Monads and algebras

Gejza Jenča

September 9, 2016

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Example: the free monoid monad.

◆□ > < 個 > < E > < E > E 9 < 0</p>

Example: the free monoid monad.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Algebras are algebras.

Example: the free monoid monad.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- ► Algebras are algebras.
- Algebras in graphs.

Example: the free monoid monad.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- Algebras are algebras.
- Algebras in graphs.
- Algebras in maps.

Example: the free monoid monad.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Algebras are algebras.
- Algebras in graphs.
- Algebras in maps.
- Comonads and coalgebras.

I will try not to tell you anything about

◆□ > < 個 > < E > < E > E 9 < 0</p>

I will try not to tell you anything about

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

▶ adjunctions,

I will try not to tell you anything about

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- adjunctions,
- Lawvere theories.

I will try not to tell you anything about

- ▶ adjunctions,
- Lawvere theories.
- The theory of monads was created in the 1960's by Mac Lane, Eilenberg, Moore, Beck, Freyd, Barr and others.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

I will try not to tell you anything about

- ▶ adjunctions,
- Lawvere theories.
- The theory of monads was created in the 1960's by Mac Lane, Eilenberg, Moore, Beck, Freyd, Barr and others.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

It can be considered as an attempt to reformulate universal algebra in categorical terms.

I will try not to tell you anything about

- ▶ adjunctions,
- Lawvere theories.
- The theory of monads was created in the 1960's by Mac Lane, Eilenberg, Moore, Beck, Freyd, Barr and others.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- It can be considered as an attempt to reformulate universal algebra in categorical terms.
- Almost everything I will tell you is folklore

I will try not to tell you anything about

- ▶ adjunctions,
- Lawvere theories.
- The theory of monads was created in the 1960's by Mac Lane, Eilenberg, Moore, Beck, Freyd, Barr and others.
- It can be considered as an attempt to reformulate universal algebra in categorical terms.
- Almost everything I will tell you is folklore (in some circles);

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

I will try not to tell you anything about

- ▶ adjunctions,
- Lawvere theories.
- The theory of monads was created in the 1960's by Mac Lane, Eilenberg, Moore, Beck, Freyd, Barr and others.
- It can be considered as an attempt to reformulate universal algebra in categorical terms.
- Almost everything I will tell you is folklore (in some circles); sometimes the circles are very disjoint.

うして ふゆう ふほう ふほう うらつ

I will try not to tell you anything about

- adjunctions,
- Lawvere theories.
- The theory of monads was created in the 1960's by Mac Lane, Eilenberg, Moore, Beck, Freyd, Barr and others.
- It can be considered as an attempt to reformulate universal algebra in categorical terms.
- Almost everything I will tell you is folklore (in some circles); sometimes the circles are very disjoint.
- Except for the part about graphs; that one appears to be new.

うして ふゆう ふほう ふほう うらつ

A monad is a quadruple of things consisting of

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

A monad is a quadruple of things consisting of

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

▶ a category,

What is a monad?

A monad is a quadruple of things consisting of

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- ▶ a category,
- ► an endofunctor,

What is a monad?

A monad is a quadruple of things consisting of

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

- ▶ a category,
- ► an endofunctor,
- ► a unit,

What is a monad?

A monad is a quadruple of things consisting of

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ▶ a category,
- ▶ an endofunctor,
- ▶ a unit,
- ▶ a multiplication.

The category

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

The category

Set

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ● < ① へ ○</p>

Let X be a set.

- Let X be a set.
- Let X^{*} be the set of all words over X − (the underlying set of) the free monoid over X.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- Let X be a set.
- ▶ Let X* be the set of all words over X (the underlying set of) the free monoid over X.
- Note that the rule X → X* gives us a functor Set → Set that acts on mappings as follows:

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Let X be a set.
- ▶ Let X* be the set of all words over X (the underlying set of) the free monoid over X.
- Note that the rule X → X^{*} gives us a functor Set → Set that acts on mappings as follows:
- ▶ for $f: X \to Y$, the mapping $f^*: X^* \to Y^*$ is given by the rule

$$f^*([a_1a_2\ldots a_n])=[f(a_1)\ldots f(a_n)]$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

• What is a natural map $\eta_X : X \to X^*$?

