
Monads and algebras

Gejza Jen£a

September 9, 2016

The Plan

I Example: the free monoid monad.

I Algebras are algebras.

I Algebras in graphs.

I Algebras in maps.

I Comonads and coalgebras.

The Plan

I Example: the free monoid monad.

I Algebras are algebras.

I Algebras in graphs.

I Algebras in maps.

I Comonads and coalgebras.

The Plan

I Example: the free monoid monad.

I Algebras are algebras.

I Algebras in graphs.

I Algebras in maps.

I Comonads and coalgebras.

The Plan

I Example: the free monoid monad.

I Algebras are algebras.

I Algebras in graphs.

I Algebras in maps.

I Comonads and coalgebras.

The Plan

I Example: the free monoid monad.

I Algebras are algebras.

I Algebras in graphs.

I Algebras in maps.

I Comonads and coalgebras.

Disclaimers

I I will try not to tell you anything about

I adjunctions,
I Lawvere theories.

I The theory of monads was created in the 1960's by Mac Lane,
Eilenberg, Moore, Beck, Freyd, Barr and others.

I It can be considered as an attempt to reformulate universal
algebra in categorical terms.

I Almost everything I will tell you is folklore (in some circles);
sometimes the circles are very disjoint.

I Except for the part about graphs; that one appears to be new.

Disclaimers

I I will try not to tell you anything about
I adjunctions,

I Lawvere theories.

I The theory of monads was created in the 1960's by Mac Lane,
Eilenberg, Moore, Beck, Freyd, Barr and others.

I It can be considered as an attempt to reformulate universal
algebra in categorical terms.

I Almost everything I will tell you is folklore (in some circles);
sometimes the circles are very disjoint.

I Except for the part about graphs; that one appears to be new.

Disclaimers

I I will try not to tell you anything about
I adjunctions,
I Lawvere theories.

I The theory of monads was created in the 1960's by Mac Lane,
Eilenberg, Moore, Beck, Freyd, Barr and others.

I It can be considered as an attempt to reformulate universal
algebra in categorical terms.

I Almost everything I will tell you is folklore (in some circles);
sometimes the circles are very disjoint.

I Except for the part about graphs; that one appears to be new.

Disclaimers

I I will try not to tell you anything about
I adjunctions,
I Lawvere theories.

I The theory of monads was created in the 1960's by Mac Lane,
Eilenberg, Moore, Beck, Freyd, Barr and others.

I It can be considered as an attempt to reformulate universal
algebra in categorical terms.

I Almost everything I will tell you is folklore (in some circles);
sometimes the circles are very disjoint.

I Except for the part about graphs; that one appears to be new.

Disclaimers

I I will try not to tell you anything about
I adjunctions,
I Lawvere theories.

I The theory of monads was created in the 1960's by Mac Lane,
Eilenberg, Moore, Beck, Freyd, Barr and others.

I It can be considered as an attempt to reformulate universal
algebra in categorical terms.

I Almost everything I will tell you is folklore (in some circles);
sometimes the circles are very disjoint.

I Except for the part about graphs; that one appears to be new.

Disclaimers

I I will try not to tell you anything about
I adjunctions,
I Lawvere theories.

I The theory of monads was created in the 1960's by Mac Lane,
Eilenberg, Moore, Beck, Freyd, Barr and others.

I It can be considered as an attempt to reformulate universal
algebra in categorical terms.

I Almost everything I will tell you is folklore

(in some circles);
sometimes the circles are very disjoint.

I Except for the part about graphs; that one appears to be new.

Disclaimers

I I will try not to tell you anything about
I adjunctions,
I Lawvere theories.

I The theory of monads was created in the 1960's by Mac Lane,
Eilenberg, Moore, Beck, Freyd, Barr and others.

I It can be considered as an attempt to reformulate universal
algebra in categorical terms.

I Almost everything I will tell you is folklore (in some circles);

sometimes the circles are very disjoint.

I Except for the part about graphs; that one appears to be new.

