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Summary:
Adding compatible operations:
to Heyting algebras and to commutative residuated lattices, both
satisfying the Stone law ¬x ∨ ¬¬x = 1,

preserves filtering (or directed) unification, that is,
the property that for every two unifiers there is a unifier more
general then both of them.
In general new operations in algebras change the unification type.

To prove the results we apply the theorems of Dzik and Radeleczki
(2016) on direct products of l-algebras and filtering unification.

Examples of frontal Heyting algebras, in particular Heyting
algebras with the successor, γ and G operations as well as
expansions of some commutative integral residuated lattices with
some successors are considered.
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UNIFICATION of terms (polynomials) of an equational theory E .

Two terms t1(x1, . . . , xn), t2(x1, . . . , xn) in variables x1, . . . , xn = x .

T (x) - all terms in variables x1, . . . , xn,

A substitution σ : {x1, . . . , xn} → T (y) is an E− unifier for t1, t2 if

`E σt1 = σt2.

In this case t1, t2 - unifiable in E . Solving equations: t1 = t2 in E .

Given two E-unifiers σ, τ : x → T (y) for t1, t2,
σ is more general than τ , τ � σ,
if there is a substitution θ such that, for x ∈ x ,

`E θ(σ(x)) = τ(x).

� is a preorder (reflexive, transitive).

A mgu, most general unifier for t1, t2 in E is a E−unifier σ for
t1, t2 such that σ is more general then any E-unifier for t1, t2.
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Unification Types of equational theories (varieties):

Each equational theory (variety) may have one of the four types:

unitary (or 1), each unifiable t1, t2 has a mgu (best),
finitary (or ω), each unifiable t1, t2 - finitely m. max (w.r.t. �)
unifiers, and not unitary,
infinitary (or ∞), each unifiable t1, t2 - infin. m. max unifiers, and
neither unitary nor finitary (roughly),
nullary, (or 0), for some unifiable t1, t2 max unifiers do not exist
(worst)

If unification in E is unitary (or finitary) and decidable, then there
are applications of some deduction technique to Automated
Theorem Provers, industrial databases, Description Logic etc.
Not applicable if unification in E is infinitary or nullary.

Applications in logic: admissibility of inference rules.
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semigroups infinitary Plotkin 1972

commutat. semigroups finitary Livesey, Siekmann 1976

groups infinitary Lawrence 1989

Abelian groups finitary Lankford 1979

rings infinitary Lawrence 1987

commutat. rings nullary or infinitary Burris, Lawrence 1989

lattices (distr.latt.) nullary Willard 1991

semilattices finitary Livesey, Siekmann 1976

Boolean algebras unitary Biitner, Simonis 1987

discriminator algebras unitary Burris 1987

Heyting algebras finitary Ghilardi 1999

closure (interior) alg. finitary Ghilardi 2000

equivalential algebras unitary Wroński 2005

q-linear closure (int.) a. unitary Dzik, Wojtylak 2011

Fregean varieties unitary Slomczynska 2011

MV- algebras (  Lukas.) nullary Marra, Spada 2011

var. dis. pseudocpl. latt. nullary Cabrer 2013

See Stan Burris http://www.math.uwaterloo.ca/∼ snburris/



Algebraic approach by Ghilardi (1999)

An algebra B ∈ VE is finitely presented, if there is a finite set of
variables, x1, . . . , xk = x and a finite set S of equations of terms
with variables in x such that B is isomorphic to a quotient algebra
FE (x)/∼, where ∼ is a congruence defined as follows :
t1 ∼ t2 iff S `E t1 = t2

An algebra P in a variety V is projective in V if for every A, B of
V and homomorphisms f : P→ B, g : A→ B (where g is epi)
there is a h : P→ A such that the following diagram commutes

P

h
��

f

��
A g

// B



P is projective in V iff P is a retract of a free algebra in V, i.e.
there are q and m such that

P m
// FV (x) q

// P

Ghilardi: E -unification problem corresponds to a finitely presented
algebra A ∈ VE .
A unifier (a solution) for A is a pair given by: a projective algebra
P and a homomorphism u : A→ P.
A is unifiable if there is a unifier for it.
Given two unifiers u1 and u2 for A, u1 : A→ P1 is more general
then u2 : A→ P2, u2 � u1, if there is a homomorphism g such
that the following diagram commutes:

A

u1
��

u2

!!
P1 g

// P2

Unification types in symbolic and algebraic approach coincide.
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Striking lack of characterizations of unification types.

