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The concept of basic algebra was introduced as a common

generalization of an MV-algebra and an orthomodular lattice.

Remember that MV-algebras serve as an algebraic axiomatization of
the so-called Łukasiewicz many-valued logics and orthomodular

lattices form an algebraic counterpart of the logic of quantum
mechanics. Hence, basic algebras form a common algebraic

axiomatization of both logics mentioned above.

Recall that a basic algebra is an algebra A = (A;⊕,¬,0) of type
(2,1,0) satisfying the following identities

(B1) x ⊕0 = x

(B2) ¬¬x = x

(B3) ¬(¬x ⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x

(B4) ¬(¬(¬(x ⊕ y)⊕ y)⊕ z)⊕ (x⊕ z) = 1, where 1 = ¬0.



Every basic algebra has its second face, namely A = (A;⊕,¬,0) can
be organized into a bounded lattice (A;∨,∧), where

x ∨y = ¬(¬x ⊕ y)⊕ y and x ∧y = ¬(¬x ∨¬y),

whose order is given by

x ≤ y if and only if ¬x ⊕ y = 1.

Of course, 0 ≤ x ≤ 1 for each x ∈ A. Moreover, this lattice (A;∨,∧) is
endowed by a set (a)a∈A of so-called sectional antitone involutions,

i.e. for each a ∈ A there exists a mapping x 7→ xa of the interval [a,1]
(called section) into itself such that

xaa = x and x ≤ y ⇒ ya ≤ xa for all x ,y ∈ [a,1].

This system L (A ) = (L;∨,∧,(a)a∈L,0,1) is called a lattice with
sectional antitone involutions assigned to A = (A;⊕,¬,0). Also
conversely, having a bounded lattice with sectional antitone

involutions L = (L;∨,∧,(a)a∈L,0,1), one can convert it into a basic
algebra A (L ) = (L;⊕,¬,0), where

¬x = x0 and x ⊕ y = (¬x ∨y)y
.

Moreover, the assignments A → L (A ) and L → A (L ) are
one-to-one correspondences, i.e. A (L (A )) = A and

L (A (L )) = L .
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Abstract – Pseudo basic algebras

Since basic algebras are equivalent to bounded lattices with sectional

antitone involutions, it motivated us to study an algebraic counterpart
of semilattices with sectional switching involutions. These algebras

are called pseudo basic algebras. They are determined by four

independent identities. Several basic properties of these algebras are
presented and a particular interest is devoted to pseudo basic

algebras whose main involution is even antitone (so-called strict

pseudo basic algebras) and to those whose binary operation is
commutative.



Basic concepts

Consider a section [a,1] of an ordered set with greatest element 1. A

mapping x 7→ xa of [a,1] into itself is called a sectional switching
involution if xaa = x for each x ∈ [a,1] and aa = 1,1a = a. In general,
we do not ask that this involution should be antitone; it only switches

the endpoints of the section.

Now, we can consider a bounded lattice with sectional switching
involutions L = (L;∨,∧,(a)a∈L,0,1) and study what an algebra can

be obtained by using a similar construction as that for basic algebras.

For our purposes, we will consider only a semilattice since the
operation meet is not applied in the construction of the operations of

the new algebra.



Theorem 1

Let S = (S;∨,(a)a∈S ,0,1) be a bounded semilattice with sectional
switching involutions. Define ¬x = x0 and x ⊕ y = (x0 ∨y)y . Then the

algebra A (S ) = (S;⊕,¬,0) assigned to S satisfies the following
identities:

(P1) ¬x ⊕ x = 1

(P2) x ⊕0 = x

(P3) ¬(¬(x ⊕ y)⊕ y)⊕ y = x ⊕ y

(P4) ¬(¬(¬(¬x ⊕ y)⊕ y)⊕ z)⊕ z = ¬(¬(¬(¬y ⊕ z)⊕ z)⊕ x)⊕ x .