Disclaimers

I I will try not to tell you anything about
I adjunctions,
I Lawvere theories.

I The theory of monads was created in the 1960's by Mac Lane,
Eilenberg, Moore, Beck, Freyd, Barr and others.

I It can be considered as an attempt to reformulate universal
algebra in categorical terms.

I Almost everything I will tell you is folklore (in some circles);
sometimes the circles are very disjoint.

I Except for the part about graphs; that one appears to be new.

Disclaimers

I I will try not to tell you anything about
I adjunctions,
I Lawvere theories.

I The theory of monads was created in the 1960's by Mac Lane,
Eilenberg, Moore, Beck, Freyd, Barr and others.

I It can be considered as an attempt to reformulate universal
algebra in categorical terms.

I Almost everything I will tell you is folklore (in some circles);
sometimes the circles are very disjoint.

I Except for the part about graphs; that one appears to be new.

What is a monad?

I A monad is a quadruple of things consisting of

I a category,
I an endofunctor,
I a unit,
I a multiplication.

What is a monad?

I A monad is a quadruple of things consisting of
I a category,

I an endofunctor,
I a unit,
I a multiplication.

What is a monad?

I A monad is a quadruple of things consisting of
I a category,
I an endofunctor,

I a unit,
I a multiplication.

What is a monad?

I A monad is a quadruple of things consisting of
I a category,
I an endofunctor,
I a unit,

I a multiplication.

What is a monad?

I A monad is a quadruple of things consisting of
I a category,
I an endofunctor,
I a unit,
I a multiplication.

The category

Set

The category

Set

The endofunctor

I Let X be a set.

I Let X � be the set of all words over X � (the underlying set of)
the free monoid over X .

I Note that the rule X 7! X � gives us a functor Set! Set that
acts on mappings as follows:

I for f : X ! Y , the mapping f � : X � ! Y � is given by the rule

f �([a1a2 : : : an]) = [f (a1) : : : f (an)]

The endofunctor

I Let X be a set.

I Let X � be the set of all words over X � (the underlying set of)
the free monoid over X .

I Note that the rule X 7! X � gives us a functor Set! Set that
acts on mappings as follows:

I for f : X ! Y , the mapping f � : X � ! Y � is given by the rule

f �([a1a2 : : : an]) = [f (a1) : : : f (an)]

The endofunctor

I Let X be a set.

I Let X � be the set of all words over X � (the underlying set of)
the free monoid over X .

I Note that the rule X 7! X � gives us a functor Set! Set that
acts on mappings as follows:

I for f : X ! Y , the mapping f � : X � ! Y � is given by the rule

f �([a1a2 : : : an]) = [f (a1) : : : f (an)]

The endofunctor

I Let X be a set.

I Let X � be the set of all words over X � (the underlying set of)
the free monoid over X .

I Note that the rule X 7! X � gives us a functor Set! Set that
acts on mappings as follows:

I for f : X ! Y , the mapping f � : X � ! Y � is given by the rule

f �([a1a2 : : : an]) = [f (a1) : : : f (an)]

The unit

I What is a natural map �X : X ! X �?

I Take a 2 X and map it to the one-letter word [a]:

�X (a) = [a]

I We claim that, for every mapping f : X ! Y of sets, the
square

X
�X //

f
��

X �

f �

��

Y
�Y
// Y �

commutes.

The unit

I What is a natural map �X : X ! X �?

I Take a 2 X and map it to the one-letter word [a]:

�X (a) = [a]

I We claim that, for every mapping f : X ! Y of sets, the
square

X
�X //

f
��

X �

f �

��

Y
�Y
// Y �

commutes.

The unit

I What is a natural map �X : X ! X �?

I Take a 2 X and map it to the one-letter word [a]:

�X (a) = [a]

I We claim that, for every mapping f : X ! Y of sets, the
square

X
�X //

f
��

X �

f �

��

Y
�Y
// Y �

commutes.

The unit

I Why?

