Mixed algebras and their logics

lvo Düntsch¹ Ewa Orłowska² Tinko Tinchev³

¹Brock University St. Catharines, Ontario, Canada, L2S 3A1 duentsch@brocku.ca

²National Institute of Telecommunications Szachowa 1, 04–894 Warsaw, Poland orlowska@itl.waw.pl

³Faculty of Mathematics and Computer Science Sofia University, Sofia, Bulgaria tinko@fmi.uni-sofia.bg

Mixed algebras

- A structure $\mathfrak{B} = \langle B, +, \cdot, -, 0, 1, f, g \rangle$ is called a PS-algebra if
 - ► *B* is a Boolean algebra.
 - f is a possibility operator on B, i.e. f(0) = 0 and f(a+b) = f(a) + f(b).
 - g is a sufficiency operator on B, i.e. g(0) = 1 and $g(a+b) = g(a) \cdot g(b)$. Define $h^*(a) \stackrel{\text{def}}{=} -h(a)$. Then,

f is a possibility operator if and only if f^* is a sufficiency operator.

• The canonical frame $Cf(\mathfrak{B})$ of \mathfrak{B} is the structure $\langle X, R_f, R_g \rangle$ where X = Ult(B) and

$$\langle F, G \rangle \in R_f \iff G \subseteq f^{-1}(F),$$

 $\langle F, G \rangle \in R_g \iff F \cap g[G] \neq \emptyset.$

- \mathfrak{B} is called a mixed algebra if $R_g = R_f$.
- The class **MIA** of mixed algebras is not first order axiomatizable.

Weak mixed algebras

- Generalize MIA to the class WMIA of PS algebras which satisfy R_g ⊆ R_f in the PS canonical frame (Ult(B), R_f, R_g) of 𝔅, i.e. R_f ∪ −R_g = Ult(B)².
- ▶ If $\mathfrak{B} = \langle B, f, g \rangle$ is a PS algebra then \mathfrak{B} is in WMIA if and only if

$$(\forall a)[a \neq 0 \Rightarrow g(a) \leq f(a)].$$
 (1)

Consider the mapping u: B → B defined by u(a) = f[∂](a) ⋅ g(-a). Then, 𝔅 is a weak MIA if and only if for all a ∈ B

$$u(a) = \begin{cases} 1, & \text{if } a = 1, \\ 0, & \text{otherwise.} \end{cases}$$

 Each element of WMIA is a discriminator algebra, hence, WMIA is not an equational class.

K~- algebras

- ▶ \mathfrak{B} is called a K~-algebra if and only if $R_f \cup -R_g$ is an equivalence relation.
- The class **KMIA** of K^{\sim} algebras is equational:

 $\mathfrak{B} \in \mathsf{KMIA}$ if and only if u is an S5 operator, i.e.

$$egin{aligned} u(a) &\leq a, \ u(a) &\leq u(u(a)), \ a &\leq u(u^\partial(a)). \end{aligned}$$

• Eq(WMIA) = KMIA.

Mixed frames

If X = ⟨X, R, S⟩ is a frame with two binary relations, its mixed complex algebra is the structure Cm(X) = ⟨2^X, ⟨R⟩, [[S]]⟩, where

$$\langle R \rangle (A) \stackrel{\text{def}}{=} \{ x : (\exists y) [xRy \text{ and } y \in A] \} = \{ x : R(x) \cap A \neq \emptyset \}$$
 "Possibility"
$$[S]](A) \stackrel{\text{def}}{=} \{ x : (\forall y) [y \in A \Rightarrow xSy] \} = \{ x : A \subseteq S(x) \}.$$
 "Sufficiency"

- \mathscr{X} is called a MIA frame if S = R.
- \mathscr{X} is called a weak MIA frame if $S \subseteq R$.
- ▶ \mathscr{X} is called a K^{\sim} frame if $R \cup -S$ is an equivalence relation.

Theorem 1.

- The canonical frame of a weak mixed algebra (K~- algebra) is a weak MIA frame (K~ frame).
- The complex algebra of a weak MIA frame (K~ frame) is in WMIA (KMIA).
- 3. Each weak MIA (KMIA) can be embedded into the complex algebra of its canonical frame.

