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Jānis C̄ırulis
Institute of Mathematics and Computer Science

University of Latvia

email: jc@lanet.lv

The 54th Summer School on General Algebra and Ordered Sets
Trojanovice, September 3-9, 2016



ABOUT WHAT?

1



ABOUT WHAT?

Let P be an orthoposet.

Define two order relations on the set M of its maximal orthogonal

subsets:

for U, V ∈ M,
U ≤1 V :≡ to every v ∈ V there is u ∈ U such that v ≤ u

(U supports V ),
U ≤2 V :≡ every element of U is the join of a subset of V

(U is coarser than V ) (V is a refinement of U).
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ABOUT WHAT?

Let P be an orthoposet.

Define two order relations on the set M of its maximal orthogonal

subsets:

for U, V ∈ M,
U ≤1 V :≡ to every v ∈ V there is u ∈ U such that v ≤ u

(U supports V ),
U ≤2 V :≡ every element of U is the join of a subset of V

(U is coarser than V ) (V is a refinement of U).

For all U, V , if U ≤2 V , then U ≤1 V . –�
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Motivation
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Motivation

(1) If P is orthocomplete, then with every V ∈ M associated is

a quantifier CV , i.e., a closure operator on P whose range is a

subalgebra of P :

CV (p) :=
∨
(v ∈ V : v ̸⊥ p).

Fact: CUCV = CV iff CV CU = CV iff U ≤2 V . –�
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(2) In any set of variables X, a variable x (functionally) depends

on y if

there is a function d : ran y → ranx such that

“every time” when y takes the value b, x takes the value d(b).
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(2) In any set of variables X, a variable x (functionally) depends

on y if

there is a function d : ran y → ranx such that

“every time” when y takes the value b, x takes the value d(b).

Call a variable on P any injective function defined on some U ∈
M.
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(2) In any set of variables X, a variable x (functionally) depends

on y if

there is a function d : ran y → ranx such that

“every time” when y takes the value b, x takes the value d(b).

Call a variable on P any injective function defined on some U ∈
M. Then

a variable x depends on a variable y iff

to every v ∈ dom y there is u ∈ domx such that v ≤ u iff

domx ≤1 dom y.
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(2) In any set of variables X, a variable x (functionally) depends

on y if

there is a function d : ran y → ranx such that

“every time” when y takes the value b, x takes the value d(b).

Call a variable on P any injective function defined on some U ∈
M. Then

a variable x depends on a variable y iff

to every v ∈ dom y there is u ∈ domx such that v ≤ u iff

domx ≤1 dom y.

If x depends on y and x takes a value a, then y has a value in

d−1(a), so the following should hold for every u ∈ domx:

u ≤
∨
(v ∈ dom y : v ≤ u).

All these joins exist iff domx ≤2 dom y. –�
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Questions

(1) When do ≤1 and ≤2 coincide?

(2) When is M a bounded complete poset under ≤1 ? under ≤2?
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1. ORTHOPOSETS
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1. ORTHOPOSETS

An orthoposet is a quintuple (P,≤,⊥,0,1), where
� (P,≤,0,1) is a bounded poset,
� ⊥ is a unary operation (orthocomplementation),
� p⊥⊥ = p, p ≤ q ⇒ q⊥ ≤ p⊥,
� 0 = p ∧ p⊥, 1 = p ∨ p⊥.
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1. ORTHOPOSETS

An orthoposet is a quintuple (P,≤,⊥,0,1), where
� (P,≤,0,1) is a bounded poset,
� ⊥ is a unary operation (orthocomplementation),
� p⊥⊥ = p, p ≤ q ⇒ q⊥ ≤ p⊥,
� 0 = p ∧ p⊥, 1 = p ∨ p⊥.

In an orthoposet P ,
� elements p and q are said to be orthogonal (in symbols, p ⊥ q)

if p ≤ q⊥ (equivalently, if q ≤ p⊥),
� a subset X is said to be orthogonal if elements of X differ

from 0 and are mutually orthogonal. –�
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Notation: for any X ⊆ P ,

X ≤ q :≡ x ≤ q for all x ∈ X,

X ⊥ q ≡ x ⊥ q for all x ∈ X.
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Notation: for any X ⊆ P ,

X ≤ q :≡ x ≤ q for all x ∈ X,

X ⊥ q ≡ x ⊥ q for all x ∈ X.