X
�X //

f
��

X �

f �

��

Y
�Y
// Y �

a � �X //
_

f
��

[a]
_

f �

��

f (a) �
�Y
// [f (a)]

I So � is a natural transformation idSet ! ()�.

The unit

I Why?

X
�X //

f
��

X �

f �

��

Y
�Y
// Y �

a � �X //
_

f
��

[a]
_

f �

��

f (a) �
�Y
// [f (a)]

I So � is a natural transformation idSet ! ()�.

The multiplication

I What is a natural map �X : (X �)� ! X �?

I The elements of (X �)� are �words of words�.

I So it has elements like

�
[aba][cabcc][bbc]

�

I We can just concatenate the inner words:

�X (
�
[aba][cabcc][bbc]

�
) = [abacabccbbc]

I Note that �X behaves like a ��attening�.

The multiplication

I What is a natural map �X : (X �)� ! X �?

I The elements of (X �)� are �words of words�.

I So it has elements like

�
[aba][cabcc][bbc]

�

I We can just concatenate the inner words:

�X (
�
[aba][cabcc][bbc]

�
) = [abacabccbbc]

I Note that �X behaves like a ��attening�.

The multiplication

I What is a natural map �X : (X �)� ! X �?

I The elements of (X �)� are �words of words�.

I So it has elements like

�
[aba][cabcc][bbc]

�

I We can just concatenate the inner words:

�X (
�
[aba][cabcc][bbc]

�
) = [abacabccbbc]

I Note that �X behaves like a ��attening�.

The multiplication

I What is a natural map �X : (X �)� ! X �?

I The elements of (X �)� are �words of words�.

I So it has elements like

�
[aba][cabcc][bbc]

�

I We can just concatenate the inner words:

�X (
�
[aba][cabcc][bbc]

�
) = [abacabccbbc]

I Note that �X behaves like a ��attening�.

The multiplication

I Is � natural?

I Yes:

(X �)�
�X //

(f �)�

��

X �

f �

��

(Y �)�
�Y

// Y �

I For example,

�
[ab][ac]

� � //

_

��

[abac]
_

���
[f (a)f (b)][f (a)f (c)]

� � // [f (a)f (b)f (a)f (c)]

The multiplication

I Is � natural?

I Yes:

(X �)�
�X //

(f �)�

��

X �

f �

��

(Y �)�
�Y

// Y �

I For example,

�
[ab][ac]

� � //

_

��

[abac]
_

���
[f (a)f (b)][f (a)f (c)]

� � // [f (a)f (b)f (a)f (c)]

(C; �; �)

. So we have data of the following type:

I a category C,

I a functor T : C ! C,

I a natural transformation � : idC ! T ,

I a natural transformation � : T 2 ! T .

(C; �; �)

. So we have data of the following type:

I a category C,

I a functor T : C ! C,

I a natural transformation � : idC ! T ,

I a natural transformation � : T 2 ! T .

(C; �; �)

. So we have data of the following type:

I a category C,

I a functor T : C ! C,

I a natural transformation � : idC ! T ,

I a natural transformation � : T 2 ! T .

(C; �; �)

. So we have data of the following type:

I a category C,

I a functor T : C ! C,

I a natural transformation � : idC ! T ,

I a natural transformation � : T 2 ! T .

(C; �; �)

. So we have data of the following type:

I a category C,

I a functor T : C ! C,

I a natural transformation � : idC ! T ,

I a natural transformation � : T 2 ! T .