The logics K and K^*

• The logic K is a Boolean logic with a modal operator \Box whose axioms are

$$\vdash \Box(\phi \to \psi) \to \Box \phi \to \Box \psi \tag{2}$$

If
$$\vdash \varphi$$
, then $\vdash \Box \varphi$. (3)

Frame models are relational structures (X, R, v) in such a way that for a valuation v : Fml^K → 2^X its action with respect to □ is given by

$$x \in v(\Box \varphi) \Longleftrightarrow R(x) \subseteq v(\varphi).$$

▶ The logic K^{\star} is a Boolean logic with a modal operator \square whose axioms are

$$\vdash \Box \neg (\varphi \to \psi) \to (\Box \neg \varphi \to \Box \neg \psi) \tag{4}$$

If
$$\vdash \varphi$$
, then $\vdash \Box \neg \varphi$. (5)

Frame models are relational structures (X, S, v) in such a way that for a valuation v : Fml^{*} → 2^X its action with respect to □ is given by

$$x \in v(\Box \varphi) \Longleftrightarrow v(\varphi) \subseteq S(x),$$

Correspondence:

$$\langle X, R, v \rangle, x \models \Box \varphi \iff \langle X, X^2 \setminus R, v \rangle, x \models \Box \neg \varphi.$$

The logic K^{\sim} (Gargov et al. [3])

- Modal operators: \Box (necessity) and \Box (sufficiency).
- ► In addition to axioms for \Box and \Box , the auxiliary operator $[U]\varphi \stackrel{\text{def}}{=} \Box \varphi \land \Box \neg \varphi$ is an S5 modality, i.e.

 $[U] \varphi o \varphi, \ [U] \varphi o [U] [U] \varphi, \ \varphi o [U] \langle U \rangle \varphi.$

Frame models have the form M = ⟨X, R, S, v⟩ where S ⊆ R. With respect to the modal operators, a valuation v acts as follows:

$$x \in v(\Box \varphi) \iff R(x) \subseteq v(\varphi),$$
 Necessity [R]
 $x \in v(\Box \varphi) \iff v(\varphi) \subseteq S(x).$ Sufficiency [[S]]

A model $\langle X, R, S, v \rangle$ of K^{\sim} is called special if R = S

Theorem 2. Gargov et al. [3]

- 1. K^{\sim} is sound and complete with respect to its class of frame models.
- 2. Each model of K^{\sim} is modally equivalent to a special model.

Theorem 3. For all $\varphi \in \operatorname{Fml}^{K^{\sim}}$, $K^{\sim} \models \varphi$ if and only if $\operatorname{KMIA} \models \varphi$. **Theorem 4.** If φ is a formula in K^{\sim} , then $K^{\sim} \vdash \varphi$ if and only if $\operatorname{KMIA} \models \varphi$. Putting together the completeness results and Theorem 2 we have **Theorem 5.**Let $\mathfrak{B} = \langle B, f, g \rangle \in \operatorname{KMIA}$. Then, there is some frame $\langle X, R \rangle$ such

Theorem 5. Let $\mathfrak{B} = \langle B, t, g \rangle \in \mathsf{KNIA}$. Then, there is some frame $\langle X, R \rangle$ such that $\langle B, f, g \rangle$ and a subalgebra of $\langle 2^X, \langle R \rangle, [[R]] \rangle$ satisfy the same equations.

References

- Düntsch, I. and Orłowska, E. (2000). Beyond modalities: Sufficiency and mixed algebras. In Orłowska, E. and Szałas, A., editors, *Relational Methods in Computer Science Applications*, pages 277–299, Heidelberg. Physica Verlag.
- [2] Düntsch, I. and Orłowska, E. (2004). Boolean algebras arising from information systems. *Annals of Pure and Applied Logic*, 127:77–98.
- [3] Gargov, G., Passy, S., and Tinchev, T. (1987). Modal Environment for Boolean Speculations. In Skordev, D., editor, *Mathematical Logic and Applications*, pages 253–263, New York. Plenum Press.
- [4] Goldblatt, R. (1974). Semantic analysis of orthologic. Journal of Philosophical Logic, 3:19–35.
- [5] Humberstone, I. L. (1983). Inaccessible worlds. Notre Dame Journal of Formal Logic, 24:346–352.
- [6] Jónsson, B. and Tarski, A. (1951). Boolean algebras with operators I. American Journal of Mathematics, 73:891–939.
- [7] van Benthem, J. (1979). Minimal deontic logics (Abstract). Bulletin of the Section of Logic, 8:36-42.

Köszönöm Mnogo blagodarya Děkuji Dziekuje Grazie Thank you Danke Merci