Boolean Operations

- $n \in \mathbb{N}$
Boolean Operations

- $n \in \mathbb{N}$
- $f : \{0, 1\}^n \rightarrow \{0, 1\}$ is called n-ary Boolean operation
Boolean Operations

- $n \in \mathbb{N}$
- $f : \{0, 1\}^n \rightarrow \{0, 1\}$ is called n-ary Boolean operation
- P_2^n set of all n-ary Boolean operations
Boolean Operations

- \(n \in \mathbb{N} \)
- \(f : \{0, 1\}^n \rightarrow \{0, 1\} \) is called \(n \)-ary Boolean operation
- \(P^n_2 \) set of all \(n \)-ary Boolean operations
- \(|P^n_2| = 2^{2^n} \)
Boolean Operations

- $n \in \mathbb{N}$
- $f : \{0, 1\}^n \rightarrow \{0, 1\}$ is called n-ary Boolean operation
- P_2^n set of all n-ary Boolean operations
- $|P_2^n| = 2^{2^n}$

Example

$n = 2$: binary Boolean operations
<table>
<thead>
<tr>
<th></th>
<th>f_1</th>
<th>f_2</th>
<th>f_3</th>
<th>f_4</th>
<th>f_5</th>
<th>f_6</th>
<th>f_7</th>
<th>f_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0,0)$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$(0,1)$</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$(1,0)$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$(1,1)$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>f_9</td>
<td>f_{10}</td>
<td>f_{11}</td>
<td>f_{12}</td>
<td>f_{13}</td>
<td>f_{14}</td>
<td>f_{15}</td>
<td>f_{16}</td>
</tr>
<tr>
<td>$(0,0)$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$(0,1)$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$(1,0)$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$(1,1)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Definition of a binary operation $+$ on P^2_2 by
Binary operation

- Definition of a binary operation $+$ on P_2^n by

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f + g := S_n^n(f, g, \ldots, g)$, i.e. $(f + g)(\bar{a}) := f(g(\bar{a}), \ldots, g(\bar{a}))$ for all $\bar{a} \in {0, 1}^n$</td>
</tr>
</tbody>
</table>
Definition of a binary operation $+$ on P_2^n by

\[
\text{Definition}
\]

\[
f + g := S_n^*(f, g, \ldots, g), \text{ i.e. } (f + g)(\overline{a}) := f(g(\overline{a}), \ldots, g(\overline{a})) \text{ for all } \overline{a} \in \{0, 1\}^n
\]

Example
Definition of a binary operation $+$ on P_2^n by

Definition

$f + g := S_n^*(f, g, \ldots, g)$, i.e. $(f + g)(\overline{a}) := f(g(\overline{a}), \ldots, g(\overline{a}))$ for all $\overline{a} \in \{0, 1\}^n$

Example

- $f_3 + f_4 = f_1$ since
Definition of a binary operation $+$ on P^n_2 by

\[
\text{Definition} \quad f + g := S^n_n(f, g, \ldots, g), \text{ i.e. } (f + g)(\overline{a}) := f(g(\overline{a}), \ldots, g(\overline{a})) \text{ for all } \overline{a} \in \{0, 1\}^n
\]

Example

- $f_3 + f_4 = f_1$ since
- $f_3(f_4(0, 0), f_4(0, 0)) = f_3(1, 1) = 1$
Binary operation

- Definition of a binary operation $+$ on P_n^2 by

Definition

$f + g := S_n(f, g, \ldots, g)$, i.e. $(f + g)(\overline{a}) := f(g(\overline{a}), \ldots, g(\overline{a}))$ for all $\overline{a} \in \{0, 1\}^n$

Example

- $f_3 + f_4 = f_1$ since
- $f_3(f_4(0, 0), f_4(0, 0)) = f_3(1, 1) = 1$
- $f_3(f_4(0, 1), f_4(0, 1)) = f_3(1, 1) = 1$
Binary operation