Axioms of a monad
Right unit axiom

T (X)
T (�X)

//

idT (X) $$

T 2(X)

�X

��

T (X)

[abac] � //

&&

[[a][b][a][c]]
_

��

[abac]

Axioms of a monad
Right unit axiom

T (X)
T (�X)

//

idT (X) $$

T 2(X)

�X

��

T (X)

[abac] � //

&&

[[a][b][a][c]]
_

��

[abac]

Axioms
Left unit axiom

T 2(X)

�X

��

T (X)
�T (X)
oo

idT (X)zz

T (X)

[[abac]]
_

��

[abac]�oo
4

zz

[abac]

Axioms
Left unit axiom

T 2(X)

�X

��

T (X)
�T (X)
oo

idT (X)zz

T (X)

[[abac]]
_

��

[abac]�oo
4

zz

[abac]

Axioms of a monad
Associativity axiom

T 3(X)
T (�X)

//

�T (X)

��

T 2(X)

�X

��

T 2(X)
�X // T (X)

��
[ab][bc]

��
[ca]

�� � //

_

��

�
[abbc][ca]

�
_

���
[ab][bc][ca]

� � // [abbcca]

Axioms of a monad
Associativity axiom

T 3(X)
T (�X)

//

�T (X)

��

T 2(X)

�X

��

T 2(X)
�X // T (X)

��
[ab][bc]

��
[ca]

�� � //

_

��

�
[abbc][ca]

�
_

���
[ab][bc][ca]

� � // [abbcca]

Usual de�nition

De�nition
Let C be a category. A monad over C is a triple (T ; �; �) such that

I T : C ! C,

I � : idC ! T ,

I � : T 2 ! T

I such that the unit and associativity axioms hold.

Slick de�nition

De�nition
A monad is a monoid in the monoidal category of endofunctors of a
category.

The free monoid example works in a much more general setting:

I Take a variety V.

I Write FV for the endofunctor of Set that takes a set X to the
(underlying set of) V-free algebra over X .

I Write � for the obvious natural transformation that �embeds
variables�.

I Write � for the obvious natural transformation that ��attens
terms over terms�.

Then (FV ; �; �) is a monad over Set.

The free monoid example works in a much more general setting:

I Take a variety V.

I Write FV for the endofunctor of Set that takes a set X to the
(underlying set of) V-free algebra over X .

I Write � for the obvious natural transformation that �embeds
variables�.

I Write � for the obvious natural transformation that ��attens
terms over terms�.

Then (FV ; �; �) is a monad over Set.

The free monoid example works in a much more general setting:

I Take a variety V.

I Write FV for the endofunctor of Set that takes a set X to the
(underlying set of) V-free algebra over X .

I Write � for the obvious natural transformation that �embeds
variables�.

I Write � for the obvious natural transformation that ��attens
terms over terms�.

Then (FV ; �; �) is a monad over Set.

The free monoid example works in a much more general setting:

I Take a variety V.

I Write FV for the endofunctor of Set that takes a set X to the
(underlying set of) V-free algebra over X .

I Write � for the obvious natural transformation that �embeds
variables�.

I Write � for the obvious natural transformation that ��attens
terms over terms�.

Then (FV ; �; �) is a monad over Set.

The free monoid example works in a much more general setting:

I Take a variety V.

I Write FV for the endofunctor of Set that takes a set X to the
(underlying set of) V-free algebra over X .

I Write � for the obvious natural transformation that �embeds
variables�.

I Write � for the obvious natural transformation that ��attens
terms over terms�.

Then (FV ; �; �) is a monad over Set.

Algebras for a monad

De�nition
Let (T ; �; �) be a monad over C. Then an algebra for T is a pair
(X ; �), where

I X is an object of C and

I � : T (X) ! X

I such that the following diagrams commute

X
�X //

idX
""

T (X)

�

��

X

T 2(X)
�X //

T (�)

��

T (X)

�

��

T (X)
�

// X

Algebras for a monad

De�nition
Let (T ; �; �) be a monad over C. Then an algebra for T is a pair
(X ; �), where

I X is an object of C and

I � : T (X) ! X

I such that the following diagrams commute

X
�X //

idX
""

T (X)

�

��

X

T 2(X)
�X //

T (�)

��

T (X)

�

��

T (X)
�

// X

Algebras for a monad

De�nition
Let (T ; �; �) be a monad over C. Then an algebra for T is a pair
(X ; �), where

I X is an object of C and

I � : T (X) ! X

I such that the following diagrams commute

X
�X //

idX
""

T (X)

�

��

X

T 2(X)
�X //

T (�)

��

T (X)

�

��

T (X)
�

// X

What are algebras for the free monoid monad?

