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Define two order relations on the set M of its maximal orthogonal
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for U,V € M,

(U supports V'),

(U is coarser than V) (V is a refinement of U).




ABOUT WHAT?

Let P be an orthoposet.

Define two order relations on the set M of its maximal orthogonal
subsets:

for U,V € M,

(U supports V),

(U is coarser than V) (V is a refinement of U).

For all U,V, ifU <oV, then U <1 V. —
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Motivation

(1) If P is orthocomplete, then with every V € M associated is
a quantifier Cy,, i.e., a closure operator on P whose range is a

subalgebra of P:
Cy(p) :=V@weV:ivLp).
Fact: CUCV = CV iff CVCU =Cy iIff U <o V. —



(2) In any set of variables X, a variable x (functionally) depends
on y if

there is a function d: rany — ranx such that

“every time” when y takes the value b, x takes the value d(b).
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(2) In any set of variables X, a variable x (functionally) depends
on y if

there is a function d: rany — ranx such that

“every time” when y takes the value b, x takes the value d(b).

Call a variable on P any injective function defined on some U &

M. Then
a variable x depends on a variable y iff
to every v € domy there is v € domax such that v < u iff

domax <7 domy.

If x depends on y and x takes a value a, then y has a value in

d—1(a), so the following should hold for every u € dom z:
u<V@edomy:v<u).

All these joins exist iff domax <, domy. —



Questions

(1) When do <7 and <5 coincide?
(2) When is M a bounded complete poset under <q; 7 under <57
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1. ORTHOPOSETS

In an orthoposet P,

- elements p and ¢ are said to be orthogonal (in symbols, p L q)
if p < gl (equivalently, if ¢ < pt),

« a subset X is said to be orthogonal if elements of X differ
from O and are mutually orthogonal. —
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Notation: for any X C P,
X<g=zxz<gqgforall x € X,
X lg=xlqgforall x eX.
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Notation: for any X C P,
X<g=zxz<gqgforall x € X,
X lg=xlqgforall x eX.

An orthoposet is
« orthocomplete if every its orthogonal subset has a join,

- Boolean if p L q whenever p A g = 0.

Fact: If a Boolean orthoposet is a lattice or is orthocomplete,
then it is a Boolean algebra.
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2: COMPARING THE TWO ORDERS

In what follows, P is an arbitrary orthoposet, and M is the set
of maximal orthogonal subsets of P. The letters U,V,W are
reserved for elements of M.

Recall: for U,V € M,
U<iV:=toeveryveV thereis ue U such that v < u.

U <,V :== every element of U is the join of a subset of V.

Observations:

Forall U,V if U <oV, then U <1 V.

If P is orthocomplete, then U <, V iff U <1 V.

If P is Boolean, then U <, V iff U <1 V. —
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Elementary properties of <; and <,.
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Elementary properties of <; and <,.

For given V, an element p € P is said to be

- V-strict if, for every v € V, either v <p or v L p,
- V-exact if p is a join of a subset of V.

Every V-exact element p is V-strict.
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Elementary properties of <; and <,.

For given V, an element p € P is said to be

- V-strict if, for every v € V, either v <p or v L p,
- V-exact if p is a join of a subset of V.

Every V-exact element p is V-strict.

S(V) := the set of all V-strict elements,
E(V) := the set of all V-exact elements.
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Proposition

The following are equivalent in M:
(a) ULV,
(b) U C S(V),
(c) S(U) € S(V).

Proposition

The following are equivalent in M:
(a) U <oV,
(b) U C E(V),
(c) E(U) C E(V).
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Proposition

The following are equivalent in M:
(a) U <1V,
(b) U C S(V),
(c) S(U) € S(V).

Proposition

The following are equivalent in M:
(a) U <oV,
(b) U C E(V),
(c) E(U) C E(V).

For any V, E(V) C S(V).
When S(V) = E(V)? P orthocomplete or Boolean —
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An answer to Q1
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An answer to Q1

A subset V € M is dense if, for every p,

if {fveV:v Lp} <gq, then p <gq for all q;
equivalently,

if {veV:v Lp} Lq, then p L q for all q.
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An answer to Q1

A subset V € M is dense if, for every p,
if {fveV:v fp}<gq, then p <gq for all q;

equivalently,
if {fveV:v Lp} Lq, then p L q for all q.

Lemma
S(V) C E(V) if and only if V is dense.

Theorem
The orders <71 and <, coincide if and only if every maximal

orthosubset of P is dense.
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3. BOUNDED COMPLETENESS OF M

Preliminaries
(X,<) — a poset.

X is bouned complete if

every subset of X bounded above has the |.u.b.
This is the case iff

every nonempty subset of X has the g.l.b.
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3. BOUNDED COMPLETENESS OF M

Preliminaries
(X,<) — a poset.

X is bouned complete if

every subset of X bounded above has the l.u.b.
This is the case iff

every nonempty subset of X has the g.l.b.

In particular, then X is a nearlattice with bottom, i.e.,
- has the least element O,

- any two elements of X have the meet, and

- every initial segment [0,a] of X is a sublattice of X.
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X is locally bounded complete if every subset of X having an
upper bound a has the l.u.b. in the lower part (a] of X.

Lemma
If X is locally bounded complete, then X is bounded complete.

For every bounded subset of X, its local join is its join in P.
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An answer to Q2 ...
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An answer to Q2 ...

Theorem
The poset (M, <) is bounded complete if and only if P is

orthocomplete.
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An answer to Q2 ...

Theorem
The poset (M, <) is bounded complete if and only if P is

orthocomplete.

.. .and some lemmas for it

(characterizing upper bounds of a subset of M). —
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Recall: U <1V :=to every v €V there is v € U such that v < w.
Then U <3 V iff there is a mapping §};: V — U

such that v < 65 (v).
If such a mapping exists, then it is unique.
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Recall: U <1V :=to every v €V there is v € U such that v < w.

Then U <3 V iff there is a mapping §};: V — U
such that v < 65 (v).

If such a mapping exists, then it is unique.

Suppose that  C M and U <1 V.

Lemma
V is a join of U iff the family (§);: U € U) is separating:

for any vy,v, € V,
if 6 (v1) = 6);(vp) for all U € U, then vy = vy.
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A selector for U — a function ¢ € [[U such that
for all U1,Ur € U,
: U.
if Uy <1 Up, then ¢(Uz) = 6,7 (¢(U2));
equivalently,

if Uy <1 Uy, then ¢(Usz) < ¢(Uy).
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A selector for U — a function ¢ € [[U such that
for all U1,Ur € U,
: U.
if Uy <1 Up, then ¢(Uz) = 6,7 (¢(U2));
equivalently,

if Uy <1 U, then ¢(Uz) < ¢(Up).
o-product of U = H51/1 .= the set of all selectors.

Example (still 4 < V):
given v € V, let ¢,(U) := 8 (v) for all U € U; then ¢, € TI°U.
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A selector for U — a function ¢ € [[U such that
for all U1,Us € U,
: U.
if Uy <1 Uz, then ¢(Ur) = 6,7 (¢(U2));
equivalently,

it Uy <1 Up, then ¢(Uz) < ¢(Up).
o-product of U = H5Z/l = the set of all selectors.

Example (still 4 < V):
given v € V, let ¢,(U) := 8 (v) for all U € U; then ¢, € TI°U.

Lemma
(a) For every ¢ € [[°U, there is v € V such that ¢ = &,.
(b) V is a join of U iff such v is unique.
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