ON TWO ORDERINGS OF MAXIMAL ORTHOGONAL SUBSETS OF AN ORTHOPOSET

Jānis Cīrulis Institute of Mathematics and Computer Science University of Latvia

email: jc@lanet.lv

The 54th Summer School on General Algebra and Ordered Sets Trojanovice, September 3-9, 2016

ABOUT WHAT?

ABOUT WHAT?

Let P be an orthoposet.

Define two order relations on the set ${\mathcal M}$ of its maximal orthogonal subsets:

for
$$U, V \in \mathcal{M}$$
,
 $U \leq_1 V :\equiv$ to every $v \in V$ there is $u \in U$ such that $v \leq u$
 $(U \text{ supports } V)$,
 $U \leq_2 V :\equiv$ every element of U is the join of a subset of V
 $(U \text{ is coarser than } V)$ (V is a refinement of U).

ABOUT WHAT?

Let P be an orthoposet.

Define two order relations on the set ${\cal M}$ of its maximal orthogonal subsets:

For all U, V, if $U \leq_2 V$, then $U \leq_1 V$.

Motivation

Motivation

(1) If P is orthocomplete, then with every $V \in M$ associated is a quantifier C_V , i.e., a closure operator on P whose range is a subalgebra of P:

 $\mathsf{C}_V(p) := \bigvee (v \in V \colon v \not\perp p).$

Fact: $C_U C_V = C_V$ iff $C_V C_U = C_V$ iff $U \leq_2 V$.

there is a function d: ran $y \rightarrow$ ran x such that

"every time" when y takes the value b, x takes the value d(b).

there is a function d: ran $y \rightarrow$ ran x such that

"every time" when y takes the value b, x takes the value d(b).

Call a variable on P any injective function defined on some $U \in \mathcal{M}$.

there is a function d: ran $y \rightarrow$ ran x such that

```
"every time" when y takes the value b, x takes the value d(b).
```

Call a variable on P any injective function defined on some $U \in \mathcal{M}.$ Then

a variable x depends on a variable y iff

to every $v \in \operatorname{dom} y$ there is $u \in \operatorname{dom} x$ such that $v \leq u$ iff $\operatorname{dom} x \leq_1 \operatorname{dom} y$.

there is a function d: ran $y \rightarrow$ ran x such that

"every time" when y takes the value b, x takes the value d(b).

Call a variable on P any injective function defined on some $U \in \mathcal{M}.$ Then

a variable x depends on a variable y iff to every $v \in \operatorname{dom} y$ there is $u \in \operatorname{dom} x$ such that $v \leq u$ iff $\operatorname{dom} x \leq_1 \operatorname{dom} y$.

If x depends on y and x takes a value a, then y has a value in $d^{-1}(a)$, so the following should hold for every $u \in \operatorname{dom} x$: $u \leq \bigvee (v \in \operatorname{dom} y : v \leq u).$ All these joins exist iff dom $x \leq_2 \operatorname{dom} y$.

Questions

(1) When do \leq_1 and \leq_2 coincide? (2) When is \mathcal{M} a bounded complete poset under \leq_1 ? under \leq_2 ?

1. ORTHOPOSETS

1. ORTHOPOSETS

An *orthoposet* is a quintuple $(P, \leq, \downarrow, 0, 1)$, where • $(P, \leq, 0, 1)$ is a bounded poset, • $^{\perp}$ is a unary operation (*orthocomplementation*), • $p^{\perp\perp} = p, \quad p \leq q \Rightarrow q^{\perp} \leq p^{\perp},$ • $0 = p \land p^{\perp}, \quad 1 = p \lor p^{\perp}.$

1. ORTHOPOSETS

An orthoposet is a quintuple $(P, \leq, ^{\perp}, 0, 1)$, where • $(P, \leq, 0, 1)$ is a bounded poset, • $^{\perp}$ is a unary operation (orthocomplementation), • $p^{\perp \perp} = p, \quad p \leq q \Rightarrow q^{\perp} \leq p^{\perp},$ • $0 = p \land p^{\perp}, \quad 1 = p \lor p^{\perp}.$

In an orthoposet P,

- elements p and q are said to be orthogonal (in symbols, $p\perp q)$ if $p\leq q^{\perp}$ (equivalently, if $q\leq p^{\perp}$),
- a subset X is said to be *orthogonal* if elements of X differ from 0 and are mutually orthogonal.

Notation: for any $X \subseteq P$, $X \leq q :\equiv x \leq q$ for all $x \in X$, $X \perp q \equiv x \perp q$ for all $x \in X$. Notation: for any $X \subseteq P$, $X \leq q :\equiv x \leq q$ for all $x \in X$, $X \perp q \equiv x \perp q$ for all $x \in X$.