I An algebra over a set X equips X a mapping � : X � ! X .

I The commutative triangle

X
�X //

idX
""

T (X)

�

��

X

just says that
�([a]) = a

What are algebras for the free monoid monad?

I An algebra over a set X equips X a mapping � : X � ! X .

I The commutative triangle

X
�X //

idX
""

T (X)

�

��

X

just says that
�([a]) = a

What does the square

T 2(X)
�X //

T (�)

��

T (X)

�

��

T (X)
�

// X

tell us about �?
The square is a machine for proving equalities!

Let us de�ne a binary operation � : X � X ! X by the rule
p � q := �([pq]).

We claim that � is associative.

Proof.
Let us plug the term [[ab][c]] to the top-left corner of the square.

[[ab][c]] � �X //
_

T (�)
��

[abc]
_

�

��

[�([ab])�([c])] = [(a � b) c] �
�

// (a � b)� c = �([abc])

This proves the equality in the bottom-right corner of the
diagram.

Let us de�ne a binary operation � : X � X ! X by the rule
p � q := �([pq]).
We claim that � is associative.

Proof.
Let us plug the term [[ab][c]] to the top-left corner of the square.

[[ab][c]] � �X //
_

T (�)
��

[abc]
_

�

��

[�([ab])�([c])] = [(a � b) c] �
�

// (a � b)� c = �([abc])

This proves the equality in the bottom-right corner of the
diagram.

Let us de�ne a binary operation � : X � X ! X by the rule
p � q := �([pq]).
We claim that � is associative.

Proof.
Let us plug the term [[ab][c]] to the top-left corner of the square.

[[ab][c]] � �X //
_

T (�)
��

[abc]
_

�

��

[�([ab])�([c])] = [(a � b) c] �
�

// (a � b)� c = �([abc])

This proves the equality in the bottom-right corner of the
diagram.

Let us de�ne a binary operation � : X � X ! X by the rule
p � q := �([pq]).
We claim that � is associative.

Proof.
Let us plug the term [[ab][c]] to the top-left corner of the square.

[[ab][c]] � �X //
_

T (�)
��

[abc]
_

�

��

[�([ab])�([c])] = [(a � b) c] �
�

// (a � b)� c = �([abc])

This proves the equality in the bottom-right corner of the
diagram.

Analogously, we may plug [[a][bc]] to the top left corner of the
diagram to prove that a � (b � c) = �([abc]), so the associativity
axiom holds.

Let us put e := �([]).
Chasing [[a][]] around the square

[[a][]] � //
_

��

[a]
_

��

[�([a])�([])] = [a; e] � // �([a; e]) = �([a])

gives us the equality a � e = a. Similarly, we get e � a = a.

Algebras are algebras

I Thus, every algebra (X ; �) for the free monoid monad gives
rise to a monoid (X ;�; e).

I On the other hand, if we start with a monoid (X ;�; e) and
de�ne � : X � ! X by the rules �([]) = e and

�([a1 : : : an]) = a1 � � � � � an

then (X ; �) is an algebra for the free monoid monad.

Algebras are algebras

I Thus, every algebra (X ; �) for the free monoid monad gives
rise to a monoid (X ;�; e).

I On the other hand, if we start with a monoid (X ;�; e) and
de�ne � : X � ! X by the rules �([]) = e and

�([a1 : : : an]) = a1 � � � � � an

then (X ; �) is an algebra for the free monoid monad.

So, we may identify algebras for the free monoid monad with
monoids.
Again, this works for every variety of algebras.

Morphisms of algebras

De�nition
If (A; �), (B; �) are algebras for a monad T , then a morphism of
algebras f : (A; �) ! (B; �) is a morphism f : A! B in the
underlying category such that the square

T (A)
T (f)

//

�

��

T (B)

�

��

A
f

// B

commutes.