- Definition of a binary operation $+ \text{ on } P_n^2$ by

Definition

$$f + g := S^n_n(f, g, \ldots, g), \text{ i.e. } (f + g)(\overline{a}) := f(g(\overline{a}), \ldots, g(\overline{a})) \text{ for all } \overline{a} \in \{0, 1\}^n$$

Example

- $f_3 + f_4 = f_1$ since
- $f_3(f_4(0, 0), f_4(0, 0)) = f_3(1, 1) = 1$
- $f_3(f_4(0, 1), f_4(0, 1)) = f_3(1, 1) = 1$
- $f_3(f_4(1, 0), f_4(1, 0)) = f_3(0, 0) = 1$
Definition of a binary operation $+$ on P_2^n by

$$f + g := S_n^1(f, g, \ldots, g),$$

i.e.

$$(f + g)(\bar{a}) := f(g(\bar{a}), \ldots, g(\bar{a}))$$

for all $\bar{a} \in \{0, 1\}^n$

Example

- $f_3 + f_4 = f_1$ since
 - $f_3(f_4(0, 0), f_4(0, 0)) = f_3(1, 1) = 1$
 - $f_3(f_4(0, 1), f_4(0, 1)) = f_3(1, 1) = 1$
 - $f_3(f_4(1, 0), f_4(1, 0)) = f_3(0, 0) = 1$
 - $f_3(f_4(1, 1), f_4(1, 1)) = f_3(1, 1) = 1$
Semigroup

$(P^n_2, +)$ is a semigroup
Semigroup

• $\left(P_n^2, + \right)$ is a semigroup

Fact

The semigroup $\left(P_n^2, + \right)$ is well studied in Semigroup Theory.
Semigroup

- \((P^n_2, +)\) is a semigroup

Fact

The semigroup \((P^n_2, +)\) is well studied in Semigroup Theory.

- Why?
Let \(A \) be any set
Transformations

- Let A be any set
- $\alpha : A \rightarrow A$ is called \textbf{transformation on} A
Let A be any set

$\alpha : A \rightarrow A$ is called transformation on A

$T(A)$ set of all transformations on A
Transformations

- Let A be any set
- $\alpha : A \rightarrow A$ is called transformation on A
- $T(A)$ set of all transformations on A
- $\alpha, \beta \in T(A)$
Transformations

- Let A be any set
- $\alpha : A \rightarrow A$ is called **transformation on** A
- $T(A)$ set of all transformations on A
- $\alpha, \beta \in T(A)$
- **composition** of transformations $a(\alpha \cdot \beta) = a(\alpha \beta) = (a\alpha)\beta$
Let \(A \) be any set

\(\alpha : A \rightarrow A \) is called **transformation on** \(A \)

\(T(A) \) set of all transformations on \(A \)

\(\alpha, \beta \in T(A) \)

composition of transformations \(a(\alpha \cdot \beta) = a(\alpha \beta) = (a\alpha)\beta \)

\(T(A) \) forms a semigroup under composition
Let A be any set

$\alpha : A \to A$ is called transformation on A

$T(A)$ set of all transformations on A

$\alpha, \beta \in T(A)$

composition of transformations $a(\alpha \cdot \beta) = a(\alpha \beta) = (a\alpha)\beta$

$T(A)$ forms a semigroup under composition

$im\alpha := \{a\alpha : a \in A\}$ is called image of α
Let A be any set

- $\alpha : A \rightarrow A$ is called **transformation on** A
- $T(A)$ set of all transformations on A
- $\alpha, \beta \in T(A)$
- **composition** of transformations $a(\alpha \cdot \beta) = a(\alpha \beta) = (a\alpha)\beta$
- $T(A)$ forms a semigroup under composition
- $\text{im}\alpha := \{a\alpha : a \in A\}$ is called **image of** α
- $B \subseteq A$
Let A be any set

$\alpha : A \rightarrow A$ is called \textbf{transformation on} A

$T(A)$ set of all transformations on A

$\alpha, \beta \in T(A)$

\textbf{composition} of transformations $a(\alpha \cdot \beta) = a(\alpha \beta) = (a\alpha)\beta$