An orthoposet is
� orthocomplete if every its orthogonal subset has a join,
� Boolean if p ⊥ q whenever p ∧ q = 0.

Fact: If a Boolean orthoposet is a lattice or is orthocomplete,

then it is a Boolean algebra.
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2: COMPARING THE TWO ORDERS

16



2: COMPARING THE TWO ORDERS

In what follows, P is an arbitrary orthoposet, and M is the set

of maximal orthogonal subsets of P . The letters U, V,W are

reserved for elements of M.
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In what follows, P is an arbitrary orthoposet, and M is the set

of maximal orthogonal subsets of P . The letters U, V,W are

reserved for elements of M.

Recall: for U, V ∈ M,

U ≤1 V :≡ to every v ∈ V there is u ∈ U such that v ≤ u.

U ≤2 V :≡ every element of U is the join of a subset of V .
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2: COMPARING THE TWO ORDERS

In what follows, P is an arbitrary orthoposet, and M is the set

of maximal orthogonal subsets of P . The letters U, V,W are

reserved for elements of M.

Recall: for U, V ∈ M,

U ≤1 V :≡ to every v ∈ V there is u ∈ U such that v ≤ u.

U ≤2 V :=≡ every element of U is the join of a subset of V .

Observations:

For all U, V if U ≤2 V , then U ≤1 V .

If P is orthocomplete, then U ≤2 V iff U ≤1 V .

If P is Boolean, then U ≤2 V iff U ≤1 V . –�
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Elementary properties of ≤1 and ≤2.
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Elementary properties of ≤1 and ≤2.

For given V , an element p ∈ P is said to be
� V -strict if, for every v ∈ V , either v ≤ p or v ⊥ p,
� V -exact if p is a join of a subset of V .

Every V -exact element p is V -strict.
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Elementary properties of ≤1 and ≤2.

For given V , an element p ∈ P is said to be
� V -strict if, for every v ∈ V , either v ≤ p or v ⊥ p,
� V -exact if p is a join of a subset of V .

Every V -exact element p is V -strict.

S(V ) := the set of all V -strict elements,

E(V ) := the set of all V -exact elements. –�
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Proposition

The following are equivalent in M:

(a) U ≤1 V ,

(b) U ⊆ S(V ),

(c) S(U) ⊆ S(V ).
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Proposition

The following are equivalent in M:

(a) U ≤1 V ,

(b) U ⊆ S(V ),

(c) S(U) ⊆ S(V ).

Proposition

The following are equivalent in M:

(a) U ≤2 V ,

(b) U ⊆ E(V ),

(c) E(U) ⊆ E(V ).
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Proposition

The following are equivalent in M:

(a) U ≤1 V ,

(b) U ⊆ S(V ),

(c) S(U) ⊆ S(V ).

Proposition

The following are equivalent in M:

(a) U ≤2 V ,

(b) U ⊆ E(V ),

(c) E(U) ⊆ E(V ).

For any V , E(V ) ⊆ S(V ).

When S(V ) = E(V )? P orthocomplete or Boolean –�
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An answer to Q1
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An answer to Q1

A subset V ∈ M is dense if, for every p,

if {v ∈ V : v ̸⊥ p} ≤ q, then p ≤ q for all q;

equivalently,

if {v ∈ V : v ̸⊥ p} ⊥ q, then p ⊥ q for all q.
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An answer to Q1

A subset V ∈ M is dense if, for every p,

if {v ∈ V : v ̸⊥ p} ≤ q, then p ≤ q for all q;

equivalently,

if {v ∈ V : v ̸⊥ p} ⊥ q, then p ⊥ q for all q.

Lemma

S(V ) ⊆ E(V ) if and only if V is dense.
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An answer to Q1

A subset V ∈ M is dense if, for every p,

if {v ∈ V : v ̸⊥ p} ≤ q, then p ≤ q for all q;

equivalently,

if {v ∈ V : v ̸⊥ p} ⊥ q, then p ⊥ q for all q.