An orthoposet is

- orthocomplete if every its orthogonal subset has a join,
- Boolean if $p \perp q$ whenever $p \wedge q = 0$.

Fact: If a Boolean orthoposet is a lattice or is orthocomplete, then it is a Boolean algebra.

In what follows, P is an arbitrary orthoposet, and \mathcal{M} is the set of maximal orthogonal subsets of P. The letters U, V, W are reserved for elements of \mathcal{M} .

In what follows, P is an arbitrary orthoposet, and \mathcal{M} is the set of maximal orthogonal subsets of P. The letters U, V, W are reserved for elements of \mathcal{M} .

Recall: for $U, V \in \mathcal{M}$, $U \leq_1 V :\equiv$ to every $v \in V$ there is $u \in U$ such that $v \leq u$. $U \leq_2 V :\equiv$ every element of U is the join of a subset of V.

In what follows, P is an arbitrary orthoposet, and \mathcal{M} is the set of maximal orthogonal subsets of P. The letters U, V, W are reserved for elements of \mathcal{M} .

Recall: for $U, V \in \mathcal{M}$, $U \leq_1 V :\equiv$ to every $v \in V$ there is $u \in U$ such that $v \leq u$. $U \leq_2 V := \equiv$ every element of U is the join of a subset of V.

Observations:

For all U, V if $U \leq_2 V$, then $U \leq_1 V$. If P is orthocomplete, then $U \leq_2 V$ iff $U \leq_1 V$. If P is Boolean, then $U \leq_2 V$ iff $U \leq_1 V$. Elementary properties of \leq_1 and \leq_2 .

Elementary properties of \leq_1 and \leq_2 .

For given V, an element $p\in P$ is said to be

- *V*-strict if, for every $v \in V$, either $v \leq p$ or $v \perp p$,
- V-exact if p is a join of a subset of V.

Every V-exact element p is V-strict.

Elementary properties of \leq_1 and \leq_2 .

For given V, an element $p \in P$ is said to be • V-strict if, for every $v \in V$, either $v \leq p$ or $v \perp p$, • V-exact if p is a join of a subset of V. Every V-exact element p is V-strict.

S(V) := the set of all V-strict elements, E(V) := the set of all V-exact elements.

Proposition

The following are equivalent in \mathcal{M} :

(a)
$$U \leq_1 V$$
,
(b) $U \subseteq S(V)$,
(c) $S(U) \subseteq S(V)$.

Proposition

The following are equivalent in \mathcal{M} :

(a) $U \leq_1 V$, (b) $U \subseteq S(V)$, (c) $S(U) \subseteq S(V)$.

Proposition

The following are equivalent in \mathcal{M} :

(a) $U \leq_2 V$, (b) $U \subseteq E(V)$, (c) $E(U) \subseteq E(V)$.

Proposition

The following are equivalent in \mathcal{M} :

(a)
$$U \leq_1 V$$
,
(b) $U \subseteq S(V)$,
(c) $S(U) \subseteq S(V)$

Proposition

The following are equivalent in \mathcal{M} :

(a) $U \leq_2 V$, (b) $U \subseteq E(V)$, (c) $E(U) \subseteq E(V)$.

For any $V, E(V) \subseteq S(V)$. When S(V) = E(V)? *P* orthocomplete or Boolean

A subset $V \in \mathcal{M}$ is *dense* if, for every p, if $\{v \in V : v \not\perp p\} \leq q$, then $p \leq q$ for all q; equivalently,

if $\{v \in V \colon v \not\perp p\} \perp q$, then $p \perp q$ for all q.

A subset $V \in \mathcal{M}$ is *dense* if, for every p, if $\{v \in V : v \not\perp p\} \leq q$, then $p \leq q$ for all q; equivalently,

if $\{v \in V \colon v \not\perp p\} \perp q$, then $p \perp q$ for all q.

Lemma

 $S(V) \subseteq E(V)$ if and only if V is dense.

A subset $V \in \mathcal{M}$ is *dense* if, for every p, if $\{v \in V : v \not\perp p\} \leq q$, then $p \leq q$ for all q; equivalently, if $\{v \in V : v \not\perp p\} \perp q$, then $p \perp q$ for all q.

Lemma

 $S(V) \subseteq E(V)$ if and only if V is dense.

Theorem

The orders \leq_1 and \leq_2 coincide if and only if every maximal orthosubset of P is dense.

3. BOUNDED COMPLETENESS OF $\ensuremath{\mathcal{M}}$

3. BOUNDED COMPLETENESS OF $\ensuremath{\mathcal{M}}$

Preliminaries

 (X, \leq) — a poset.