$T(A)$ forms a semigroup under composition

$\text{im}\alpha := \{a\alpha : a \in A\}$ is called \textbf{image of} α

$B \subseteq A$

$T(A, B) := \{\alpha \in T(A) : \text{im}\alpha \subseteq B\}$
Transformations with restricted range

- $T(A, B) \leq T(A)$
Transformations with restricted range

- $T(A, B) \leq T(A)$
- semigroup with restricted range (Symons, 1975)
Transformations with restricted range

- $T(A, B) \leq T(A)$
- semigroup with restricted range (Symons, 1975)
- 2008: "Regularity and Green’s Relations on a Semigroup of Transformations with Restricted Range", J. Sanwong, and Worachead Sommanee,
Transformations with restricted range

- $T(A, B) \leq T(A)$
- semigroup with restricted range (Symons, 1975)
- 2008: "Regularity and Green’s Relations on a Semigroup of Transformations with Restricted Range", J. Sanwong, and Worachead Sommanee,
- 2011: "The Ideal Structure of Semigroups of Transformations with restricted range", Suzana Mendes-Gonçales and R. P. Sullivan
Transformations with restricted range

- $T(A, B) \leq T(A)$

- semigroup with restricted range (Symons, 1975)

- 2008: "Regularity and Green’s Relations on a Semigroup of Transformations with Restricted Range", J. Sanwong, and Worachead Sommanee,

- 2011: "The Ideal Structure of Semigroups of Transformations with restricted range", Suzana Mendes-Gonçales and R. P. Sullivan

- 2011: "The regular part of a semigroup of transformations with restricted range", J Sanwong
Transformations with restricted range

- $T(A, B) \leq T(A)$
- semigroup with restricted range (Symons, 1975)
- 2008: "Regularity and Green’s Relations on a Semigroup of Transformations with Restricted Range", J. Sanwong, and Worachead Sommanee,
- 2011: "The Ideal Structure of Semigroups of Transformations with restricted range", Suzana Mendes-Gonçales and R. P. Sullivan
- 2011: "The regular part of a semigroup of transformations with restricted range", J Sanwong
- 2013: "Rank and idempotent rank of finite full transformation semigroups with restricted range", Worachead Sommanee,
Transformations with restricted range

- $T(A, B) \leq T(A)$
- semigroup with restricted range (Symons, 1975)
- 2008: "Regularity and Green’s Relations on a Semigroup of Transformations with Restricted Range", J. Sanwong, and Worachead Sommanee,
- 2011: "The Ideal Structure of Semigroups of Transformations with restricted range", Suzana Mendes-Gonçales and R. P. Sullivan
- 2011: "The regular part of a semigroup of transformations with restricted range", J Sanwong
- 2013: "Rank and idempotent rank of finite full transformation semigroups with restricted range", Worachead Sommanee,
- 2016: "On Semigroups of Orientation-preserving Transformations with Restricted Range", Vítor H. Fernandes, Preeyanuch Honyamb, Teresa M. Quinteiroc, and Boorapa Singhad
A = \{0, 1\}^n
A bijection

- $A = \{0, 1\}^n$
- $B = \Delta \times n := \{(0, \ldots, 0), (1, \ldots, 1)\} \subseteq \{0, 1\}^n$
\begin{itemize}
\item $A = \{0, 1\}^n$
\item $B = \Delta \times n := \{(0, \ldots, 0), (1, \ldots, 1)\} \subseteq \{0, 1\}^n$
\end{itemize}

Definition

Let $f \in P_2^n$, $\alpha_f : \{0, 1\}^n \rightarrow \Delta \times n$ be defined by $\overline{a}\alpha_f := (f(\overline{a}), \ldots, f(\overline{a}))$.

\[f \in P_2^n, \alpha_f : \{0, 1\}^n \rightarrow \Delta \times n \text{ by } \overline{a}\alpha_f := (f(\overline{a}), \ldots, f(\overline{a})). \]
Bijection

- \(A = \{0, 1\}^n \)
- \(B = \Delta \times n := \{(0, \ldots, 0), (1, \ldots, 1)\} \subseteq \{0, 1\}^n \)

Definition

\(f \in P_2^n, \alpha_f : \{0, 1\}^n \rightarrow \Delta \times n \) by \(\overline{a}\alpha_f := (f(\overline{a}), \ldots, f(\overline{a})) \).

