On the quasi-normality of commutative *f*-rings with bounded inversion

Themba Dube

Department of Mathematical Sciences University of South Africa (Unisa)

Summer School on General Algebra and Ordered Sets: SSAOS 2016

Hotel Troyer

7 September 2016

・ 同 ト ・ ヨ ト ・ ヨ ト

Throughout, the term "ring" means a commutative ring with identity. An ℓ -ring is a ring A with a partial order \leq such that, for every $a, b, c \in A$:

•
$$a + (b \lor c) = (a + b) \lor (a + c)$$
; and

• $ab \ge 0$ whenever $a \ge 0$ and $b \ge 0$.

An *l*-ring is called an *f*-ring if

•
$$a(b \lor c) = (ab) \lor (ac)$$
 whenever $a \ge 0$.

The absolute value of $a \in A$ is the element

 $|a| = a \vee (-a).$

An ideal $I \subseteq A$ is called an ℓ -ideal if

 $|a| \leq |b|$ and $b \in I \implies a \in I$.

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

Throughout, the term "ring" means a commutative ring with identity. An ℓ -ring is a ring A with a partial order \leq such that, for every $a, b, c \in A$:

•
$$a + (b \lor c) = (a + b) \lor (a + c)$$
; and

•
$$ab \ge 0$$
 whenever $a \ge 0$ and $b \ge 0$.

An *l*-ring is called an *f*-ring if

•
$$a(b \lor c) = (ab) \lor (ac)$$
 whenever $a \ge 0$.

The absolute value of $a \in A$ is the element

$$|a| = a \vee (-a).$$

An ideal $I \subseteq A$ is called an ℓ -ideal if

$$|a| \leq |b|$$
 and $b \in I \implies a \in I$.

In the article

A characterization of f-rings in which the sum of semiprime *l*-ideals is semiprime and its consequences

Comm. Algebra 23 (1995), 5461-5481

Larson defines an *f*-ring to be quasi-normal if the sum of any two different minimal prime ℓ -ideals is either a maximal ℓ -ideal or the entire *f*-ring.

She then shows that, for Tychonoff space X, $C(\beta X)$ is quasi-normal if and only if C(X) is quasi-normal and O^p is a prime ideal whenever M^p is hyper-real.

In the article

A characterization of f-rings in which the sum of semiprime *l*-ideals is semiprime and its consequences

Comm. Algebra 23 (1995), 5461-5481

Larson defines an *f*-ring to be quasi-normal if the sum of any two different minimal prime ℓ -ideals is either a maximal ℓ -ideal or the entire *f*-ring.

She then shows that, for Tychonoff space X, $C(\beta X)$ is quasi-normal if and only if C(X) is quasi-normal and \mathbf{O}^{p} is a prime ideal whenever \mathbf{M}^{p} is hyper-real.

・ 同 ト ・ ヨ ト ・ ヨ ト

If A is an f-ring, the bounded part of A, denoted A*, is the subring

 $A^* = \{a \in A \mid |a| \le n.1 \text{ for some } n \in \mathbb{N}\}.$

If *P* is a prime ideal of *A*, the zero-component of *P*, denoted O_P , is the ideal

$$O_P = \{ a \in A \mid ab = 0 \text{ for some } b \in A \setminus P \}.$$

Denote by [a] the principal ℓ -ideal of an f-ring A generated by $a \in A$, and recall that, for any $x \in A$,

 $x \in [a] \quad \iff \quad |x| \leq r|a|$ for some $r \geq 0$.

If A is an f-ring, the bounded part of A, denoted A*, is the subring

$$A^* = \{ a \in A \mid |a| \le n.1 \text{ for some } n \in \mathbb{N} \}.$$

If *P* is a prime ideal of *A*, the zero-component of *P*, denoted O_P , is the ideal

$$O_P = \{a \in A \mid ab = 0 \text{ for some } b \in A \setminus P\}.$$

Denote by [a] the principal ℓ -ideal of an *f*-ring *A* generated by $a \in A$, and recall that, for any $x \in A$,

$$x \in [a] \quad \iff \quad |x| \leq r|a| \text{ for some } r \geq 0.$$

< 同 > < 回 > < 回 > -

In the paper

B. Banaschewski

Functorial maximal spectra

J. Pure Appl. Algebra 168 (2002), 327-346

Banaschewski proves the following result:

For any f-ring A, the identical embedding $A^* \to A$ induces a homeomorphism $Max(A^*) \to Max(A)$ taking P to $\{a \in A \mid [a] \cap A^* \subseteq P\}.$

Given a maximal ideal P of A*, let us put

 $\tilde{P} = \{ a \in A \mid [a] \cap A^* \subseteq P \}.$

So for every maximal ideal *M* of *A* there is a unique maximal ideal *M*^{*} of *A*^{*} such that $M = \widetilde{M^*}$.