Unification in L is filtering if, for every two unifiers there exists a
unifier that is more general then both of them (then type 1 or 0).

Ghilardi (2003): If a modal logic L contains K4, then
unification in L is filtering ⇐⇒ ♦+�+x → �+♦+x ∈ L

WD(2006, SSAOS): If a logic L extends intuitionistic logic, then
unification in L is filtering ⇐⇒ ¬x ∨ ¬¬x ∈ L (via a splitting).

Theorem (Ghilardi 2003) Unification in L is filtering iff the
direct product of two finitely presented and projective algebras
from VL is finitely presented and projective.
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Algebraic preliminaries:

Let L be a bounded lattice with 0 and 1.
a ∈ L is called a central element of L if a is complemented and for
all x , y ∈ L the sublattice generated by {a, x , y} is distributive.

Cen(L) - all central elements, a Boolean sublattice of the lattice L,
c ∈ Cen(L) has a single complement c ∈ Cen(L);
the pair {c ,c} is called a central pair of L

c ∈ Cen(L), induces a congruence

θc = {(x , y) | x ∧ c = y ∧ c}.

for any c ∈ Cen(L), θc and θc form a factor congruence pair of L;
Conversely, if θ1 and θ2 are factor congruences of a bounded lattice
L: L ∼= L/θ1 × L/θ2, then there exists a c ∈ Cen(L) such that
θ1 = θc , θ2 = θc .
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An algebra A = (L,∧,∨, 0, 1,F ) is called an l-algebra if
(L,∧,∨, 0, 1) is a bounded lattice, and any n-ary term f : Ln → L
of it is centre-preserving, that is, for every c ∈ Cen(L),

(xi , yi ) ∈ θc , i = 1, ..., n implies (f (x1, ..., xn), f (y1, ..., yn)) ∈ θc .

Examples of l-algebras: bounded lattices, p-algebras, ortholattices,
Heyting algebras etc., also residuated lattices (we will show it)
- any l-algebra is congruence distributive,
- the factor congruences of an l-algebra and of its underlying
lattice L coincide.



Assume: V - a variety of (lattice based) l-algebras of the form
A = (L,∧,∨, 0, 1,F ) and the following conditions hold in V:

(A) (L,∧,∨, 0, 1) is a bounded lattice and any u, v ∈ L which are
complements of each other in L are central elements in L,

(B) Each algebra A ∈ V has a unary term g such that for v ∈ L,
v ∧ g(v) = 0 and g(0) = 1,

(C) Each algebra A = (L,∧,∨, 0, 1,F ) ∈ V has two unary terms h
and kh, such that for every v ∈ L,
h(v) ∧ kh(v) = 0, h(v) ∨ kh(v) = 1 and h(0) = kh(1) = 1.

Theorem Let V be a 1-regular variety of l-algebras satisfying the
conditions (A), (B) and (C). If A,B ∈ V are finitely presented
projective algebras, then A×B is a fin. presen. proj. algebra of V.

Corollary: (A), (B), (C) ⇒ unification in V is either unitary or null
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Application: filtering unification in varieties of residuated lattices.

An algebra L = (L,∧,∨,�,→, 0, 1) is an integral bounded
commutative residuated lattice, or bounded residuated lattice, if
(1) (L,∧,∨, 0, 1) is a bounded lattice;
(2) (L,�) is a commutative monoid with unit element 1;
(3) x � y ≤ z ⇔ x ≤ y → z , for all x , y , z ∈ L.

Theorem Any bounded residuated lattice is an l-algebra
satisfying condition (A).
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Theorem Let V be a variety of integral commutative residuated
lattices and assume that the Stone identity ¬x ∨ ¬¬x = 1 holds in
V. Then unification in V is filtering.

Corollary: If ¬x ∨ ¬¬x = 1 holds in V then unification in V is
either unitary or nullary.
Theorem. Let V be a variety of (commutative integral bounded)
residuated lattices. Then the following are equivalent:
(i) unification in V is filtering and the identity ¬x � ¬x = ¬x
holds in the variety V,
(ii) V is Stonean.
(iii) the subdirectly irreducible members of V have no zero divisors.
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Unification may change with language expansions.

• Example: Boolean algebras - unification is unitary (i.e. filtering),
after adding a modal connective of necessity (corresponding to K)
we get modal algebras for K -unification zero.
Adding a topological interior operation (corresponding to S4-modal
necessity) results in interior algebras - finitary unification (not
filtering), see Ghilardi 2000. Take �x ∨�¬x , τ0x = 0, τ1x = 1.