\(\{\alpha_f : f \in P_2^n\} \subseteq T(\{0, 1\}^n, \Delta \times n) \)
Bijection

- $A = \{0, 1\}^n$
- $B = \Delta \times n := \{(0, \ldots, 0), (1, \ldots, 1)\} \subseteq \{0, 1\}^n$

Definition

$f \in P^n_2$, $\alpha_f : \{0, 1\}^n \to \Delta \times n$ by $\bar{a}\alpha_f := (f(\bar{a}), \ldots, f(\bar{a}))$.

- $\{\alpha_f : f \in P^n_2\} \subseteq T(\{0, 1\}^n, \Delta \times n)$

Fact

$h : P^n_2 \to T(\{0, 1\}^n, \Delta \times n)$ with $h : f \mapsto \alpha_f$ is bijective.
We can show that \(h \) is isomorphism.
Isomorphism

- We can show that h is isomorphism

Theorem

$$\left(P_n^2; + \right) \cong T(\{0,1\}^n, \Delta \times n).$$
We can show that h is isomorphism.

Theorem

$$(P^n_2; +) \cong T(\{0, 1\}^n, \Delta \times n).$$

Proof.
Isomorphism

We can show that h is isomorphism

Theorem

$\left(P_2^n ; + \right) \cong T(\{0, 1\}^n, \Delta \times_n)$.

Proof.

- Let $h : P_2^n \to T(\{0, 1\}^n, \Delta \times_n)$ with $h : f \mapsto \alpha_f$
Isomorphism

- We can show that h is isomorphism

Theorem

$(P_2^n; +) \cong T([0, 1]^n, \Delta \times n)$.

Proof.

- Let $h : P_2^n \rightarrow T([0, 1]^n, \Delta \times n)$ with $h : f \mapsto \alpha_f$
- h is bijective
Isomorphism

- We can show that h is isomorphism

Theorem

$$(P_2^n; +) \cong T(\{0, 1\}^n, \Delta_{\times n}).$$

Proof.

- Let $h : P_2^n \rightarrow T(\{0, 1\}^n, \Delta_{\times n})$ with $h : f \mapsto \alpha_f$
- h is bijective
- $\bar{a}(h(f + g)) = \bar{a}\alpha(f + g)$
We can show that h is isomorphism.

Theorem

\[(P^n_2;+) \cong T([0,1]^n, \Delta \times n).\]

Proof.

- Let $h : P^n_2 \to T([0,1]^n, \Delta \times n)$ with $h : f \mapsto \alpha_f$
- h is bijective
- $\bar{a}(h(f + g)) = \bar{a}\alpha(f + g)$
- $= (f + g(\bar{a}), \ldots, f + g(\bar{a}))$
Isomorphism

- We can show that h is isomorphism

Theorem

$$(P^n_2; +) \cong T(\{0, 1\}^n, \Delta \times n).$$

Proof.

- Let $h : P^n_2 \to T(\{0, 1\}^n, \Delta \times n)$ with $h : f \mapsto \alpha_f$
- h is bijective
- $\bar{a}(h(f + g)) = \bar{a}\alpha(f + g)$
- $= (f + g(\bar{a}), \ldots, f + g(\bar{a}))$
- $= (f(g(\bar{a}), \ldots, g(\bar{a})), \ldots, f(g(\bar{a}), \ldots, g(\bar{a})))$
We can show that h is isomorphism

Theorem

$\left(P_2^n; + \right) \cong T(\{0, 1\}^n, \Delta_{\times n})$.

