filter in an L-algebra is an
intersection of ∨-prime ones,

4 L proves (ϕ→ ψ) ∨ (ψ → ϕ) and for every rule T�ϕ in AX and
propositional variable p not occurring in T, ϕ we have

{ψ ∨ χ | ψ ∈ T} `L ϕ ∨ χ
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Weakest semilinear extension

Theorem
There is the least semilinear logic extending L, denoted as L`

L` = LQ(Q`
L)

If L is almost (MP)-based with bDT, then L` is axiomatized by
adding axioms:

((ϕ→ ψ) ∧ 1) ∨ δ((ψ → ϕ) ∧ 1), for each δ ∈ bDT ∪ {?}

Corollary
Let Q be a class of residuated structures s.t. LQ is an almost
(MP)-based with bDT. Then Q({A ∈ Q | A linear}) is a relative
subvariety of Q axiomatized (relative to Q) by

((ϕ→ ψ) ∧ 1) ∨ δ((ψ → ϕ) ∧ 1) ≈ 1, for each δ ∈ bDT ∪ {?}
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Characterizations of completeness properties

Let L be substructural semilinear logic and K a class of L-chains.

Theorem (Characterization of strong K-completeness)
1 For each T ∪ {ϕ} holds: T `L ϕ iff {ψ ≥ 1 | ψ ∈ T} |=K ϕ ≥ 1.
2 QL = ISPσ-f (K).
3 Each countable L-chain is embeddable into some member of K.

Theorem (Characterization of finite strong K-completeness)
1 For each finite T ∪ {ϕ} holds: T `L ϕ iff {ψ ≥ 1 | ψ ∈ T} |=K ϕ ≥ 1.
2 QL = Q(K), i.e., K generates QL as a quasivariety.
3 Each finite subset of any L-chain is partially embeddable into an

element of K.
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Finite chain semantics

Let F be a class of finite chains

Theorem (Characterization of strong finite-chain completeness)
1 L enjoys the SFC,
2 All L-chains are finite,
3 There exists n ∈ N such each L-chain has at most n elements,
4 There exists n ∈ N such that ∅ `L

∨
i<n(xi → xi+1).

Known results: FSFC fails in FL` and FL`e
Known results: FSFC holds in FL`X∪{w} and SL`X

Open problems: FSFC of FL`c and FL`ec
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Standard completeness

Let R be a class of chains with domain ((half)-open) real unit interval
with usual lattice order

Known results: FSRC fails in FL` and FL`c
Known results: SRC holds in FL`e, FL`w, FL`ew, FL`w,c and SL`X
Known results: SRC fails but FSRC holds in logic of BL- and MV-alg.

Open problems: (F)SRC of FL`ec
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