- What is a natural map $\eta_X : X \to X^*$?
- Take $a \in X$ and map it to the one-letter word [a]:

$$\eta_X(a) = [a]$$

◆□ > < 個 > < E > < E > E の < @</p>

- What is a natural map $\eta_X : X \to X^*$?
- Take $a \in X$ and map it to the one-letter word [a]:

$$\eta_X(a) = [a]$$

• We claim that, for every mapping $f: X \to Y$ of sets, the square

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

commutes.

► Why?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

▶ So η is a natural transformation $id_{Set} \rightarrow ()^*$.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

• What is a natural map $\mu_X : (X^*)^* \to X^*$?

- What is a natural map $\mu_X : (X^*)^* \to X^*$?
- The elements of $(X^*)^*$ are "words of words".
- So it has elements like

[[aba][cabcc][bbc]]

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- What is a natural map $\mu_X : (X^*)^* \to X^*$?
- The elements of $(X^*)^*$ are "words of words".
- So it has elements like

[[aba][cabcc][bbc]]

• We can just concatenate the inner words:

 $\mu_X([[aba][cabcc][bbc]]) = [abacabccbbc]$

- What is a natural map $\mu_X : (X^*)^* \to X^*$?
- The elements of $(X^*)^*$ are "words of words".
- So it has elements like

[[aba][cabcc][bbc]]

• We can just concatenate the inner words:

 $\mu_X([aba][cabcc][bbc]]) = [abacabccbbc]$

• Note that μ_X behaves like a "flattening".

- ▶ Is μ natural?
- Yes:

$$(X^*)^* \xrightarrow{\mu_X} X^*$$
$$\downarrow (f^*)^* \quad f^* \downarrow$$
$$(Y^*)^* \xrightarrow{\mu_Y} Y^*$$

(ロ)、(型)、(E)、(E)、 E のQで
The multiplication

- ► Is µ natural?
- Yes:

For example,

(ロ) (型) (E) (E) (E) (O)

. So we have data of the following type:

. So we have data of the following type:

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

 \blacktriangleright a category C,

. So we have data of the following type:

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- ▶ a category C,
- ▶ a functor $T : C \rightarrow C$,

- . So we have data of the following type:
 - ▶ a category C,
 - ▶ a functor $T : C \rightarrow C$,
 - a natural transformation $\eta: \mathrm{id}_{\mathcal{C}} \to \mathcal{T}$,

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- . So we have data of the following type:
 - ▶ a category C,
 - a functor $T : \mathcal{C} \to \mathcal{C}$,
 - a natural transformation $\eta: \mathrm{id}_\mathcal{C} o \mathcal{T}$,
 - a natural transformation $\mu: T^2 \rightarrow T$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Axioms of a monad Right unit axiom

Axioms of a monad Right unit axiom

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Axioms Left unit axiom

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Axioms Left unit axiom

<ロ> (四) (四) (三) (三) (三)

Axioms of a monad

Associativity axiom

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○ ○

Axioms of a monad

Associativity axiom

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Usual definition

Definition

Let C be a category. A monad over C is a triple (T, η, μ) such that

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- $T: \mathcal{C} \to \mathcal{C}$,
- $\blacktriangleright \eta : \mathrm{id}_{\mathcal{C}} \to T,$
- ▶ μ : $T^2 \rightarrow T$
- such that the unit and associativity axioms hold.

Slick definition

Definition

A monad is a monoid in the monoidal category of endofunctors of a category.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

► Take a variety \mathcal{V} .

- ► Take a variety V
- ► Write F_V for the endofunctor of Set that takes a set X to the (underlying set of) V-free algebra over X.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ► Take a variety V.
- ► Write F_V for the endofunctor of Set that takes a set X to the (underlying set of) V-free algebra over X.
- Write η for the obvious natural transformation that "embeds variables".

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- ► Take a variety V.
- ► Write F_V for the endofunctor of Set that takes a set X to the (underlying set of) V-free algebra over X.
- Write η for the obvious natural transformation that "embeds variables".
- \blacktriangleright Write μ for the obvious natural transformation that "flattens terms over terms".

