Reticulations on residuated lattices

AAA91

5-7 Feb. 2016, Brno

Michiro Kondo Tokyo Denki University, JAPAN A map $\lambda : A \to L$ is called *reticulation* if it satisfies

(R1)
$$\lambda(a \odot b) = \lambda(a) \land \lambda(b)$$

(R2) $\lambda(a \lor b) = \lambda(a) \lor \lambda(b)$
(R3) $\lambda(0) = 0, \ \lambda(1) = 1$
(R4) $\lambda : A \to L$ is onto
(R5) $\lambda(a) \le \lambda(b) \iff a^n \le b$ for some $n \in N$

Then we have

- **1.** Spec(A) is a compact T_0 -space
- **2.** Spec(A) and Spec(L) are homeomorphic

$$\operatorname{Spec}(A) \cong \operatorname{Spec}(L)$$

Results

1. A reticulation map λ can be defined by two conditions:

(R4)
$$\lambda : A \to L$$
 is onto;
(R5) $\lambda(a) \le \lambda(b) \iff (\exists n \in N) \text{ s.t. } a^n \le b$

2. A reticulation map λ can be considered as a lattice homomorphism between A and L. Moreover, $(\mathcal{PF}(A), \xi)$ is a unique reticulation on A up to isomorphism and

$$A/\ker(\lambda)\cong \mathcal{PF}(A)$$

An algebraic system $(A, \land, \lor, \odot, \rightarrow, 0, 1)$ is called a residuated lattice if

(1) $(A, \land, \lor, 0, 1)$ is a bounded lattice;

(2) $(A, \odot, 1)$ is a commutative monoid;

(3) For all $a, b, c \in A$,

$$a \odot b \le c \iff a \le b \to c.$$

Proposition 1 Let *A* be a residuated lattice. For
all
$$a, b, c \in A$$
, we have
(1) $a \leq b \iff a \rightarrow b = 1$
(2) $a \rightarrow (b \rightarrow c) = a \odot b \rightarrow c = b \rightarrow (a \rightarrow c)$
(3) $a \odot (a \rightarrow b) \leq b$
(4) $a \rightarrow b \leq (b \rightarrow c) \rightarrow (a \rightarrow c)$
(5) $a \rightarrow b \leq (c \rightarrow a) \rightarrow (c \rightarrow b)$

 $F \subseteq A \ (F \neq \emptyset)$ is called a filter $(F \in \mathcal{F}(A))$ if

$\iff (F1) \ x, y \in F \text{ implies } x \odot y \in F;$ (F2) If $x \in F$ and $x \leq y$, then $y \in F$.

 $[a) = \{b \in A \mid (\exists n \in N) \text{ s.t. } a^n \leq b\} \quad (a \in A)$ is called a *principal* filter ([a) $\in \mathcal{PF}(A)$)

A filter $P(\neq A)$ is called *prime* ($P \in \text{Spec}(A)$) if it satisfies the condition

 $a \lor b \in P$ implies $a \in P$ or $b \in P$

For a lattice *L*, a subset $F \subseteq L$ ($F \neq \emptyset$) is called a *lattice filter* ($F \in \mathcal{LF}(L)$) if

> (LF1) $x, y \in F \Rightarrow x \land y \in F$ (LF2) $x \in F$ and $x \leq y \Rightarrow y \in F$

Moreover, $F \in \mathcal{FL}(L), F(\neq L)$ is called *prime* ($F \in$ Spec(L)) if it satisfies the condition

$$x \lor y \in F \Rightarrow x \in F$$
 or $y \in F$

Let A be a residuated lattice and L a bounded distributive lattice. For any subset $S \subseteq A, T \subseteq L$, we take

$$D_A(S) = \{ P \in \operatorname{Spec}(A) \mid S \not\subseteq P \}$$
$$D_L(T) = \{ P \in \operatorname{Spec}(L) \mid T \not\subseteq P \}$$

Proposition 2

(1) $\tau_A = \{D_A(S) | S \subseteq A\}$ is a topology on Spec(A) (2) $\sigma_L = \{D_L(T) | T \subseteq L\}$ is a topology on Spec(L) A pair (L, λ) of a bounded distributive lattice Land a map $\lambda : A \to L$ is called a *reticulation* on Aif

(R1)
$$\lambda(a \odot b) = \lambda(a) \land \lambda(b);$$

(R2) $\lambda(a \lor b) = \lambda(a) \lor \lambda(b);$
(R3) $\lambda(0) = 0, \ \lambda(1) = 1;$
(R4) $\lambda : A \to L$ is onto;
(R5) $\lambda(a) < \lambda(b) \iff a^n < b$ for some $n \in N$.

