2-categories in algebra and elsewhere

Gejza Jenča

Anna Jenčová

AAA 2016 Brno

The category of sets and relations

...denoted by Rel.

The category of sets and relations

...denoted by Rel.

- Objects: sets.

The category of sets and relations

...denoted by Rel.

- Objects: sets.
- Morphisms: binary relations; $f: A \rightarrow B$ in Rel is a set of pairs $f \subseteq A \times B$.

The category of sets and relations

...denoted by Rel.

- Objects: sets.
- Morphisms: binary relations; $f: A \rightarrow B$ in Rel is a set of pairs $f \subseteq A \times B$.
- Identities: $i d_{A}: A \rightarrow A$ is the identity relation.
- Composition: if $f: A \rightarrow B$ and $g: B \rightarrow C$, then $(a, c) \in g \circ f$ iff there exists $b \in B$ such that $(a, b) \in f$ and $(b, c) \in g$.

Rel is a monoidal category

- In addition, we may equip the category Rel with a "tensor product" \times,

Rel is a monoidal category

- In addition, we may equip the category Rel with a "tensor product" \times,
- which is just the direct product of sets.

Rel is a monoidal category

- In addition, we may equip the category Rel with a "tensor product" \times,
- which is just the direct product of sets.
- Of course, it is associative and the one element set 1 is a neutral element.

Rel is a monoidal category

- In addition, we may equip the category Rel with a "tensor product" \times,
- which is just the direct product of sets.
- Of course, it is associative and the one element set 1 is a neutral element.
- So, (Rel, $\times, 1$) is a monoidal category.

Rel is a monoidal category

- In addition, we may equip the category Rel with a "tensor product" \times,
- which is just the direct product of sets.
- Of course, it is associative and the one element set 1 is a neutral element.
- So, (Rel,$\times, 1$) is a monoidal category.
- However, \times is not a categorical product in Rel.

Monoids in a monoidal category

Recall, that a monoid is a monoidal category $(C, \otimes, 1)$ is a triple (A, m, e), where A is an object of $C, m: A \otimes A \rightarrow A$ and $e: 1 \rightarrow A$ are arrows

Monoids in a monoidal category

Recall, that a monoid is a monoidal category $(C, \otimes, 1)$ is a triple (A, m, e), where A is an object of $C, m: A \otimes A \rightarrow A$ and $e: 1 \rightarrow A$ are arrows such that the diagrams

Examples of monoids

- Monoids in (Set, $\times, 1$) are ordinary monoids.

Examples of monoids

- Monoids in (Set, $\times, 1$) are ordinary monoids.
- Monoids in the monoidal category of Abelian groups $(\mathbf{A b}, \otimes, \mathbb{Z})$ are rings.

Examples of monoids

- Monoids in (Set, $\times, 1$) are ordinary monoids.
- Monoids in the monoidal category of Abelian groups $(\mathbf{A b}, \otimes, \mathbb{Z})$ are rings.
- Monoids in the monoidal category of complete join semilattices (Sup, $\otimes, 2$) are quantales.

Examples of monoids

- Monoids in (Set, $\times, 1$) are ordinary monoids.
- Monoids in the monoidal category of Abelian groups $(\mathbf{A b}, \otimes, \mathbb{Z})$ are rings.
- Monoids in the monoidal category of complete join semilattices (Sup, $\otimes, 2$) are quantales.
- Monoids in the monoidal category of ordinary monoids (Mon, $\times, 1$) are commutative monoids.

Monoids in Rel

So a monoid in the monoidal category (Rel, $\times, 1$) consists of

- a set M,
- a relation e : $1 \rightarrow M$ and
- a relation *: $M \times M \rightarrow M$.
such that some diagrams commute.
We call these objects relational monoids

When dealing with monoids in Rel, one should bear in mind that both $*: A \times A \rightarrow A$ and $e: 1 \rightarrow A$ are relations, and not mappings.

When dealing with monoids in Rel, one should bear in mind that both $*: A \times A \rightarrow A$ and $e: 1 \rightarrow A$ are relations, and not mappings. That means, among other things, that

- e is (essentially) a subset of the underlying set, rather than an element;
- it is misleading to write $a * b=c$ to express the fact that (a, b) is in the relation $*$ with c;
- we write $(a, b) \stackrel{*}{\mapsto} c$ instead.