< ロ > < 同 > < 回 > < 回 > .

In the paper

B. Banaschewski

Functorial maximal spectra

J. Pure Appl. Algebra 168 (2002), 327-346

Banaschewski proves the following result:

For any f-ring A, the identical embedding $A^* \to A$ induces a homeomorphism $Max(A^*) \to Max(A)$ taking P to $\{a \in A \mid [a] \cap A^* \subseteq P\}.$

Given a maximal ideal P of A^* , let us put

$$\tilde{P} = \{ a \in A \mid [a] \cap A^* \subseteq P \}.$$

So for every maximal ideal *M* of *A* there is a unique maximal ideal M^* of A^* such that $M = \widetilde{M^*}$.

An *f*-ring *A* has bounded inversion if any $a \in A$ with $a \ge 1$ is invertible. If *A* has bounded inversion, and

 $S = \{a \in A^* \mid a \text{ is invertible in } A\}$

then $A = A^*[S^{-1}]$.

Lemma

Let A be an f-ring with bounded inversion, M be a maximal ideal in A, and M^{*} be the unique maximal ideal in A^{*} such that $M = \widetilde{M}^*$.

(a) If M^* contains a unit of A, then $M^c \subset M^*$ (proper inclusion).

(b) If M^* contains no unit of A, then $M^c = M^*$.

・ロ・・(型・・目・・(目・)

An *f*-ring *A* has bounded inversion if any $a \in A$ with $a \ge 1$ is invertible. If *A* has bounded inversion, and

 $S = \{a \in A^* \mid a \text{ is invertible in } A\}$

then $A = A^*[S^{-1}]$.

Lemma

Let A be an f-ring with bounded inversion, M be a maximal ideal in A, and M^* be the unique maximal ideal in A^* such that $M = \widetilde{M^*}$.

(a) If M^* contains a unit of A, then $M^c \subset M^*$ (proper inclusion).

(b) If M^* contains no unit of A, then $M^c = M^*$.

(日)

Theorem

Let A be a reduced f-ring with bounded inversion. Suppose that the sum of two minimal prime ideals in A^* is a prime ideal if it is proper. Then A^* is quasi-normal if and only if A is quasi-normal and O_M is a prime ideal for every maximal ideal M of A for which M^* contains a unit of A.

Remark

The requirement that the sum of two minimal prime ideals in A* be prime if it is proper forces the same for A.

 If P and Q are minimal prime ideals in A with P + Q ≠ A, then P^c and Q^c are minimal prime ideals in A^{*} with P^c + Q^c ≠ A^{*}.

• So $(P + Q)^c$ is prime, and if $ab \in P + Q$ for $a, b \in A$, then $\frac{a}{1+|a|} \cdot \frac{b}{1+|b|} \in (P + Q)^c$, so that we may assume $\frac{a}{1+|a|} \in (P + Q)^c$, which implies $a \in P + Q$, showing that P + Q is prime.

Theorem

Let A be a reduced f-ring with bounded inversion. Suppose that the sum of two minimal prime ideals in A^* is a prime ideal if it is proper. Then A^* is quasi-normal if and only if A is quasi-normal and O_M is a prime ideal for every maximal ideal M of A for which M^* contains a unit of A.

Remark

The requirement that the sum of two minimal prime ideals in A^* be prime if it is proper forces the same for A.

- If P and Q are minimal prime ideals in A with P + Q ≠ A, then P^c and Q^c are minimal prime ideals in A* with P^c + Q^c ≠ A*.
- So $(P+Q)^c$ is prime, and if $ab \in P + Q$ for $a, b \in A$, then $\frac{a}{1+|a|} \cdot \frac{b}{1+|b|} \in (P+Q)^c$, so that we may assume $\frac{a}{1+|a|} \in (P+Q)^c$, which implies $a \in P + Q$, showing that P + Q is prime.

THANK YOU FOR YOUR ATTENTION

T. Dube (Unisa)

э.

< ロ > < 回 > < 回 > < 回 > < 回 > <