Proof.

- Let $h : P_2^n \rightarrow T(\{0, 1\}^n, \Delta_{\times n})$ with $h : f \mapsto \alpha_f$
- h is bijective
- $\overline{a}(h(f + g)) = \overline{a}\alpha_{f+g}$

 $= (f + g(\overline{a}), \ldots, f + g(\overline{a}))$

 $= (f(g(\overline{a}), \ldots, g(\overline{a})), \ldots, f(g(\overline{a}), \ldots, g(\overline{a})))$

 $= (g(\overline{a}), \ldots, g(\overline{a}))\alpha_f = (\overline{a}\alpha_g)\alpha_f = \overline{a}(\alpha_g\alpha_f)$
Isomorphism

- We can show that h is isomorphism

Theorem

$$(P^n_2; +) \cong T(\{0, 1\}^n, \Delta_{\times n}).$$

Proof.

- Let $h : P^n_2 \to T(\{0, 1\}^n, \Delta_{\times n})$ with $h : f \mapsto \alpha_f$
- h is bijective
- $\bar{a}(h(f + g)) = \bar{a}\alpha_{f+g}$
- $= (f + g(\bar{a}), \ldots, f + g(\bar{a}))$
- $= (f(g(\bar{a}), \ldots, g(\bar{a})), \ldots, f(g(\bar{a}), \ldots, g(\bar{a})))$
- $= (g(\bar{a}), \ldots, g(\bar{a}))\alpha_f = (\bar{a}\alpha_g)\alpha_f = \bar{a}(\alpha_g\alpha_f)$
- $= \bar{a}(h(g)h(f)).$
We can show that h is isomorphism.

Theorem

$$(P^n_2; +) \cong T(\{0, 1\}^n, \Delta \times n).$$

Proof.

- Let $h : P^n_2 \rightarrow T(\{0, 1\}^n, \Delta \times n)$ with $h : f \mapsto \alpha_f$
- h is bijective
- $\bar{a}(h(f + g)) = \bar{a}(f + g)$
- $= (f + g(\bar{a}), \ldots, f + g(\bar{a}))$
- $= (f(g(\bar{a}), \ldots, g(\bar{a})), \ldots, f(g(\bar{a}), \ldots, g(\bar{a})))$
- $= (g(\bar{a}), \ldots, g(\bar{a}))\alpha_f = (\bar{a}\alpha g)\alpha_f = \bar{a}(\alpha g \alpha f)$
- $= \bar{a}(h(g)h(f))$.
- This shows $h(f + g) = h(g) \cdot h(f)$.
New approach

- $|\{0,1\}^n| = 2^n$, $X_{2^n} := \{1, 2, \ldots, 2^n\}$
New approach

- $|\{0, 1\}^n| = 2^n$, $X_{2^n} := \{1, 2, \ldots, 2^n\}$
- $T(\{0, 1\}^n, \Delta \times n) \cong T(X_{2^n}, \{1, 2\})$
New approach

- $|\{0,1\}^n| = 2^n$, $X_{2^n} := \{1, 2, \ldots, 2^n\}$
- $T(\{0,1\}^n, \Delta_{\times n}) \cong T(X_{2^n}, \{1, 2\})$
- $P_{2^{\times n}} := T(X_{2^n}, \{1, 2\})$
New approach

- $|\{0, 1\}^n| = 2^n$, $X_2^n := \{1, 2, \ldots, 2^n\}$
- $T(\{0, 1\}^n, \Delta \times n) \cong T(X_2^n, \{1, 2\})$
- $P_2^\times n := T(X_2^n, \{1, 2\})$
- $SetP_2^\times n$ set of all non-empty subsets of $P_2^\times n$
New approach