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ► Take a variety V.
- ► Write F_V for the endofunctor of Set that takes a set X to the (underlying set of) V-free algebra over X.
- Write η for the obvious natural transformation that "embeds variables".
- \blacktriangleright Write μ for the obvious natural transformation that "flattens terms over terms".

ション ふゆ アメリア メリア しょうくの

Then $(F_{\mathcal{V}}, \eta, \mu)$ is a monad over **Set**.

Algebras for a monad

Definition

Let (T, η, μ) be a monad over C. Then an algebra for T is a pair (X, α) , where

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

X is an object of C and

Algebras for a monad

Definition

Let (T, η, μ) be a monad over C. Then an algebra for T is a pair (X, α) , where

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- X is an object of C and
- ▶ α : $T(X) \to X$

Algebras for a monad

Definition

Let (T, η, μ) be a monad over C. Then an algebra for T is a pair (X, α) , where

- ► X is an object of C and
- ▶ α : $T(X) \to X$

such that the following diagrams commute

(ロ) (型) (E) (E) (E) (O)

What are algebras for the free monoid monad?

• An algebra over a set X equips X a mapping $\alpha: X^* \to X$.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

What are algebras for the free monoid monad?

- An algebra over a set X equips X a mapping $\alpha: X^* \to X$.
- The commutative triangle

just says that

 $\alpha([a]) = a$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

What does the square

$$\begin{array}{c|c} T^{2}(X) \xrightarrow{\mu_{X}} T(X) \\ \hline T(\alpha) & & & \\ T(X) \xrightarrow{\alpha} X \end{array}$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

tell us about α ? The square is a machine for proving equalities! Let us define a binary operation $\odot: X \times X \to X$ by the rule $p \odot q := \alpha([pq])$.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Let us define a binary operation $\odot: X \times X \to X$ by the rule $p \odot q := \alpha([pq])$. We claim that \odot is associative.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Let us define a binary operation $\odot: X \times X \to X$ by the rule $p \odot q := \alpha([pq])$. We claim that \odot is associative.

Proof.

Let us plug the term [[ab][c]] to the top-left corner of the square.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Let us define a binary operation $\odot: X \times X \to X$ by the rule $p \odot q := \alpha([pq])$. We claim that \odot is associative.

Proof.

Let us plug the term [[ab][c]] to the top-left corner of the square.

ション ふゆ アメリア メリア しょうくの

This proves the equality in the bottom-right corner of the diagram.

Analogously, we may plug [[a][bc]] to the top left corner of the diagram to prove that $a \odot (b \odot c) = \alpha([abc])$, so the associativity axiom holds.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let us put $e := \alpha([])$. Chasing [[a][] around the square

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

gives us the equality $a \odot e = a$. Similarly, we get $e \odot a = a$.

Algebras are algebras

► Thus, every algebra (X, α) for the free monoid monad gives rise to a monoid (X, ⊙, e).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Algebras are algebras

- Thus, every algebra (X, α) for the free monoid monad gives rise to a monoid (X, ⊙, e).
- On the other hand, if we start with a monoid (X, ⊙, e) and define α : X* → X by the rules α([]) = e and

$$\alpha([a_1\ldots a_n])=a_1\odot\cdots\odot a_n$$

ション ふゆ アメリア メリア しょうくの

then (X, α) is an algebra for the free monoid monad.

So, we may identify algebras for the free monoid monad with monoids.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Again, this works for every variety of algebras.

Morphisms of algebras

▲□▶ ▲圖▶ ▲필▶ ▲필▶ 필 のQ@

Morphisms of algebras

Definition

If (A, α) , (B, β) are algebras for a monad T, then a morphism of algebras $f : (A, \alpha) \to (B, \beta)$ is a morphism $f : A \to B$ in the underlying category such that the square

commutes.

This definition works as intended; we obtain exactly the usual notion of morphism of algebras.