Classes of monoids in Rel

- Ordinary monoids are monoids in Rel.

Classes of monoids in Rel

- Ordinary monoids are monoids in Rel.
- Hypergroups/hypermonoids are monoids in Rel.

Classes of monoids in Rel

- Ordinary monoids are monoids in Rel.
- Hypergroups/hypermonoids are monoids in Rel.
- Partial monoids (including effect algebras and some of their generalizations) are monoids in Rel.

Classes of monoids in Rel

- Ordinary monoids are monoids in Rel.
- Hypergroups/hypermonoids are monoids in Rel.
- Partial monoids (including effect algebras and some of their generalizations) are monoids in Rel.
- Small categories are monoids in Rel:

Classes of monoids in Rel

- Ordinary monoids are monoids in Rel.
- Hypergroups/hypermonoids are monoids in Rel.
- Partial monoids (including effect algebras and some of their generalizations) are monoids in Rel.
- Small categories are monoids in Rel:
- elements are arrows,

Classes of monoids in Rel

- Ordinary monoids are monoids in Rel.
- Hypergroups/hypermonoids are monoids in Rel.
- Partial monoids (including effect algebras and some of their generalizations) are monoids in Rel.
- Small categories are monoids in Rel:
- elements are arrows,
- the $e: 1 \rightarrow M$ is the selection of identity arrows.

Morphisms of monoids in Rel

The class of monoids in a monoidal category comes equipped with a standard notion of morphism:

homewer, this notion does not work in the examples we are interested in.

Rel as a 2-category

- A relation $f \subseteq A \times B$ is a set of pairs, so
- every homset $\operatorname{Rel}(A, B)$ is a poset under \subseteq.

Rel as a 2-category

- A relation $f \subseteq A \times B$ is a set of pairs, so
- every homset $\operatorname{Rel}(A, B)$ is a poset under \subseteq.
- So for two arrows $f, g: A \rightarrow B$ we may have a 2-arrow $f \rightarrow g$

Rel as a 2-category

- A relation $f \subseteq A \times B$ is a set of pairs, so
- every homset $\operatorname{Rel}(A, B)$ is a poset under \subseteq.
- So for two arrows $f, g: A \rightarrow B$ we may have a 2-arrow $f \rightarrow g$
- which is simply the fact that $f \subseteq g$.

Rel as a 2-category

- A relation $f \subseteq A \times B$ is a set of pairs, so
- every homset $\operatorname{Rel}(A, B)$ is a poset under \subseteq.
- So for two arrows $f, g: A \rightarrow B$ we may have a 2-arrow $f \rightarrow g$
- which is simply the fact that $f \subseteq g$.
- This structure satisfies the axioms of a 2-category

Morphisms of monoids in Rel

There are several meaningful notions of morphisms of monoids in Rel.

Lax morphism
$(h \circ *) \subseteq(* \circ(h \times h))$ $h \circ e \subseteq e$

Oplax morphism
$(h \circ *) \supseteq(* \circ(h \times h))$
$e \subseteq h \circ e$

Category of relational monoids RelMon

By Category of relational monoids we mean a 2-category

- 0-cells are relational monoids,
- 1-cells are lax morphisms of relational monoids,
- 2-cells are the \subseteq of relations, inherited from Rel.

Category of relational monoids RelMon

By Category of relational monoids we mean a 2-category

- 0-cells are relational monoids,
- 1-cells are lax morphisms of relational monoids,
- 2-cells are the \subseteq of relations, inherited from Rel.
- The category of small categories is a 1-subcategory of this category.
- The category of partial monoids is a subcategory of this category.

Effect algebras

An effect algebra ([Foulis and Bennett, 1994, Kôpka and Chovanec, 1994, Giuntini and Greuling, 1989]) is a partial algebra $(E ;+, 0,1)$ with a binary partial operation + and two nullary operations 0,1 such that + is commutative, associative and the following pair of conditions is satisfied:
(E3) For every $a \in E$ there is a unique $a^{\prime} \in E$ such that $a+a^{\prime}$ exists and $a+a^{\prime}=1$.
(E4) If $a+1$ is defined, then $a=0$.
The + operation is then cancellative and 0 is a neutral element.

Why?