- $|\{0,1\}^n| = 2^n$, $X_{2^n} := \{1, 2, \ldots, 2^n\}$
- $T(\{0,1\}^n, \Delta \times_n) \cong T(X_{2^n}, \{1, 2\})$
- $P_{2^n} := T(X_{2^n}, \{1, 2\})$
- $SetP_{2^n}$ set of all non-empty subsets of P_{2^n}
- $|SetP_{2^n}| = 2^{\left|P_{2^n}\right|} - 1$
New approach

- $|\{0, 1\}^n| = 2^n$, $X_{2^n} := \{1, 2, \ldots, 2^n\}$
- $T(\{0, 1\}^n, \Delta \times n) \cong T(X_{2^n}, \{1, 2\})$
- $P_{2^n}^\times := T(X_{2^n}, \{1, 2\})$
- $SetP_{2^n}^\times$ set of all non-empty subsets of $P_{2^n}^\times$
- $|SetP_{2^n}^\times| = 2^{|P_{2^n}^\times|} - 1$

Example

$(n = 2) |SetP_2^\times| = 2^{|P_2^\times|} - 1 = 2^{16} - 1$
New approach

- $|\{0, 1\}^n| = 2^n$, $X_{2n} := \{1, 2, \ldots, 2^n\}$
- $T(\{0, 1\}^n, \Delta \times n) \cong T(X_{2n}, \{1, 2\})$
- $P_{2 \times n} := T(X_{2n}, \{1, 2\})$
- $\text{Set}P_{2 \times n}$ set of all non-empty subsets of $P_{2 \times n}$
- $|\text{Set}P_{2 \times n}| = 2|P_{2 \times n}| - 1$

Example

$(n = 2)$ $|\text{Set}P_{2 \times 2}| = 2|P_{2 \times 2}| - 1 = 2^{16} - 1$

- We introduce a **binary operation** \ast on $\text{Set}P_{2 \times 2}$ by $A \ast B := \{ab : a \in A, b \in B\}$
New approach

- \(|\{0,1\}^n| = 2^n, X_2^n := \{1, 2, \ldots, 2^n\}\)
- \(T(\{0,1\}^n, \Delta_{\times n}) \cong T(X_2^n, \{1, 2\})\)
- \(P_2^{\times n} := T(X_2^n, \{1, 2\})\)
- \(\text{Set}P_2^{\times n}\) set of all non-empty subsets of \(P_2^{\times n}\)
- \(|\text{Set}P_2^{\times n}| = 2^{|P_2^{\times n}|} - 1\)

Example

\((n = 2)\) \(|\text{Set}P_2^{\times 2}| = 2^{|P_2^{\times 2}|} - 1 = 2^{16} - 1\)

- We introduce a **binary operation** \(\ast\) on \(\text{Set}P_2^{\times 2}\) by \(A \ast B := \{ab : a \in A, b \in B\}\)
- \((\text{Set}P_2^{\times n}, \ast)\) forms a semigroup
New approach

- $|\{0, 1\}^n| = 2^n$, $X_2^n := \{1, 2, \ldots, 2^n\}$
- $T(\{0, 1\}^n, \Delta \times n) \cong T(X_2^n, \{1, 2\})$
- $P_2^\times n := T(X_2^n, \{1, 2\})$
- $SetP_2^\times n$ set of all non-empty subsets of $P_2^\times n$
- $|SetP_2^\times n| = 2|P_2^\times n| - 1$

Example

$(n = 2)\; |SetP_2^\times 2| = 2|P_2^\times 2| - 1 = 2^{16} - 1$

- We introduce a binary operation \ast on $SetP_2^\times 2$ by $A \ast B := \{ab : a \in A, b \in B\}$
- $(SetP_2^\times n, \ast)$ forms a semigroup
- $(SetP_2^\times n; \cup, \ast)$ forms a semiring
New approach

- \(|\{0,1\}^n| = 2^n, X_2^n := \{1, 2, \ldots, 2^n\}\)
- \(T(\{0,1\}^n, \Delta \times_n) \cong T(X_2^n, \{1, 2\})\)
- \(P_2^\times_n := T(X_2^n, \{1, 2\})\)
- \(SetP_2^\times_n\) set of all non-empty subsets of \(P_2^\times_n\)
- \(|SetP_2^\times_n| = 2|P_2^\times_n| - 1\)