• Example in LOGIC: reducts (fragments) of intuitionistic logic, or
Heyting algebras, Consider the fragments of intuitionistric logic:
→-fragment, →,∧-fragment, →,∧,¬-fragment then unification is
unitary, but in →,¬-fragment it is not unitary, see Wronski, but
finitary, In full language →,∧,∨,¬ unification is not unitary but
finitary, see Ghilardi 99.

adding (removing) connectives can change unification type
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Heyting algebras with compatible operations.

Adding new connectives to (intuitionistic) logic, in a natural way,
has been studied by several authors, e.g. Esakia, Gabbay, Caicedo,

Expansion of Heyting algebras (equivalently expansion of INT) is
natural, if operations (or connectives) are compatible .

An algebra H, a function (operation) f : Hn → H is compatible
with H if it is compatible with every congruence θ of H, that is:
xiθyi , i ≤ n ⇒ f (x1, . . . , xn) θ f (y1, . . . , yn), for every θ.

In a Heyting algebra H, an unary f is compatible with H iff
f (x) ∧ a = f (x ∧ a) ∧ a

A compatible operation is new if it can not be defined by the basic
operations.
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Main Examples of new compatible operations:

frontal Heyting algebras, algebras with the sucessor, γ and G .

Frontal Heyting algebras correspond to the modal Heyting
calculus mHC introduced by L. Esakia. Frontal Heyting algebras
are algebras of the form (H,∧,∨,→, τ, 0, 1), where
(H,∧,∨,→, 0, 1) is a Heyting algebra and τ is a unary operation,
called frontal, which satisfies the following equations:

(f1) τ(x ∧ y) = τ(x) ∧ τ(y),

(f2) x ≤ τ(x),

(f3) τ(x) ≤ y ∨ (y → x).

Any frontal operation τ is a compatible operation, by (f1) and (f2)
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The Successor operation S .

Let H be a Heyting algebra and assume that an operation S
satisfies the following equations:

(S1) x ≤ S(x),

(S2) S(x) ≤ y ∨ (y → x),

(S3) S(x)→ x = x .

S is called then the successor of x in H. Since (S1) and (S3) are
equivalent to (S4): S(x)→ x ≤ x ,
the successor S is a frontal operation satisfying (S4). S can be
also given by the following definition: S(x) = min{y : y → x ≤ x}.

For a finite chain Hn = {0, 1, . . . , n} of (n + 1) elements treated as
a Heyting algebra with the natural order, i.e. ⊥ = 0,> = n,
∧ = min, ∨ = max , a→ b = b if a > b, or := 1 otherwise, we
have:S(k) = k + 1, for k 6= n and S(>) = S(n + 1) = n + 1 = >.

S is defined on any Heyting algebra without inf. descending chains.
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The operations γ and G.

The operation γ is a compatible operation in Heyting algebras,
satisfying

(C1) ¬γ(0) = 0,

(C2) γ(0) ≤ x ∨ ¬x ,

(C3) γ(x) = x ∨ γ(0).

γ(x) is the smallest dense element above an element x in H.
γ(x) = min{y : ¬y ∨ x ≤ y}.

The operation G . The operation G introduced by D. Gabbay as a
new connective is characterized by the following equations

(G1) (G (x)→ x) ∨ ¬¬x ≤ G (x),

(G2) G (x) ≤ y ∨ ((y → x) ∧ ¬¬x),

G (x) = min{y : (y → x) ∧ ¬¬x ≤ y}.
γ and G are definable in terms of S , but S is not
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but it is not known what is the unification type in each case.
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Commutatie Residuated lattices with compatible
operations.

Corollary

Unification in commutative integral residuated lattices satisfying
the Stone identity ¬¬x ∨ ¬x = 1 with additional compatible
operations is filtering, that is, unitary or nullary.

In commutative residuated lattices: successors Sn, n ≥ 1, are
considered. If some conditions hold in a residuated lattice, then Sn,

Sn(x) =def min{y : yn → x ≤ y} is compatible.

Unification types in commutative residuated lattices with
compatible operations, (e.g. with Sn) are not known.
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Unification in commutative integral residuated lattices satisfying
the Stone identity ¬¬x ∨ ¬x = 1 with additional compatible
operations Sn, if defined, is filtering, that is, unitary or nullary.
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