This de�nition works as intended; we obtain exactly the usual
notion of morphism of algebras.

Morphisms of algebras

De�nition
If (A; �), (B; �) are algebras for a monad T , then a morphism of
algebras f : (A; �) ! (B; �) is a morphism f : A! B in the
underlying category such that the square

T (A)
T (f)

//

�

��

T (B)

�

��

A
f

// B

commutes.

This de�nition works as intended; we obtain exactly the usual
notion of morphism of algebras.

What is it good for?

I The de�nitions of monads and their algebras are given entirely
in categorical terms.

I So, we have generalized the notion of an algebra in a
(particular) variety from �a set such that ...�to �an object in a
category such that ...�.

I This gives us a proper framework to speak about things like
�topological/partially ordered/whatever
monoids/groups/whatever�.

I But sometimes, the algebras for a monad do not look like
algebras, at all.

What is it good for?

I The de�nitions of monads and their algebras are given entirely
in categorical terms.

I So, we have generalized the notion of an algebra in a
(particular) variety from �a set such that ...�

to �an object in a
category such that ...�.

I This gives us a proper framework to speak about things like
�topological/partially ordered/whatever
monoids/groups/whatever�.

I But sometimes, the algebras for a monad do not look like
algebras, at all.

What is it good for?

I The de�nitions of monads and their algebras are given entirely
in categorical terms.

I So, we have generalized the notion of an algebra in a
(particular) variety from �a set such that ...�to �an object in a
category such that ...�.

I This gives us a proper framework to speak about things like
�topological/partially ordered/whatever
monoids/groups/whatever�.

I But sometimes, the algebras for a monad do not look like
algebras, at all.

What is it good for?

I The de�nitions of monads and their algebras are given entirely
in categorical terms.

I So, we have generalized the notion of an algebra in a
(particular) variety from �a set such that ...�to �an object in a
category such that ...�.

I This gives us a proper framework to speak about things like
�topological/partially ordered/whatever
monoids/groups/whatever�.

I But sometimes, the algebras for a monad do not look like
algebras, at all.

What is it good for?

I The de�nitions of monads and their algebras are given entirely
in categorical terms.

I So, we have generalized the notion of an algebra in a
(particular) variety from �a set such that ...�to �an object in a
category such that ...�.

I This gives us a proper framework to speak about things like
�topological/partially ordered/whatever
monoids/groups/whatever�.

I But sometimes, the algebras for a monad do not look like
algebras, at all.

The category of graphs

De�nition
A graph G is a set V (G) of vertices, equipped with a system of
two-element sets E (G), called edges.

A morphism of graphs f : A! B is a set-mapping
f : V (A) ! V (B) such that fx ; yg 2 E (A) implies
ff (x); f (y)g 2 E (B).

A monad on graphs

X

T (X)
T 2(X)

X
�X // T (X) T 2(X)

�Xoo

A monad on graphs

X

T (X)

T 2(X)

X
�X // T (X) T 2(X)

�Xoo

A monad on graphs

X

T (X)
T 2(X)

X
�X // T (X) T 2(X)

�Xoo

A monad on graphs

X

T (X)
T 2(X)

X
�X // T (X) T 2(X)

�Xoo

What are the algebras?

X
�X //

idX
""

T (X)

�

��

X

T 2(X)
�X //

T (�)

��

T (X)

�

��

T (X)
�

// X

Perfect matchings

De�nition
A perfect matching on a graph A is a subset M of the set of edges
of A such that every vertex is in exactly one edge from M.

Example

Similar monads

There are similar monads on the category of graphs, their algebras
are:

I (edge) packing of triangles,

I (vertex) disjoint cycle cover.

Both of these are well-known things.

Similar monads

There are similar monads on the category of graphs, their algebras
are:

I (edge) packing of triangles,

I (vertex) disjoint cycle cover.

Both of these are well-known things.

Similar monads

There are similar monads on the category of graphs, their algebras
are:

I (edge) packing of triangles,

I (vertex) disjoint cycle cover.

Both of these are well-known things.