X is bouned complete if

every subset of X bounded above has the l.u.b. This is the case iff every nonempty subset of X has the g.l.b.

3. BOUNDED COMPLETENESS OF $\ensuremath{\mathcal{M}}$

Preliminaries

 (X, \leq) — a poset.

X is bouned complete if

every subset of X bounded above has the l.u.b. This is the case iff every nonempty subset of X has the g.l.b.

In particular, then X is a *nearlattice* with bottom, i.e.,

- has the least element 0,
- $\hfill\hfi$
- every initial segment [0, a] of X is a sublattice of X.

X is *locally bounded complete* if every subset of X having an upper bound a has the l.u.b. in the lower part (a] of X.

Lemma

If X is locally bounded complete, then X is bounded complete.

For every bounded subset of X, its local join is its join in P.

An answer to Q2 ...

An answer to Q2 ...

Theorem

The poset (\mathcal{M}, \leq_1) is bounded complete if and only if P is orthocomplete.

An answer to Q2 ...

Theorem The poset (\mathcal{M}, \leq_1) is bounded complete if and only if P is orthocomplete.

... and some lemmas for it

(characterizing upper bounds of a subset of \mathcal{M}).

Recall: $U \leq_1 V :\equiv$ to every $v \in V$ there is $u \in U$ such that $v \leq u$. Then $U \leq_1 V$ iff there is a mapping $\delta_U^V : V \to U$ such that $v \leq \delta_U^V(v)$.

If such a mapping exists, then it is unique.

Recall: $U \leq_1 V :\equiv$ to every $v \in V$ there is $u \in U$ such that $v \leq u$. Then $U \leq_1 V$ iff there is a mapping $\delta_U^V : V \to U$ such that $v \leq \delta_U^V(v)$.

If such a mapping exists, then it is unique.

Suppose that $\mathcal{U} \subseteq \mathcal{M}$ and $\mathcal{U} \leq_1 V$.

A selector for \mathcal{U} – a function $\phi \in \prod \mathcal{U}$ such that for all $U_1, U_2 \in \mathcal{U}$, if $U_1 \leq_1 U_2$, then $\phi(U_1) = \delta_{U_1}^{U_2}(\phi(U_2))$; equivalently,

if $U_1 \leq_1 U_2$, then $\phi(U_2) \leq \phi(U_1)$.

A selector for \mathcal{U} – a function $\phi \in \prod \mathcal{U}$ such that for all $U_1, U_2 \in \mathcal{U}$, if $U_1 \leq_1 U_2$, then $\phi(U_1) = \delta_{U_1}^{U_2}(\phi(U_2))$; equivalently,

if $U_1 \leq_1 U_2$, then $\phi(U_2) \leq \phi(U_1)$.

 δ -product of $\mathcal{U} := \prod^{\delta} \mathcal{U} :=$ the set of all selectors.

A selector for \mathcal{U} – a function $\phi \in \prod \mathcal{U}$ such that for all $U_1, U_2 \in \mathcal{U}$, if $U_1 \leq_1 U_2$, then $\phi(U_1) = \delta_{U_1}^{U_2}(\phi(U_2))$; equivalently,

if $U_1 \leq_1 U_2$, then $\phi(U_2) \leq \phi(U_1)$.

 δ -product of $\mathcal{U} := \prod^{\delta} \mathcal{U} :=$ the set of all selectors.

Example (still $\mathcal{U} \leq V$): given $v \in V$, let $\phi_v(U) := \delta_U^V(v)$ for all $U \in \mathcal{U}$; then $\phi_v \in \prod^{\delta} \mathcal{U}$. A selector for \mathcal{U} – a function $\phi \in \prod \mathcal{U}$ such that for all $U_1, U_2 \in \mathcal{U}$, if $U_1 \leq_1 U_2$, then $\phi(U_1) = \delta_{U_1}^{U_2}(\phi(U_2))$; equivalently, if $U_1 <_1 U_2$, then $\phi(U_2) < \phi(U_1)$.

 δ -product of $\mathcal{U} := \prod^{\delta} \mathcal{U} :=$ the set of all selectors.

Example (still $\mathcal{U} \leq V$): given $v \in V$, let $\phi_v(U) := \delta_U^V(v)$ for all $U \in \mathcal{U}$; then $\phi_v \in \prod^{\delta} \mathcal{U}$.

Lemma

(a) For every $\phi \in \prod^{\delta} \mathcal{U}$, there is $v \in V$ such that $\phi = \phi_v$.

(b) V is a join of
$$\mathcal{U}$$
 iff such v is unique.