On large rigid sets of monounary algebras

D. Jakubíková-Studenovská

P. J. Šafárik University, Košice, Slovakia

coauthor G. Czédli, University of Szeged, Hungary

The 54st Summer School on General Algebra and Ordered Sets Trojanovice, Czech Republic September 3-9, 2016

Motivation

Motivation

• Category \mathfrak{C} with the class C of objects (algebraic structures) and with the class H of morphisms.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Motivation

- Category \mathfrak{C} with the class C of objects (algebraic structures) and with the class H of morphisms.
- For $A, B \in C$ put

$A \succeq_{\mathfrak{C}} B$

if there exists $h \in H$ such that h is a morphism of A into B.

• $\succeq_{\mathfrak{C}}$ is a quasiorder on *C*.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ● ● ●

- A, B ∈ C are said to be *incomparable*, if neither A ≽_€ B nor B ≽_€ A.
- *M* ⊆ *C* is an *antichain* if all its members are pairwise incomparable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- A, B ∈ C are said to be *incomparable*, if neither A ≽_€ B nor B ≽_€ A.
- *M* ⊆ *C* is an *antichain* if all its members are pairwise incomparable.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• How large antichains?

Isomorphisms, epimorphisms

Isomorphisms, epimorphisms

- $\mathfrak{C}=(C,H)$
 - C= class of all algebraic structures of given type,
 H= all isomorphisms (epimorphisms, respectively) of A onto
 B, for A, B ∈ C.

Clearly, ARBITRARILY large antichains.

Isomorphisms, given cardinality

• C = class of all algebraic structures of given type τ and given infinite cardinality \mathfrak{m}

Assume that k_i , $i \in \mathbb{N}_0$ is the number of all operation symbols of arity *i*, n_i , $i \in \mathbb{N}$ the number of all relation symbols of arity *i* (in τ).

Theorem (Comer, LeTourneau)

There exist

$$2^{\sum_{i\in\mathbb{N}}(k_i+n_i)\mathfrak{m}^i}\cdot\mathfrak{m}^{k_0}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

non-isomorphic \mathfrak{m} -element algebras of type τ . Specially, there exist $2^{\mathfrak{m}}$ non-isomorphic and rigid \mathfrak{m} -element monounary algebras.

Isomorphisms, given cardinality

• C = class of all algebraic structures of given type τ and given infinite cardinality \mathfrak{m}

Assume that k_i , $i \in \mathbb{N}_0$ is the number of all operation symbols of arity *i*, n_i , $i \in \mathbb{N}$ the number of all relation symbols of arity *i* (in τ).

Theorem (Comer, LeTourneau)

There exist

$$2^{\sum_{i\in\mathbb{N}}(k_i+n_i)\mathfrak{m}^i}\cdot\mathfrak{m}^{k_0}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

non-isomorphic \mathfrak{m} -element algebras of type τ . Specially, there exist $2^{\mathfrak{m}}$ non-isomorphic and rigid \mathfrak{m} -element monounary algebras.

• rigid algebra: no automorphisms except identity

monounary algebra $\mathcal{A} = (A, f)$

• corresponding graph (A, E) with

 $(x,y) \in E \Leftrightarrow f(x) = y$

monounary algebra $\mathcal{A} = (\mathcal{A}, f)$

• corresponding graph (A, E) with

$$(x,y)\in E\Leftrightarrow f(x)=y$$

• connected: $\forall x, y \in A \exists n, m \in \mathbb{N}_0$ such that

$$f^n(x) = f^m(y)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

monounary algebra $\mathcal{A} = (\mathcal{A}, f)$

• corresponding graph (A, E) with

$$(x,y)\in E\Leftrightarrow f(x)=y$$

• connected: $\forall x, y \in A \exists n, m \in \mathbb{N}_0$ such that

$$f^n(x) = f^m(y)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• *connected component* of (*A*, *f*): maximal connected subalgebra

monounary algebra $\mathcal{A} = (\mathcal{A}, f)$

• corresponding graph (A, E) with

$$(x,y)\in E\Leftrightarrow f(x)=y$$

• connected: $\forall x, y \in A \exists n, m \in \mathbb{N}_0$ such that

$$f^n(x) = f^m(y)$$

- *connected component* of (*A*, *f*): maximal connected subalgebra
- $c \in A$ is a *cyclic* element of (A, f) if $f^k(c) = c$ for some $k \in \mathbb{N}$

monounary algebra $\mathcal{A} = (A, f)$

• corresponding graph (A, E) with

$$(x,y)\in E\Leftrightarrow f(x)=y$$

• connected: $\forall x, y \in A \exists n, m \in \mathbb{N}_0$ such that

$$f^n(x) = f^m(y)$$

- *connected component* of (*A*, *f*): maximal connected subalgebra
- $c \in A$ is a *cyclic* element of (A, f) if $f^k(c) = c$ for some $k \in \mathbb{N}$
- the set of all cyclic elements of some connected component of (*A*, *f*) is a *cycle* of (*A*, *f*)

- ▲ロト ▲園 ト ▲目 ト ▲目 - シタの

Homomorphisms

Homomorphisms

Theorem (DJS)

Let M be an antichain in the system of all connected monounary algebras. Then card $M \leq c$, i.e., the antichain M contains at most continuum members.

Homomorphisms

Theorem (DJS)

Let M be an antichain in the system of all connected monounary algebras. Then card $M \leq c$, i.e., the antichain M contains at most continuum members.

Theorem (DJS)

There exists an antichain M in the system of all connected monounary algebras such that card $M = \mathfrak{c}$. (Moreover, each algebra of M is countable.)

Hence, c is the best possible upper bound for the number of pairwise incomporable connected monounary algebras.

Embeddings

C = class of all algebraic structures of given type τ $M \subseteq C$ is said to be *rigid with respect to embeddability* (*e-rigid*, for short), if whenever $A, B \in M, \varphi : A \to B$ is an embedding (that is, injective homomorphism), then

- A = B and
- φ is the identity map id_A.

Note: A is an *e-rigid algebra* if it is an algebra and $\{A\}$ is an *e-rigid* set.

Auxiliaries

An infinite cardinal \mathfrak{m} is called *inaccessible* if the following three conditions hold:

- $\aleph_0 < \mathfrak{m};$
- for all cardinals n, if n < m, then $2^n < m$;
- m is a regular cardinal, that is, for every set I of cardinals, if |I| < m and all members of I are smaller than m, then ∑_{n∈I} n < m.

Large rigid sets of monounary algebras

Note: there exists a model of set theory in which there exists no inaccessible cardinal. In this model, our theorems hold for all cardinals \mathfrak{m} .

Theorem

Let \mathfrak{m} be a cardinal such that there is no inaccessible cardinal \mathfrak{k} with $\mathfrak{k} \leq \mathfrak{m}$. Then there exists an e-rigid set M of monounary algebras such that $|M| = \mathfrak{m}$.

General case

Theorem

Let τ be a similarity type of algebras containing an at least unary operation, and let \mathfrak{m} be a cardinal number. If there is no inaccessible cardinal \mathfrak{k} such that $\mathfrak{k} \leq \mathfrak{m}$, then there exists an e-rigid set M of τ -algebras such that $|M| = \mathfrak{m}$.

Thank you for your attention!

・ロト ・四ト ・ヨト ・ヨト 三日

Thank you for your attention!

https://en.wikipedia.org/wiki/Consolida regalis (Forking Larkspur)