Similar monads

There are similar monads on the category of graphs, their algebras
are:

I (edge) packing of triangles,

I (vertex) disjoint cycle cover.

Both of these are well-known things.

The arrow category Set!

I Objects: mappings in Set.

I Morphisms: commutative squares.

Explicitly,

I for f : A1 ! A2

I g : B1 ! B2

I a morphism f ! g is a pair of mappings

I h1 : A1 ! B1 and h2 : A2 ! B2 such that

A1

f //

h1
��

A2

h2
��

B1 g
// B2

commutes.

The arrow category Set!

I Objects: mappings in Set.

I Morphisms: commutative squares.

Explicitly,

I for f : A1 ! A2

I g : B1 ! B2

I a morphism f ! g is a pair of mappings

I h1 : A1 ! B1 and h2 : A2 ! B2 such that

A1

f //

h1
��

A2

h2
��

B1 g
// B2

commutes.

The arrow category Set!

I Objects: mappings in Set.

I Morphisms: commutative squares.

Explicitly,

I for f : A1 ! A2

I g : B1 ! B2

I a morphism f ! g is a pair of mappings

I h1 : A1 ! B1 and h2 : A2 ! B2 such that

A1

f //

h1
��

A2

h2
��

B1 g
// B2

commutes.

The arrow category Set!

I Objects: mappings in Set.

I Morphisms: commutative squares.

Explicitly,

I for f : A1 ! A2

I g : B1 ! B2

I a morphism f ! g is a pair of mappings

I h1 : A1 ! B1 and h2 : A2 ! B2 such that

A1

f //

h1
��

A2

h2
��

B1 g
// B2

commutes.

The arrow category Set!

I Objects: mappings in Set.

I Morphisms: commutative squares.

Explicitly,

I for f : A1 ! A2

I g : B1 ! B2

I a morphism f ! g is a pair of mappings

I h1 : A1 ! B1 and h2 : A2 ! B2 such that

A1

f //

h1
��

A2

h2
��

B1 g
// B2

commutes.

Retractions

De�nition
Let f : X ! Y be a mapping in Set. A mapping f 0 : Y ! X is a
retraction of f if the diagram

Y
f 0 //

idY

X

f
��

Y

commutes.

Free retractions

I Let f : X ! Y be an object of Set!.

I What could a �free retraction� over f be?

The free retraction monad
The endofunctor

The endofunctor T : Set! ! Set
! takes every object f : X ! Y

of Set! to its �extension by the idY �

T (X
f // Y) = (Y � X

hidY ;f i
// Y)

and acts on morphisms of Set! as follows:

A1

f //

h1
��

A2

h2
��

B1 g
// B2

� T //

A2 � A1

hidA2 ;f i //

h2�h1
��

A2

h2
��

B2 � B1
hidB2 ;gi

// B2

The free retraction monad
The unit and the multiplication

�f

X
f //

idX

��

Y

idY

��

Y � X
hidY ;f i

// Y

�f

Y � Y � X
hidY ;idY ;f i

//

hrY ;idX i
��

Y

idY

��

Y � X
idY�f

// X

The free retraction monad
Algebras

An algebra for the free retraction monad is a commutative square

Y � X
hidY ;f i

//

�1
��

Y

�2
��

X
f

// Y

Moreover, the properties from the de�nition of an algebra for a
monad imply that

I �2 = idY

I �1 is equal to idX on X

This implies that the algebras over f : X ! Y are in a one-to-one
correspondence with certain mappings f 0 : Y ! X .

The free retraction monad
Algebras

An algebra for the free retraction monad is a commutative square

Y � X
hidY ;f i

//

�1
��

Y

�2
��

X
f

// Y

Moreover, the properties from the de�nition of an algebra for a
monad imply that

I �2 = idY

I �1 is equal to idX on X

This implies that the algebras over f : X ! Y are in a one-to-one
correspondence with certain mappings f 0 : Y ! X .