If, moreover, the involution x 7→ x0 is antitone, then A (S ) satisfies

the identity

(A) (¬(x ⊕ y)⊕ y)⊕ x = 1.

Note that the axioms (P1)–(P4) are independent.



Remark 1 (1/2)

(a) Every bounded semilattice S = (S;∨,0,1) can be considered as
a semilattice with sectional switching involutions. Namely, for

each a ∈ S one can define a switching involution on [a,1] as

follows: aa = 1,1a = a and xa = x for each x ∈ [a,1],a 6= x 6= 1.

(b) If the involution x 7→ x0 is antitone, then S = (S;∨,0,1) is in fact

a lattice due to the DeMorgan laws because

x ∧y = (x0 ∨y0)0
.

(c) There exist bounded semilattices with sectional switching

involutions which are not lattices.



Remark 1 (2/2)

Such a semilattice K , call a “kite” is visualized in Figure 1:

0

a b

p

It is an ordinal sum of an infinite chain C with the least element 0 and

without a greatest element and a three element semilattice {a,b,1},

i.e. p ≤ a,b for each p ∈ C. Then K is a ∨-semilattice which is not a
lattice since inf{a,b} does not exists. Moreover, for each c ∈ K we

define cc = 1,1c = c and xc = x for x ∈ [c,1], c 6= x 6= 1.



We have shown that to every bounded semilattice S with sectional
switching involutions we can assign an algebra A (S ) = (S;⊕,¬,0)
satisfying (P1)–(P4). We are going to show that algebras satisfying

(P1)–(P4) are interesting for their own sake.

Definition 1

An algebra A = (A;⊕,¬,0) of type (2,1,0) satisfying the identities

(P1)–(P4) will be called a pseudo basic algebra. If, moreover, A

satisfies also the identity (A), it will be called a strict pseudo basic
algebra.

Theorem 2

The variety of pseudo basic algebras is weakly regular. The variety of
strict pseudo basic algebras is congruence regular and arithmetical.



Our next task is to show that also conversely, every pseudo basic

algebra can be organized into a bounded semilattice with sectional
switching involutions.

Theorem 3

Let A = (A;⊕,¬,0) be a pseudo basic algebra. Define 1 = ¬0,
x ∨y = ¬(¬x ⊕ y)⊕ y and for any a ∈ A, let xa = ¬x ⊕a. Then

(a) (A;∨) is a join-semilattice with least element 0 and greatest
element 1

(b) x ≤ y if and only if ¬x ⊕ y = 1 is the induced order of the
semilattice (A;∨)

(c) for each a ∈ A and x ∈ [a,1], the mapping x 7→ xa = ¬x ⊕a is a
sectional switching involution on the section [a,1].

If, moreover, A is a strict pseudo basic algebra, then (A;∨) is a lattice
where x ∧y = ¬(¬x ∨¬y).



We can show that the assignment between pseudo basic algebras

and bounded semilattices with sectional switching involutions is a

one-to-one correspondence.

Theorem 4

Let A = (A;⊕,¬,0) be a pseudo basic algebra, S (A ) its assigned

semilattice with sectional switching involutions. Then A (S (A )) = A .
Let S = (S;∨,(a)a∈S ,0,1) be a bounded semilattice with sectional

switching involutions, A (S ) its assigned pseudo basic algebra. Then
S (A (S )) = S .
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Now, we reveal several interesting properties of strict and/or

commutative pseudo basic algebras.

As mentioned in (b) of Remark 1, if a pseudo basic algebra A is

strict, then the assigned semilattice S (A ) is a lattice (A;∨,∧) where

x ∧y = ¬(¬x ∨¬y). In what follows, we will use this fact and S (A )
will be called an assigned lattice.

Theorem 5

Let A = (A;⊕,¬,0) be a strict pseudo basic algebra. Then ¬ is a

complementation in the induced lattice (A;∨,∧,0,1) if and only if A

satisfies the identity x ⊕ x = x .