Example

\((n = 2)\) \(|SetP_2^\times_2| = 2|P_2^\times_2| - 1 = 2^{16} - 1\)

- We introduce a **binary operation** \(*\) on \(SetP_2^\times_2\) by
 \(A * B := \{ab : a \in A, b \in B\}\)
- \((SetP_2^\times_n, *)\) forms a semigroup
- \((SetP_2^\times_n; \cup, *)\) forms a semiring
- \(g : P_2^\times_n \rightarrow (SetP_2^\times_n, *)\) with \(a \mapsto \{a\}\) is an embedding
Our Question

Problem

What about \((\text{Set}P_2^n, \ast)\)?
A ∈ SetP_{2}^{\times n} is called idempotent if A ∗ A = A
Idempotent elements

- $A \in \text{SetP}_2^\times n$ is called **idempotent** if $A \ast A = A$
- $E(\text{SetP}_2^\times n)$ set of all idempotents in $\text{SetP}_2^\times n$
Idempotent elements

- $A \in SetP_2^{\times n}$ is called **idempotent** if $A \ast A = A$
- $E(\ SetP_2^{\times n})$ set of all idempotents in $SetP_2^{\times n}$

Example
Idempotent elements

- $A \in \text{SetP}_{2}^{\times n}$ is called **idempotent** if $A \ast A = A$
- $E(\text{SetP}_{2}^{\times n})$ set of all idempotents in $\text{SetP}_{2}^{\times n}$

Example

- $n = 2$
Idempotent elements

- $A \in SetP_2^\times n$ is called **idempotent** if $A \ast A = A$
- $E(\text{SetP}_2^\times n)$ set of all idempotents in $\text{SetP}_2^\times n$

Example

- $n = 2$
- \[\left\{ \begin{pmatrix} 13 & 24 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 13 & 24 \\ 1 & 2 \end{pmatrix} \right\} \in E(\text{SetP}_2^\times 2) \]
Idempotent elements

- $A \in SetP_{2}^{\times n}$ is called **idempotent** if $A \ast A = A$
- $E(SetP_{2}^{\times n})$ set of all idempotents in $SetP_{2}^{\times n}$

Example

- $n = 2$
- \[
\left\{ \left(\begin{array}{cc} 13 & 24 \\ 2 & 1 \end{array} \right), \left(\begin{array}{cc} 13 & 24 \\ 1 & 2 \end{array} \right) \right\} \in E(SetP_{2}^{\times 2})
\]
- although $\left(\begin{array}{cc} 13 & 24 \\ 2 & 1 \end{array} \right)$ is not idempotent
Idempotent subsemigroups

- $S \leq (\text{Set}P_2^\times n, \ast)$ is called **idempotent subsemigroup** (or **band**) if $S \subseteq E(\text{Set}P_2^\times n)$.
Idempotent subsemigroups

- $S \subseteq (\text{Set}P_2^\times n, \ast)$ is called idempotent subsemigroup (or band) if $S \subseteq E(\text{Set}P_2^\times n)$.
- $(\text{Set}P_2^\times n, \ast)$ is not a band.
Idempotent subsemigroups

- \(S \leq (\text{SetP}_2 \times^n, \ast) \) is called **idempotent subsemigroup** (or **band**) if \(S \subseteq E(\text{SetP}_2 \times^n) \).
- \((\text{SetP}_2 \times^n, \ast) \) is not a band.
- An idempotent subsemigroup \(S \) is called **maximal idempotent subsemigroup** if

\[
S \leq T \iff S = T \text{ or } T \not\subseteq E(\text{SetP}_2 \times^n).
\]
Idempotent subsemigroups