- Because ReIMon is a 2-category, so it has a lot of structure.

Why?

- Because RelMon is a 2-category, so it has a lot of structure.
- We can take the standard definitions of 2-categorial things from RelMon and examine what they mean for effect algebras.

Why?

- Because RelMon is a 2-category, so it has a lot of structure.
- We can take the standard definitions of 2-categorial things from RelMon and examine what they mean for effect algebras.
- We rediscover well-known notions, but now we know where they are coming from.

Easy and nice

Let E be an effect algebra.

Easy and nice

Let E be an effect algebra.

- $\leq: E \rightarrow E$ is a left Kan extension of + along the projection $p_{1}: E \times E \rightarrow E$.

Easy and nice

Let E be an effect algebra.

- $\leq: E \rightarrow E$ is a left Kan extension of + along the projection $p_{1}: E \times E \rightarrow E$.
- An effect algebra E satisfies the Riesz decomposition property iff \geq is an endomorphism of E.

Adjoint pairs of morphisms in RelMon

Since RelMon is a 2-category, we may speak about adjoint pairs of morphisms in RelMon. Unwinding the definition, it turns out every left adjoint in RelMon is a mapping.
Let

- A, B be relational monoids,
- $f: A \rightarrow B$,
- $g: B \rightarrow A$.

Then the morphism f is left adjoint to the morphism g, if and only if f is a mapping and $g=f^{-1}$.

Left adjoints in RelMon

From this, we obtain a characterization of left adjoints:

Proposition

A morphism $f: A \rightarrow B$ in RelMon is a left adjoint if and only if f is a mapping and

- for all $b_{1}, b_{2} \in B$ and $a \in A$ such that $\left(b_{1}, b_{2}\right) \stackrel{*}{\mapsto} f(a)$,
- there exist $a_{1}, a_{2} \in A$ such that $b_{1}=f\left(a_{1}\right), b_{2}=f\left(a_{2}\right)$ and $\left(a_{1}, a_{2}\right) \stackrel{*}{\mapsto} a$.

What if A and B are effect algebras?

Theorem
Let A, B be effect algebras, let $f: A \rightarrow B$ be a morphism of effect algebras. Then f is a left adjoint in RelMon iff

What if A and B are effect algebras?

Theorem

Let A, B be effect algebras, let $f: A \rightarrow B$ be a morphism of effect algebras. Then f is a left adjoint in RelMon iff

- f is surjective,
- $f^{-1}(0)=0$ and
- the equivalence on A induced by f is an effect algebra congruence in the sense of
([Gudder and Pulmannová, 1998]).

Monads in RelMon

Since RelMon is a 2-category, we may speak about monads in RelMon.
A monad in RelMon on a relational monoid A can be characterized as a preorder relation $\leq: A \rightarrow A$ such that

commute.

Monads arising from adjunctions in 2-categories

- In every 2-category, an adjoint pair of morphisms gives rise to a monad.

Monads arising from adjunctions in 2-categories

- In every 2-category, an adjoint pair of morphisms gives rise to a monad.
- In Cat, every monad arises from an adjoint pair
(Eilenberg-Moore, Kleisli).

Monads arising from adjunctions in 2-categories

- In every 2-category, an adjoint pair of morphisms gives rise to a monad.
- In Cat, every monad arises from an adjoint pair (Eilenberg-Moore, Kleisli).
- But this is not true in every 2-category.
- In particular, in Rel the monads (=preorders) arising from adjunctions can be characterized as equivalence relations.

Monads arising from adjunctions in RelMon

If a monad $\sim: A \rightarrow A$ arises from an adjunction, then

- ~ is an equivalence relation,
- the diagram

commutes and
- if x is a unit of A and $x \sim y$, then y is a unit of A.

Monads arising from adjunctions in RelMon

If the multiplication is actually a partial operation, we obtain another property of a monad arising from an adjunction:

- If $a_{1} \sim b_{1}, a_{2} \sim b_{2}$ and both $a_{1} * a_{2}$ and $b_{1} * b_{2}$ exist, then $a_{1} * a_{2} \sim b_{1} * b_{2}$.