A pseudo basic algebra A = (A;⊕,¬,0) is called commutative if it

satisfies the identity x ⊕ y = y ⊕ x and A is called associative if it
satisfies the identity x ⊕ (y ⊕ z) = (x ⊕ y)⊕ z.

An interesting connection is given by the following.

Theorem 6

(a) Every commutative pseudo basic algebra is strict.

(b) A pseudo basic algebra is an MV-algebra if and only if it is
associative.



It was proved by M. Botur and R. Halaš that every finite commutative
basic algebra is in fact an MV-algebra. Hence, it is a natural question

if there really exist commutative pseudo basic algebras which are not

basic algebras. The answer is positive also for a finite pseudo basic
algebra.



Example 1 (1/2)

Consider the commutative pseudo basic algebra

A = ({0,a,b,c,d ,e,1};⊕,¬,0), where the operations ¬ and ⊕ are

given by the tables

x 0 a b c d e 1

¬x 1 c b a e d 0

⊕ 0 a b c d e 1

0 0 a b c d e 1

a a c d 1 d b 1
b b d 1 1 1 c 1

c c 1 1 1 1 c 1

d d d 1 1 1 1 1
e e b c c 1 d 1

1 1 1 1 1 1 1 1

By Theorem 6 (a), A is strict and its induced lattice is visualized in
Figure 2.



Example 1 (2/2)

Figure 2:

0

1

e

c

a
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b

The sectional switching involutions are as follows:

In [0,1], x0 = ¬x .
In [e,1] it is: ee = 1, be = c, ce = b, de = d , 1e = e.

In [a,1] it is: aa = 1, ba = d , da = b, ca = c, 1a = a.
In [b,1] it is: bb = 1, cb = d , db = c and 1b = b.

In [c,1], [d ,1] and [1,1] it is determined uniquely. One can easily

check that x 7→ xe and x 7→ xa are not antitone since e.g.

b ≤ d but be = c ‖ d = de
.

Hence, A cannot be a basic algebra.



Section algebras

As shown above, pseudo basic algebras are equivalent to bounded
join-semilattices with sectional switching involutions. However, every

section is a semilattice, i.e. it is again a bounded semilattice with

sectional switching involutions. Hence, it can be converted into a
pseudo basic algebra. How to organize its operations is shown in the

following.

Theorem 7

Let A = (A;⊕,¬,0) be a pseudo basic algebra, let ≤ be its induced
order and p ∈ A. The section [p,1] can be organized into a pseudo

basic algebra ([p,1];⊕p,¬p,p) as follows:

¬px = ¬x ⊕p and x ⊕p y = ¬(¬x ⊕p)⊕ y

for x ,y ∈ [p,1].
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Abstract – Skew basic algebras

Skew effect algebras were already introduced as a non-associative
modification of the so-called effect algebras which serve as an

algebraic axiomatization of the propositional logic of quantum
mechanics. Since skew effect algebras have a partial binary

operation, we search for an algebra with a total binary operation

which extends a given skew effect algebra and such that the
underlying posets coincide. It turns out that the suitable candidate is

a skew basic algebra introduced in this section. Algebraic properties

of skew basic algebras are described and they are compared with
pseudo basic algebras.



Effect algebras were introduced by D.J. Foulis and M.K. Bennett as a

tool for axiomatization of propositional logic of quantum mechanics.
Their non-associative modification was defined by I. Chajda and

H. Länger under the name skew effect algebras. It was shown that

every skew effect algebra is in fact an ordered set with sectional
switching involutions and an antitone global involution. This motivates

us to describe this structure by a total algebra (with everywhere

defined operations) similarly as it was done for effect algebras.



Recall that by a skew effect algebra is meant a partial algebra
S = (S;+,′ ,0,1) of type (2,1,0,0) satisfying the following axioms:

(S1) if x + y is defined then so is y + x and x + y = y + x

(S2) x + y = 1 if and only if y = x ′

(S3) if x +1 is defined then x = 0

(S4) if x + y = z then x ′ = z ′+ y

(S5) if x ′+(x + y) is defined then y = 0

(S6) if (x + y)+ z is defined then there exists an element u ∈ S such

that (x + y)+ z = x +u.