うして ふゆう ふほう ふほう うらつ
The definitions of monads and their algebras are given entirely in categorical terms.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

The definitions of monads and their algebras are given entirely in categorical terms.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

So, we have generalized the notion of an algebra in a (particular) variety from "a set such that ..."

- The definitions of monads and their algebras are given entirely in categorical terms.
- So, we have generalized the notion of an algebra in a (particular) variety from "a set such that ..." to "an object in a category such that ...".

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- The definitions of monads and their algebras are given entirely in categorical terms.
- So, we have generalized the notion of an algebra in a (particular) variety from "a set such that ..." to "an object in a category such that ...".
- This gives us a proper framework to speak about things like "topological/partially ordered/whatever monoids/groups/whatever".

ション ふゆ く 山 マ チャット しょうくしゃ

- The definitions of monads and their algebras are given entirely in categorical terms.
- So, we have generalized the notion of an algebra in a (particular) variety from "a set such that ..." to "an object in a category such that ...".
- This gives us a proper framework to speak about things like "topological/partially ordered/whatever monoids/groups/whatever".
- But sometimes, the algebras for a monad do not look like algebras, at all.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

The category of graphs

Definition

A graph G is a set V(G) of vertices, equipped with a system of two-element sets E(G), called edges.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

A morphism of graphs $f : A \to B$ is a set-mapping $f : V(A) \to V(B)$ such that $\{x, y\} \in E(A)$ implies $\{f(x), f(y)\} \in E(B)$.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

What are the algebras?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Perfect matchings

Definition

A <u>perfect matching</u> on a graph A is a subset M of the set of edges of \overline{A} such that every vertex is in exactly one edge from M.

Example

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ● < ① へ ○</p>

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

(edge) packing of triangles,

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- (edge) packing of triangles,
- (vertex) disjoint cycle cover.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

- (edge) packing of triangles,
- (vertex) disjoint cycle cover.

Both of these are well-known things.

- Objects: mappings in Set.
- Morphisms: commutative squares.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- Objects: mappings in **Set**.
- Morphisms: commutative squares.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Explicitly,

• for
$$f: A_1 \to A_2$$

- Objects: mappings in **Set**.
- Morphisms: commutative squares.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Explicitly,

- ▶ for $f : A_1 \rightarrow A_2$
- ▶ $g : B_1 \rightarrow B_2$

- Objects: mappings in **Set**.
- Morphisms: commutative squares.

Explicitly,

- for $f: A_1 \to A_2$
- $g: B_1 \rightarrow B_2$
- a morphism $f \rightarrow g$ is a pair of mappings

(ロ) (型) (E) (E) (E) (O)

- Objects: mappings in Set.
- Morphisms: commutative squares.

Explicitly,

- for $f: A_1 \to A_2$
- $g: B_1 \rightarrow B_2$
- a morphism $f \rightarrow g$ is a pair of mappings
- ▶ $h_1: A_1 o B_1$ and $h_2: A_2 o B_2$ such that

ション ふゆ く 山 マ チャット しょうくしゃ

commutes.

Retractions

Definition

Let $f : X \to Y$ be a mapping in **Set**. A mapping $f' : Y \to X$ is a retraction of f if the diagram

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

commutes.

Free retractions

- Let $f: X \to Y$ be an object of \mathbf{Set}^{\to} .
- ▶ What could a "free retraction" over f be?

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

The free retraction monad The endofunctor

The endofunctor $T : \mathbf{Set}^{\rightarrow} \rightarrow \mathbf{Set}^{\rightarrow}$ takes every object $f : X \rightarrow Y$ of $\mathbf{Set}^{\rightarrow}$ to its "extension by the id_Y "

$$T(X \xrightarrow{f} Y) = (Y \oplus X \xrightarrow{\langle \operatorname{id}_Y, f \rangle} Y)$$

and acts on morphisms of $\mathbf{Set}^{\rightarrow}$ as follows:

ション ふゆ く 山 マ チャット しょうくしゃ

The free retraction monad

The unit and the multiplication

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - の Q @

The free retraction monad Algebras

An algebra for the free retraction monad is a commutative square

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

The free retraction monad Algebras

An algebra for the free retraction monad is a commutative square

Moreover, the properties from the definition of an algebra for a monad imply that

$$\blacktriangleright \ \alpha_2 = \mathrm{id}_Y$$

• α_1 is equal to id_X on X

This implies that the algebras over $f : X \to Y$ are in a one-to-one correspondence with certain mappings $f' : Y \to X$.