The free retraction monad
Algebras

Y � X
idY�f //

hf 0;idX i
��

Y

idY

��

X
f

// Y

It turns out that the square is an algebra for the free retraction
monad i� f � f 0 = idY .

Comonads

De�nition
A monad on the category Cop is called a comonad on the category
C.

Comonads

Unwinding this de�nition, this means that a comonad on C consists
of a triple (S ; �; �) such that

I S is an endofunctor,

I � : S ! idC ,

I � : S ! S2

satisfying the conditions dual to the conditions in the de�nition of a
monad.

A comonad on Set

I Consider the endofunctor �free semigroup�, that takes a set X
to the set of all nonempty words over X , denoted by X+.

I What is a natural mapping �X : X+ ! X?

I What is a natural mapping �X : X+ ! (X+)+?

Possible answers:
�X ([x1 : : : xn]) = x1

�X ([x1 : : : xn]) = [[x1 : : : xn][x2 : : : xn] : : : [xn]]

A comonad on Set

I Consider the endofunctor �free semigroup�, that takes a set X
to the set of all nonempty words over X , denoted by X+.

I What is a natural mapping �X : X+ ! X?

I What is a natural mapping �X : X+ ! (X+)+?

Possible answers:
�X ([x1 : : : xn]) = x1

�X ([x1 : : : xn]) = [[x1 : : : xn][x2 : : : xn] : : : [xn]]

A comonad on Set

I Consider the endofunctor �free semigroup�, that takes a set X
to the set of all nonempty words over X , denoted by X+.

I What is a natural mapping �X : X+ ! X?

I What is a natural mapping �X : X+ ! (X+)+?

Possible answers:
�X ([x1 : : : xn]) = x1

�X ([x1 : : : xn]) = [[x1 : : : xn][x2 : : : xn] : : : [xn]]

Coalgebras

De�nition
A coalgebra for a comonad (S ; �; �) is a pair (C ;), where
 : C ! S(C) satisfying the diagrams dual to the diagrams in the
de�nition of a monad:

C

//

idC
!!

S(C)

�C

��

C

C

//

��

S(C)

�C
��

S(C)
S()
// S2(C)

The coalgebras for ()+ are �directed forests with �nite branches�;
takes a vertex to its branch.

Coalgebras

De�nition
A coalgebra for a comonad (S ; �; �) is a pair (C ;), where
 : C ! S(C) satisfying the diagrams dual to the diagrams in the
de�nition of a monad:

C

//

idC
!!

S(C)

�C

��

C

C

//

��

S(C)

�C
��

S(C)
S()
// S2(C)

The coalgebras for ()+ are �directed forests with �nite branches�;
takes a vertex to its branch.

There are other monads with the same endofunctor and �, for
example:

I �X ([x1x2 : : : xn]) = [[x1x2 : : : xn][x2x3 : : : xn] : : : [xnx1 : : : x2]],
the algebras are disjoint unions of directed cycles.

I �X ([x1x2 : : : xn]) = [[x1x2 : : : xn][x2][x3] : : : [xn]], the algebras
are �partitions with a �xed nonempty subset in each of the
blocks�.

There are other monads with the same endofunctor and �, for
example:

I �X ([x1x2 : : : xn]) = [[x1x2 : : : xn][x2x3 : : : xn] : : : [xnx1 : : : x2]],
the algebras are disjoint unions of directed cycles.

I �X ([x1x2 : : : xn]) = [[x1x2 : : : xn][x2][x3] : : : [xn]], the algebras
are �partitions with a �xed nonempty subset in each of the
blocks�.

There are other monads with the same endofunctor and �, for
example:

I �X ([x1x2 : : : xn]) = [[x1x2 : : : xn][x2x3 : : : xn] : : : [xnx1 : : : x2]],
the algebras are disjoint unions of directed cycles.

I �X ([x1x2 : : : xn]) = [[x1x2 : : : xn][x2][x3] : : : [xn]], the algebras
are �partitions with a �xed nonempty subset in each of the
blocks�.

Thank you for your attention.