The element x ′ is called a supplement of x .

It was shown that every effect algebra is a skew effect algebra and,
moreover, a skew effect algebra is an effect algebra if and only if the

partial operation + is associative.



If S = (S;+,′ ,0,1) is a skew effect algebra and a binary relation ≤ is

defined by
x ≤ y if there exists z ∈ S with y = x + z

then ≤ is a partial order on S and 0 is the least and 1 the greatest
element. It will be called an induced order of S . A skew effect

algebra S is called a lattice skew effect algebra if the induced
ordered set (S;≤) is a lattice. Moreover, the mapping x 7→ x ′ is an

antitone involution on S. Defining for a ∈ S a mapping x 7→ xa on the

section [a,1] by xa = x ′+a, we have section switching involution.
Since this section involution is defined for every element a ∈ S, we

define the so-called induced poset with section switching
involutions (S;≤,(a)a∈S ,0,1), where x0 = x ′ is the so-called global
antitone involution.

It was proved in that also conversely, if (S;≤,(a)a∈S ,0,1) is such a
poset and we define x + y = (y0)x for x ≤ y0 then we get an induced

skew effect algebra A (S ). Moreover, these assignments of induced

poset with section switching involutions and of a skew effect algebra
A (S ) are one-to-one correspondences.



Our aim is to define an algebra (with everywhere defined operations)
whose induced ordered set would have the same properties as that of

a skew effect algebra.

Definition 2

An algebra A = (A;⊕,¬,0) is called a skew basic algebra if it

satisfies the following axioms:

(A1) x ⊕0 = x

(A2) ¬(¬(x ⊕ y)⊕ y)⊕ y = x ⊕ y

(A3) x ⊕ (¬(¬(¬(x ⊕ y)⊕ y)⊕ z)⊕ z)= 1, where 1 = ¬0

(A4) ¬(¬x ⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x

(A5) (¬(x ⊕ y)⊕ y)⊕ x = 1

(A6) x ⊕ y = y ⊕¬(¬(x ⊕ y)⊕ y).

Note that the axioms (A1)–(A6) are independent.

Theorem 8

The variety of skew basic algebras is congruence regular and
arithmetical.



For the next, let us recall that an algebra D = (D;⊔) of type (2) is
called a commutative directoid if it satisfies the axioms

(D1) x ⊔x = x

(D2) x ⊔y = y ⊔x

(D3) x ⊔ ((x ⊔y)⊔z) = (x ⊔y)⊔z.

If D = (D;⊔) is a commutative directoid and ≤ is a binary relation on
D given as follows

x ≤ y if and only if x ⊔y = y

then (D;≤) is an ordered set which is directed, i.e. the set of upper

bounds, so-called upper cone U(a,b) = {x ∈ D;a ≤ x and b ≤ x} 6= /0

for all a,b ∈ D. Also conversely, if (D;≤) is a directed ordered set and
we define a binary operation ⊔ as follows

if x ≤ y then x ⊔y = y = y ⊔x

if neither x ≤ y nor y ≤ x then x ⊔y = y ⊔x ∈ U(x ,y) is an

arbitrary element from the upper cone U(x ,y)

then (D;⊔) is a commutative directoid. Let us note that every ordered

set with a greatest element 1 is directed since 1 ∈ U(x ,y) for all

x ,y ∈ D.



Theorem 9

Let A = (A;⊕,¬,0) be a skew basic algebra, ≤ its induced order.
Define 1 = ¬0, x ⊔y = ¬(¬x ⊕ y)⊕ y and for a ≤ x , xa = ¬x ⊕a. Then

D(A) = (A;⊔,(a)a∈A,0,1) is a bounded commutative directoid with
sectional switching involutions where

(a) the global involution x 7→ x0 is antitone

(b) if y ≤ x then xy = (y0)(x
0).