Lemma

S(V ) ⊆ E(V ) if and only if V is dense.

Theorem
The orders ≤1 and ≤2 coincide if and only if every maximal

orthosubset of P is dense.

–�
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3. BOUNDED COMPLETENESS OF M
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3. BOUNDED COMPLETENESS OF M

Preliminaries

(X,≤) — a poset.

X is bouned complete if

every subset of X bounded above has the l.u.b.

This is the case iff

every nonempty subset of X has the g.l.b.
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3. BOUNDED COMPLETENESS OF M

Preliminaries

(X,≤) — a poset.

X is bouned complete if

every subset of X bounded above has the l.u.b.

This is the case iff

every nonempty subset of X has the g.l.b.

In particular, then X is a nearlattice with bottom, i.e.,
� has the least element 0,
� any two elements of X have the meet, and
� every initial segment [0, a] of X is a sublattice of X. –�
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X is locally bounded complete if every subset of X having an

upper bound a has the l.u.b. in the lower part (a] of X.

Lemma

If X is locally bounded complete, then X is bounded complete.

For every bounded subset of X, its local join is its join in P .

–�
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An answer to Q2 . . .
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An answer to Q2 . . .

Theorem
The poset (M,≤1) is bounded complete if and only if P is

orthocomplete.
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An answer to Q2 . . .

Theorem
The poset (M,≤1) is bounded complete if and only if P is

orthocomplete.

. . . and some lemmas for it

(characterizing upper bounds of a subset of M). –�
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Recall: U ≤1 V :≡ to every v ∈ V there is u ∈ U such that v ≤ u.

Then U ≤1 V iff there is a mapping δVU : V → U

such that v ≤ δVU (v).

If such a mapping exists, then it is unique.
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Recall: U ≤1 V :≡ to every v ∈ V there is u ∈ U such that v ≤ u.

Then U ≤1 V iff there is a mapping δVU : V → U

such that v ≤ δVU (v).

If such a mapping exists, then it is unique.

Suppose that U ⊆ M and U ≤1 V .

Lemma

V is a join of U iff the family (δVU : U ∈ U) is separating:

for any v1, v2 ∈ V ,

if δVU (v1) = δVU (v2) for all U ∈ U, then v1 = v2.

–�
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A selector for U – a function ϕ ∈
∏
U such that

for all U1, U2 ∈ U,

if U1 ≤1 U2, then ϕ(U1) = δ
U2
U1

(ϕ(U2));

equivalently,

if U1 ≤1 U2, then ϕ(U2) ≤ ϕ(U1).
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A selector for U – a function ϕ ∈
∏
U such that

for all U1, U2 ∈ U,

if U1 ≤1 U2, then ϕ(U1) = δ
U2
U1

(ϕ(U2));

equivalently,

if U1 ≤1 U2, then ϕ(U2) ≤ ϕ(U1).

δ-product of U :=
∏δ U := the set of all selectors.
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A selector for U – a function ϕ ∈
∏
U such that

for all U1, U2 ∈ U,

if U1 ≤1 U2, then ϕ(U1) = δ
U2
U1

(ϕ(U2));

equivalently,

if U1 ≤1 U2, then ϕ(U2) ≤ ϕ(U1).

δ-product of U :=
∏δ U := the set of all selectors.

Example (still U ≤ V ):

given v ∈ V , let ϕv(U) := δVU (v) for all U ∈ U; then ϕv ∈
∏δ U.
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A selector for U – a function ϕ ∈
∏
U such that

for all U1, U2 ∈ U,
if U1 ≤1 U2, then ϕ(U1) = δ

U2
U1

(ϕ(U2));
equivalently,

if U1 ≤1 U2, then ϕ(U2) ≤ ϕ(U1).

δ-product of U :=
∏δ U := the set of all selectors.

Example (still U ≤ V ):
given v ∈ V , let ϕv(U) := δVU (v) for all U ∈ U; then ϕv ∈

∏δ U.

Lemma

(a) For every ϕ ∈
∏δ U, there is v ∈ V such that ϕ = ϕv.

(b) V is a join of U iff such v is unique.

–�
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