- $S \leq (\text{SetP}_2^\times n, \ast)$ is called idempotent subsemigroup (or band) if $S \subseteq E(\text{SetP}_2^\times n)$.
- $(\text{SetP}_2^\times n, \ast)$ is not a band.
- An idempotent subsemigroup S is called maximal idempotent subsemigroup if

\[S \leq T \implies S = T \text{ or } T \not\subseteq E(\text{SetP}_2^\times n). \]

Theorem

There are exactly two maximal idempotent subsemigroups of $(\text{SetP}_2^\times n, \ast)$.
A ∈ $SetP_2^\times n$ is called **regular** if there is $B ∈ SetP_2^\times n$ with $A * B * A = A$.
Regular elements

- $A \in \text{Set}P_2^{\times n}$ is called regular if there is $B \in \text{Set}P_2^{\times n}$ with $A \ast B \ast A = A$.

Fact

The idempotent elements are regular.
A ∈ SetP_2^{×n} is called regular if there is B ∈ SetP_2^{×n} with A * B * A = A.

Fact

The idempotent elements are regular.

Example
Regular elements

- \(A \in Set_{P_2}^{\times n} \) is called **regular** if there is \(B \in Set_{P_2}^{\times n} \) with \(A * B * A = A \).

Fact

The idempotent elements are regular.

Example

- \(n = 2 \)
Regular elements

- $A \in \text{SetP}_2^{\times n}$ is called \textbf{regular} if there is $B \in \text{SetP}_2^{\times n}$ with $A \ast B \ast A = A$.

Fact

\textit{The idempotent elements are regular.}

Example

- $n = 2$
- $A = \left\{ \begin{pmatrix} 13 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1234 \\ 1 \end{pmatrix}, \begin{pmatrix} 1234 \\ 2 \end{pmatrix} \right\}$
Regular elements

- $A \in \text{SetP}_2^{\times n}$ is called **regular** if there is $B \in \text{SetP}_2^{\times n}$ with $A \ast B \ast A = A$.

Fact

The idempotent elements are regular.

Example

- $n = 2$
- $A = \left\{ \begin{pmatrix} 13 & 24 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 1234 \\ 1 \end{pmatrix}, \begin{pmatrix} 1234 \\ 2 \end{pmatrix} \right\}$
- A is not idempotent since $A \ast A = \left\{ \begin{pmatrix} 13 & 24 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1234 \\ 1 \end{pmatrix}, \begin{pmatrix} 1234 \\ 2 \end{pmatrix} \right\}$
Regular elements

- \(A \in \text{Set}P_2^{\times n} \) is called **regular** if there is \(B \in \text{Set}P_2^{\times n} \) with \(A \ast B \ast A = A \).

Fact

The idempotent elements are regular.

Example

- \(n = 2 \)
- \(A = \left\{ \begin{pmatrix} 13 & 24 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 1234 \\ 1 \end{pmatrix}, \begin{pmatrix} 1234 \\ 2 \end{pmatrix} \right\} \)
- \(A \) is not idempotent since \(A \ast A = \left\{ \begin{pmatrix} 13 & 24 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1234 \\ 1 \end{pmatrix}, \begin{pmatrix} 1234 \\ 2 \end{pmatrix} \right\} \)
- \(A \) is regular since \(A \ast A \ast A = A \) (i.e. \(A = B \))
A semigroup is called **regular** if all its elements are regular.
A semigroup is called **regular** if all its elements are regular.

Fact

$\text{SetP}_2^\times n$ is not regular
A semigroup is called **regular** if all its elements are regular.

Fact

\(\text{SetP}_2^\times n \text{ is not regular} \)

A regular subsemigroup \(S \) is called **maximal regular subsemigroup** if

\[S \leq T \iff S = T \text{ or } T \text{ is not regular.} \]
A semigroup is called **regular** if all its elements are regular.

Fact

Set$P_{2}^{\times n}$ is not regular

A regular subsemigroup S is called **maximal regular subsemigroup** if

$$S \leq T \iff S = T \text{ or } T \text{ is not regular.}$$

Theorem

There are exactly two maximal regular subsemigroups of $SetP_{2}^{\times n}$.