Moreover, the order of the directoid (A;⊔) coincides with that of A .

In what follows, we can prove the converse.

Theorem 10

Let D = (D;⊔,(a)a∈D ,0,1) be a bounded commutative directoid with

sectional switching involutions such that the global involution x 7→ x0

is antitone and y ≤ x ⇒ xy = (y0)(x
0). Define x ⊕ y = (x0 ⊔y)y and

¬x = x0. Then A (D) = (D;⊕,¬,0) is a skew basic algebra.

Let us note that if A = (A;⊕,¬,0) is a skew basic algebra and D(A)
the assigned commutative directoid then A (D(A)) = A .



Example 2 (1/2)

Let A = {0,a,b,c,d ,1}. Consider the skew basic algebra
A = (A;⊕,¬,0), where the operations ¬ and ⊕ are given by the tables

⊕ 0 a b c d 1

0 0 a b c d 1
a a c d c 1 1

b b d c 1 d 1

c c c 1 1 1 1
d d 1 d 1 1 1

1 1 1 1 1 1 1

x 0 a b c d 1

¬x 1 d c b a 0
.

Note that the operation ⊕ is commutative, i.e. x ⊕ y = y ⊕ x for each
x ,y ∈ A.



Example 2 (2/2)

Its underlying poset is depicted in Figure 3. We have,

a⊔b = b⊔a = ¬(¬a⊕b)⊕b = d and a⊔c = c, a⊔d = d , b⊔c = c,
b⊔d = d , c⊔d = 1 determining the commutative directoid D(A).

0

1

a

c

b

d = a⊔b = b⊔a

Figure 3

The sectional switching involutions are as follows:

In [0,1], x0 = ¬x .

In [a,1] it is: aa = 1, ca = ¬c ⊕a = d , da = ¬d ⊕a = c, 1a = a.
In [b,1] it is: bb = 1, cb = ¬c ⊕b = c, db = ¬d ⊕b = d , 1b = b.

In [c,1], [d ,1] and [1,1] it is determined uniquely.

Note that here the involutions are antitone in each section.



Example 3 (1/2)

Consider the skew basic algebra A = ({0,a,b,c,d ,e,1};⊕,¬,0),
where the operations ¬ and ⊕ are given by the tables

⊕ 0 a b c d e 1

0 0 a b c d e 1
a a e c d d 1 1

b b c d e 1 e 1

c c d e 1 1 1 1
d d a 1 1 1 1 1

e e 1 b 1 1 1 1
1 1 1 1 1 1 1 1

x 0 a b c d e 1

¬x 1 e d c b a 0
.

Note that the operation ⊕ is not commutative since e.g.

d ⊕a = a 6= d = a⊕d . The induced bounded commutative directoid

D(A) is visualized in Figure 4.



Example 3 (2/2)

Let us note that this poset is a lattice with respect to suprema and

infima but it is not a semilattice with respect to the directoid

operation ⊔ because a⊔b = b⊔a = 1 but sup(a,b) = c.

0

a⊔b = 1 = b⊔a

a

d

b

e

c

Figure 4

The sectional switching involutions are as follows:
In [0,1], x0 = ¬x . In [d ,1], [e,1] and [1,1] it is determined uniquely.

In [a,1] it is: aa = 1, ca = d , da = c, ea = e, 1a = a.

In [b,1] it is: bb = 1, cb = e, db = d , eb = c, 1b = b.
In [c,1] it is: cc = 1, dc = e, ec = d and 1c = c.

Note that the involutions in sections [a,1] and [b,1] are not antitone.



A skew basic algebra A = (A;⊕,¬,0) will be called a lattice skew
basic algebra if the induced poset (A;≤) is a lattice and

x ∨y = ¬(¬x ⊕ y)⊕ y . Of course, since x 7→ x0 = ¬x is an antitone
involution, we get x ∧y = ¬(¬x ∨¬y) by DeMorgan laws.