"Dimension equivalences" on effect algebras

For an effect algebra E, we may characterize monads $\sim: E \rightarrow E$ arising from adjunctions in RelMon as follows:

- ~ is an equivalence.
- If $a_{1} \sim b_{1}, a_{2} \sim b_{2}$ and both $a_{1}+a_{2}$ and $b_{1}+b_{2}$ exist, then $a_{1}+a_{2} \sim b_{1}+b_{2}$.
- If $a \sim b_{1}+b_{2}$, then there are a_{1}, a_{2} such that $a=a_{1}+a_{2}$, $a_{1} \sim b_{1}, a_{2} \sim b_{2}$.
- $[0]_{\sim}=\{0\}$.
E / \sim is then a partial monoid.

Example

- Take a Boolean algebra B; this is an effect algebra with + being the disjoint join.
- Introduce a equivalence on B by the rule

$$
a \sim b \Leftrightarrow[0, a] \simeq[0, b]
$$

Then this is a dimension equivalence.

A more fancy example

- Let A be an involutive ring with unit, in which

$$
x^{*} x+y^{*} y=0 \Longrightarrow x=y=0
$$

- Let $P(A)$ be the set of all self-adjoint idempotents in A. For $e, f \in P(A)$, write $e \oplus f=e+f$ iff ef $=0$, otherwise let $e \oplus f$ be undefined. Then $(P(A) ; \oplus, 0,1)$ is an effect algebra.
- For e, f in $P(A)$, write $e \sim f$ iff there is $w \in A$ such that $e=w^{*} w$ and $f=w w^{*}$.
- Then this is a dimension equivalence.

Theorem

([Dvurečenskij and Pulmannová, 2000]) For every cancellative positive partial abelian monoid E and every dimension equivalence \sim on $P, P / \sim$ is a positive partial abelian monoid.

Theorem

([Dvurečenskij and Pulmannová, 2000]) For every cancellative positive partial abelian monoid E and every dimension equivalence \sim on $P, P / \sim$ is a positive partial abelian monoid.
A new perspective:

Theorem

([Dvurečenskij and Pulmannová, 2000]) For every cancellative positive partial abelian monoid E and every dimension equivalence
\sim on $P, P / \sim$ is a positive partial abelian monoid.
A new perspective:

- P / \sim is the EM-object for the monad \sim.

What about other monads?

Example

Consider the monoid ($\mathbb{N},+, 0$). This is a monoid in Rel. The divisibility relation $\mid: \mathbb{N} \rightarrow \mathbb{N}$ is an example of a monad on it.

Monads on lattices

- Recall: every poset is a category;

Monads on lattices

- Recall: every poset is a category;
- every category is a relational monoid.

Monads on lattices

- Recall: every poset is a category;
- every category is a relational monoid.
- So every poset is a relational monoid,

Monads on lattices

- Recall: every poset is a category;
- every category is a relational monoid.
- So every poset is a relational monoid,
- the elements of the monoid are the arrows = comparable pairs.

Monads on lattices

- Recall: every poset is a category;
- every category is a relational monoid.
- So every poset is a relational monoid,
- the elements of the monoid are the arrows = comparable pairs.
- In particular, every lattice is a poset, so every lattice is a relational monoid.

Monads on lattices

- Recall: every poset is a category;
- every category is a relational monoid.
- So every poset is a relational monoid,
- the elements of the monoid are the arrows = comparable pairs.
- In particular, every lattice is a poset, so every lattice is a relational monoid.
- Recall: every lattice has a naturally associated poset $(Q(L), \nearrow)$, where
- $Q(L)$ is the set of all quotients = comparable pairs.

Monads on lattices

Theorem
$Q(L)$ is a monad on L if and only in L is modular.
（ A．Dvurečenskij and S．Pulmannová．
New Trends in Quantum Structures．
Kluwer，Dordrecht and Ister Science，Bratislava， 2000.
D．J．Foulis and M．K．Bennett．
Effect algebras and unsharp quantum logics．
Found．Phys．，24：1325－1346， 1994.
國 R．Giuntini and H．Greuling．
Toward a formal language for unsharp properties．
Found．Phys．，19：931－945， 1989.
囦 S．Gudder and S．Pulmannová．
Quotients of partial abelian monoids．
Algebra univers．，38：395－421， 1998.
圊 F．Kôpka and F．Chovanec．
D－posets．
Math．Slovaca，44：21－34， 1994.