The free retraction monad Algebras

It turns out that the square is an algebra for the free retraction monad iff $f \circ f' = id_Y$.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Comonads

Definition

A monad on the category $\mathcal{C}^{\textit{op}}$ is called a comonad on the category $\mathcal{C}.$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Comonads

Unwinding this definition, this means that a comonad on ${\cal C}$ consists of a triple ((S,ϵ,σ) such that

- ► *S* is an endofunctor,
- $\epsilon: S \to \mathrm{id}_{\mathcal{C}}$,
- $\blacktriangleright \ \sigma: S \to S^2$

satisfying the conditions dual to the conditions in the definition of a monad.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

A comonad on **Set**

Consider the endofunctor "free semigroup", that takes a set X to the set of all <u>nonempty</u> words over X, denoted by X⁺.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

- What is a natural mapping $\epsilon_X : X^+ \to X$?
- What is a natural mapping $\sigma_X : X^+ \to (X^+)^+$?

A comonad on $\ensuremath{\textbf{Set}}$

- Consider the endofunctor "free semigroup", that takes a set X to the set of all <u>nonempty</u> words over X, denoted by X⁺.
- What is a natural mapping $\epsilon_X : X^+ \to X$?
- What is a natural mapping $\sigma_X : X^+ \to (X^+)^+$?

Possible answers:

$$\epsilon_X([x_1\ldots x_n])=x_1$$

ション ふゆ く 山 マ チャット しょうくしゃ

A comonad on **Set**

- Consider the endofunctor "free semigroup", that takes a set X to the set of all nonempty words over X, denoted by X⁺.
- What is a natural mapping $\epsilon_X : X^+ \to X$?
- What is a natural mapping $\sigma_X : X^+ \to (X^+)^+$?

Possible answers:

$$\epsilon_X([x_1\ldots x_n])=x_1$$

$$\sigma_X([x_1\ldots x_n]) = [[x_1\ldots x_n][x_2\ldots x_n]\ldots [x_n]]$$

ション ふゆ く 山 マ チャット しょうくしゃ

Coalgebras

Definition

A coalgebra for a comonad (S, ϵ, σ) is a pair (C, γ) , where $\gamma : C \to S(C)$ satisfying the diagrams dual to the diagrams in the definition of a monad:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Coalgebras

Definition

A coalgebra for a comonad (S, ϵ, σ) is a pair (C, γ) , where $\gamma : C \to S(C)$ satisfying the diagrams dual to the diagrams in the definition of a monad:

$$C \xrightarrow{\gamma} S(C) \qquad C \xrightarrow{\gamma} S(C)$$

$$\downarrow^{\epsilon_{C}} \qquad \gamma \qquad \downarrow^{\sigma_{C}} \qquad \downarrow^{\sigma_{C}}$$

$$C \qquad S(C) \xrightarrow{\gamma} S^{2}(C)$$

The coalgebras for ()⁺ are "directed forests with finite branches"; γ takes a vertex to its branch.

There are other monads with the same endofunctor and $\epsilon,$ for example:
There are other monads with the same endofunctor and $\epsilon,$ for example:

• $\sigma_X([x_1x_2...x_n]) = [[x_1x_2...x_n][x_2x_3...x_n]...[x_nx_1...x_2]],$ the algebras are disjoint unions of directed cycles.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

There are other monads with the same endofunctor and ϵ , for example:

- $\sigma_X([x_1x_2...x_n]) = [[x_1x_2...x_n][x_2x_3...x_n]...[x_nx_1...x_2]],$ the algebras are disjoint unions of directed cycles.
- σ_X([x₁x₂...x_n]) = [[x₁x₂...x_n][x₂][x₃]...[x_n]], the algebras are "partitions with a fixed nonempty subset in each of the blocks".

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Thank you for your attention.