Theorem 11

A skew basic algebra A = (A;⊕,¬,0) is a lattice skew basic algebra if

and only if it satisfies the axiom

(L) ¬(¬x ⊕ (¬(¬y ⊕ z)⊕ z))⊕ (¬(¬y ⊕ z)⊕ z) =
¬(¬(¬(¬x ⊕ y)⊕ y)⊕ z)⊕ z.

In the previous two examples we have seen directoids, which are not
lattices. Obviously the identity (L) does not hold for them.

We finish this section with an interesting connection between skew
basic algebras and MV-algebras.

Theorem 12

A skew basic algebra is an MV-algebra if and only if the operation ⊕
is associative.
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Let S = (S;+,′ ,0,1) be a skew effect algebra and ≤ its induced

order. The operation x + y is defined if and only if the elements x ,y

are orthogonal, i.e. if x ≤ y ′ which is equivalent to y ≤ x ′. Then
x + y = (y ′)x = (x ′)y in the induced poset with sectional switching

involutions.

Theorem 13

Let A = (A;⊕,¬,0) be a skew basic algebra and ≤ its induced order.

Define 1 = ¬0, x ′ = ¬x and

x + y = x ⊕ y if and only if x ≤ y ′
.

Then S (A) = (A;+,′ ,0,1) is a skew effect algebra whose induced

order coincides with ≤.



Example 4 (1/2)

Let A = {0,a,b,c,d ,1}. Consider the skew basic algebra

A = (A;⊕,¬,0), where the operations ¬ and ⊕ are given by the tables

⊕ 0 a b c d 1

0 0 a b c d 1

a a d c c 1 1
b b c d 1 d 1

c c a 1 1 1 1

d d 1 b 1 1 1
1 1 1 1 1 1 1

x 0 a b c d 1

¬x 1 d c b a 0
.

Its underlying poset is depicted in Figure 5, x ⊔y = ¬(¬x ⊕ y)⊕ y .

0

a⊔b = 1 = b⊔a

a

c

b

d

Figure 5



Example 4 (2/2)

Now, by the last theorem, we define x ′ = ¬x and

x + y = x ⊕ y if and only if x ≤ y ′
.

Then S (A) = (A;+,′ ,0,1) is a skew effect algebra where the partial

operation + is given by the following table

+ 0 a b c d 1

0 0 a b c d 1
a a d c − 1 −
b b c d 1 − −
c c − 1 − − −
d d 1 − − − −
1 1 − − − − −

Let us note that the partial operation + in the skew effect algebra
S (A) is commutative contrary to the fact that skew basic algebra A

is not commutative because e.g. a⊕ c 6= c ⊕a.



Now, we are ready to describe a completion of a skew effect algebra

into a total algebra which is a skew basic algebra.

Theorem 14

Let S = (S;+,
′
,0,1) be a skew effect algebra and ≤ its induced

order. Then there exists a skew basic algebra A (S) = (S;⊕,¬,0)
such that ≤ coincides with the induced order of S and

x + y = x ⊕ y if x ≤ y ′
.

Moreover, if S is a lattice skew effect algebra then A (S) is a lattice

skew basic algebra and the underlying lattices coincide.

As shown above, a skew basic algebra A (S) is assigned to a skew

effect algebra in a unique way if and only if S is a lattice skew effect

algebra. On the other hand, we have shown that the assignment
S 7→ A (S ) captures the whole information about S for any

assigned A (S ) because x + y = x ⊕ y whenever x + y is defined.
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Pseudo basic algebras cannot be used as extensions of skew effect

algebras because orthogonal elements in pseudo basic algebras
need not commute. Moreover, the underlying poset of a pseudo basic

algebra is a semilattice which need not be the case of a skew effect

algebra, see examples in the previous section. In what follows, we
are going to show that every strict pseudo basic algebra can become

a lattice skew basic algebra when the orthogonal elements commute.