Proposition 3 Let (L, λ) be a reticulation on A. Then we have

(1)
$$a \le b \Rightarrow \lambda(a) \le \lambda(b)$$

(2) $\lambda(a \land b) = \lambda(a) \land \lambda(b)$
(3) For all $n \in N$, $\lambda(a^n) = \lambda(a)$
(4) $\lambda(a) = \lambda(b) \iff [a) = [b)$

Theorem 4 [Mureşan] Let (L, λ) be a reticulation on A. Then

(a) Spec(A) and Spec(L) are topological spaces. (b) λ^* : Spec(L) \rightarrow Spec(A) is a homeomorphism, where $\lambda^*(P) = \lambda^{-1}(P)$ ($P \in \text{Spec}(L)$). (c) For two reticulations (L_1, λ_1) and (L_2, λ_2) on A, there exists a lattice isomorphism f: $L_1 \rightarrow L_2$ such that $\lambda_1 \circ f = \lambda_2$. (d) $(\mathcal{PF}(A), \eta)$ is a reticulation on A, where $\eta(a) = [a].$

Let $f : A \rightarrow L$ be a map with (R4) and (R5).

(R4) $f: A \to L$ is onto; (R5) $f(a) \le f(b) \iff (\exists n \in N)$ s.t. $a^n \le b$

Lemma 5

(1) $a \le b \Rightarrow f(a) \le f(b)$ (2) $f(a \land b) = f(a \odot b)$ (3) $f(a \land b) = f(a) \land f(b) \cdots (R1)$ (4) $f(a \lor b) = f(a) \lor f(b) \cdots (R2)$ (5) $f(0) = 0, f(1) = 1 \cdots (R3)$ **Theorem 6** A map $f : A \to L$ is a reticulation on A if and only if

(R4)
$$f: A \to L$$
 is onto;
(R5) $f(a) \leq f(b) \iff (\exists n \in N)$ s.t. $a^n \leq b$

Let (L, λ) be a reticulation on A. Then we have

(h1)
$$\lambda(0) = 0, \ \lambda(1) = 1$$

(h2) $\lambda(a \wedge b) = \lambda(a \odot b) = \lambda(a) \wedge \lambda(b)$
(h3) $\lambda(a \vee b) = \lambda(a) \vee \lambda(b)$
 \Downarrow

 $\lambda : A \rightarrow L$ is a onto lattice homomorphism.

If we take $ker(\lambda) = \{(a, b) | \lambda(a) = \lambda(b), a, b \in A\}$, then

Proposition 7 $ker(\lambda)$ is a congruence on A w.r.t.

 $\wedge, \odot, \vee.$

$$a / \operatorname{ker}(\lambda) = \{b \in A \mid (a, b) \in \operatorname{ker}(\lambda)\}$$
$$A / \operatorname{ker}(\lambda) = \{a / \operatorname{ker}(\lambda) \mid a \in A\}$$

We define $\Box, \sqcup, 0, 1$ on $A / ker(\lambda)$ as follows:

$$a / \operatorname{ker}(\lambda) \sqcap b / \operatorname{ker}(\lambda) = (a \land b) / \operatorname{ker}(\lambda)$$
$$= (a \odot b) / \operatorname{ker}(\lambda)$$
$$a / \operatorname{ker}(\lambda) \sqcup b / \operatorname{ker}(\lambda) = (a \lor b) / \operatorname{ker}(\lambda)$$
$$0 = 0 / \operatorname{ker}(\lambda),$$
$$1 = 1 / \operatorname{ker}(\lambda)$$

Theorem 8 [Homomorphism Theorem] (1) $(A/\ker(\lambda), \Box, \sqcup, 0, 1)$ is a bounded distributive lattice.

(2) A map $\nu : A \to A/\ker(\lambda)$ defined by $\nu(a) = a/\ker(\lambda)$ gives a reticulation $(A/\ker(\lambda), \nu)$ on A and

$$A/\ker(\lambda)\cong L.$$

Let $D_A(a) = \{P \in \text{Spec}(A) \mid a \notin P\}$. If we define a relation \equiv on A by $a \equiv b \iff D_A(a) = D_A(b)$, then \equiv is a congruence on A.

Theorem [Mureşan] For $A/_{\equiv} = \{[a] \mid a \in A\}$, we have

1. $(A/_{\equiv}, \land, \lor, [0], [1])$ is a bounded distributive lattice.

2. $(A/\equiv, \eta)$ is a reticulation on A.

If we note that $\lambda(a) = \lambda(b) \iff [a) = [b)$, then

$$a \equiv b \iff D_A(a) = D_A(b)$$
$$\iff a \notin P \text{ iff } b \notin P \ (\forall P \in \text{Spec}(A))$$
$$\iff a \in P \text{ iff } b \in P \ (\forall P \in \text{Spec}(A))$$
$$\iff [a) = [b)$$
$$\iff \lambda(a) = \lambda(b)$$
$$\iff (a, b) \in \text{ker}(\lambda)$$

This implies that the binary relation \equiv is identical with the kernel ker(λ) of λ .

If we define an order \sqsubseteq on $\mathcal{PF}(A)$ by $[a) \sqsubseteq [b) \iff [b) \subseteq [a),$

then $\mathcal{PF}(A)$ is a bounded distributive lattice.

We define a map $\xi : A \to \mathcal{PF}(A)$ by $\xi(a) = [a)$.

Theorem 9 $(\mathcal{PF}(A),\xi)$ is the reticulation of A

and

$$A/\ker(\lambda) \cong \mathcal{PF}(A).$$

$$\Uparrow$$
Homomorphism Theorem