In the example below, we get a strict pseudo basic algebra, which is
not a skew basic algebra.



Example 5

Define ⊕ and ¬ on the set {0,a,b,c,1} by the following tables

⊕ 0 a b c 1

0 0 a b c 1

a a c c 1 1

b b b 1 1 1
c c 1 1 1 1

1 1 1 1 1 1

x 0 a b c 1

¬x 1 c b a 0
.

One can easily check that A = ({0,a,b,c,1};⊕,¬,0) is a strict

pseudo basic algebra.

On the other hand A does not satisfy the axiom (A6) because

b⊕a = b 6= c = a⊕b = a⊕¬(¬(b⊕a)⊕a)

and hence it is not a skew basic algebra.



The axiom (A6) is just the missing condition characterizing lattice
skew basic algebras among strict pseudo basic algebras.

Theorem 15

A strict pseudo basic algebra A is a lattice skew basic algebra if and

only if it satisfies the identity (A6).

In what follows, we are checking if a section [p,1] of a given skew

basic algebra A = (A;⊕,¬,0) can be organized into a skew basic

algebra again. Of course, it is not possible for every p ∈ A because
the sectional involution xp need not be antitone and, in the section

[p,1], it should become a global involution. However, it is the only

constrain as shown in the following.

Theorem 16

Let A = (A;⊕,¬,0) be a skew basic algebra and a ∈ A. On a section

[a,1] we define x ⊕a y = ¬(¬x ⊕a)⊕ y and ¬ax = ¬x ⊕a for all
x ,y ∈ [a,1]. Then ([a,1];⊕a,¬a,a) is a skew basic algebra if and only

if the sectional involution xa in A is antitone.



Example 6

Consider the skew basic algebra of Example 2. Then the sectional
switching involutions in the nontrivial sections [a,1], [b,1] are antitone

and hence these sections can be converted into skew basic algebras.

On the contrary, in the skew basic algebra of Example 3, the sectional
switching involutions in the nontrivial sections [a,1], [b,1] are not

antitone and hence these sections cannot be organized in skew basic
algebras.



Appendix

Now, we show the number of non-isomorhic models of a given
algebras of a given number of elements. Specifically, we focus on the

MV-algebras, basic algebras (BA), pseudo basic algebras (PBA),

commutative PBA, strict PBA, skew basic algebras (SBA) and
commutative SBA. The numerical values in the following table were

calculated using the program Prover9 and Mace4, see
http://www.cs.unm.edu/~mccune/mace4/. The values in the fields

marked with “–” values are not known, due to excessive

computational complexity (time and/or memory).

2 3 4 5 6 7 8 9 10

MV-algebras 1 1 2 1 2 1 3 2 2
BA 1 1 3 4 11 15 53 81 305

PBA 1 1 4 23 330 11516 – – –
com. PBA 1 1 2 1 2 2 5 3 5

strict PBA 1 1 3 5 25 164 4698 – –

SBA 1 1 3 4 13 25 288 2116 –
com. SBA 1 1 2 1 3 2 17 6 69

The table columns correspond to sizes of a given algebras (number
of their elements). The first row contains the numbers of

non-isomorphic MV-algebras, . . .

http://www.cs.unm.edu/~mccune/mace4/


Appendix

We can see from the table, for instance, that:

there exists a 4-element basic algebra which is not an

MV-algebra and that there exists a 4-element pseudo basic
algebra which is not a basic algebra. It is 4-element chain, where

0 < a < b < 1, ¬0 = 1, ¬a = a, ¬b = b and ¬1 = 0, whence the

corresponding involution is switching, but not antitone.

there are 11516 non-isomorphic 7-element pseudo basic

algebras, but only 164 of them are strict, and only two of them
are commutative. Moreover, one of this two commutative pseudo

basic algebras is not an MV-algebra (see Figure 2).
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