# Semigroups of sets of n-ary functions

### Jörg Koppitz

Potsdam University

## SSAOS 2016 (05/09/2016)

Jörg Koppitz (Institute)

Semigroups of sets of n-ary functions

SSAOS 2016 (05/09/2016)

# **Boolean Operations**

#### • $n \in \mathbb{N}$

Jörg Koppitz (Institute)

Semigroups of sets of n-ary functions

SSAOS 2016 (05/09/2016)

(日) (同) (三) (三)

2 / 15

2

- $n \in \mathbb{N}$
- $f: \{0,1\}^n \rightarrow \{0,1\}$  is called *n*-ary Boolean operation

3

A B M A B M

- $n \in \mathbb{N}$
- $f: \{0,1\}^n \rightarrow \{0,1\}$  is called *n*-ary Boolean operation
- $P_2^n$  set of all *n*-ary Boolean operations

A B < A B </p>

- $n \in \mathbb{N}$
- $f: \{0,1\}^n \rightarrow \{0,1\}$  is called *n*-ary Boolean operation
- $P_2^n$  set of all *n*-ary Boolean operations
- $|P_2^n| = 2^{2^n}$

Image: Image:

3

A B F A B F

- $n \in \mathbb{N}$
- $f: \{0, 1\}^n \rightarrow \{0, 1\}$  is called *n*-ary Boolean operation
- $P_2^n$  set of all *n*-ary Boolean operations
- $|P_2^n| = 2^{2^n}$

## Example

n = 2: binary Boolean operations

< <>></>

|                         | $f_1$             | $f_2$                                 | <i>f</i> <sub>3</sub>                           | $f_4$             | <i>f</i> <sub>5</sub> | $f_6$                                 | $f_7$                                 | f <sub>8</sub>                        |                                                           |
|-------------------------|-------------------|---------------------------------------|-------------------------------------------------|-------------------|-----------------------|---------------------------------------|---------------------------------------|---------------------------------------|-----------------------------------------------------------|
| (0,0)                   | 1                 | 0                                     | 1                                               | 1                 | 1                     | 0                                     | 0                                     | 0                                     |                                                           |
| (0,1)                   | 1                 | 1                                     | 0                                               | 1                 | 1                     | 1                                     | 1                                     | 0                                     |                                                           |
| (1,0)                   | 1                 | 1                                     | 1                                               | 0                 | 1                     | 1                                     | 0                                     | 1                                     |                                                           |
| (1, 1)                  | 1                 | 1                                     | 1                                               | 1                 | 0                     | 0                                     | 1                                     | 1                                     |                                                           |
|                         |                   |                                       |                                                 |                   |                       |                                       |                                       |                                       |                                                           |
|                         | f9                | <i>f</i> <sub>10</sub>                | <i>f</i> <sub>11</sub>                          | f                 | 12                    | <i>f</i> <sub>13</sub>                | <i>f</i> <sub>14</sub>                | f <sub>15</sub>                       | <i>f</i> <sub>16</sub>                                    |
| (0,0)                   | f9<br>1           | <i>f</i> <sub>10</sub>                | $\frac{f_{11}}{1}$                              | $\frac{f_1}{f_2}$ | 12<br>)               | <i>f</i> <sub>13</sub> 0              | <i>f</i> <sub>14</sub>                | $\frac{f_{15}}{1}$                    | <i>f</i> <sub>16</sub>                                    |
| (0,0)<br>(0,1)          | f9<br>1<br>0      | <i>f</i> <sub>10</sub><br>1<br>0      | $\begin{array}{c} f_{11} \\ 1 \\ 1 \end{array}$ | (                 | )<br>)<br>)           | <i>f</i> <sub>13</sub><br>0<br>0      | <i>f</i> <sub>14</sub><br>0<br>1      | <i>f</i> <sub>15</sub><br>1<br>0      | $\begin{array}{c} f_{16} \\ \hline 0 \\ 0 \\ \end{array}$ |
| (0,0)<br>(0,1)<br>(1,0) | f9<br>1<br>0<br>0 | <i>f</i> <sub>10</sub><br>1<br>0<br>1 | $f_{11}$<br>1<br>1<br>0                         | f]<br>(<br>(      | )<br>)<br>)<br>)      | <i>f</i> <sub>13</sub><br>0<br>0<br>1 | <i>f</i> <sub>14</sub><br>0<br>1<br>0 | <i>f</i> <sub>15</sub><br>1<br>0<br>0 |                                                           |

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

Definition  $f + g := S_n^n(f, g, \dots, g), \text{ i.e. } (f + g)(\overline{a}) := f(g(\overline{a}), \dots, g(\overline{a})) \text{ for all}$   $\overline{a} \in \{0, 1\}^n$ 

Image: Image:

# Definition $f + g := S_n^n(f, g, \dots, g)$ , i.e. $(f + g)(\overline{a}) := f(g(\overline{a}), \dots, g(\overline{a}))$ for all $\overline{a} \in \{0, 1\}^n$

#### Example

(日) (同) (三) (三)

# Definition $f + g := S_n^n(f, g, ..., g)$ , i.e. $(f + g)(\overline{a}) := f(g(\overline{a}), ..., g(\overline{a}))$ for all $\overline{a} \in \{0, 1\}^n$

#### Example

• 
$$f_3 + f_4 = f_1$$
 since

(日) (同) (三) (三)

# Definition $f + g := S_n^n(f, g, ..., g)$ , i.e. $(f + g)(\overline{a}) := f(g(\overline{a}), ..., g(\overline{a}))$ for all $\overline{a} \in \{0, 1\}^n$

#### Example

- $f_3 + f_4 = f_1$  since
- $f_3(f_4(0,0), f_4(0,0)) = f_3(1,1) = 1$

イロト 不得下 イヨト イヨト

# Definition $f + g := S_n^n(f, g, ..., g)$ , i.e. $(f + g)(\overline{a}) := f(g(\overline{a}), ..., g(\overline{a}))$ for all $\overline{a} \in \{0, 1\}^n$

#### Example

- $f_3 + f_4 = f_1$  since
- $f_3(f_4(0,0), f_4(0,0)) = f_3(1,1) = 1$
- $f_3(f_4(0,1), f_4(0,1)) = f_3(1,1) = 1$

A B F A B F

# Definition $f + g := S_n^n(f, g, \dots, g)$ , i.e. $(f + g)(\overline{a}) := f(g(\overline{a}), \dots, g(\overline{a}))$ for all $\overline{a} \in \{0, 1\}^n$

#### Example

- $f_3 + f_4 = f_1$  since
- $f_3(f_4(0,0), f_4(0,0)) = f_3(1,1) = 1$
- $f_3(f_4(0,1), f_4(0,1)) = f_3(1,1) = 1$
- $f_3(f_4(1,0), f_4(1,0)) = f_3(0,0) = 1$

# Definition $f + g := S_n^n(f, g, ..., g)$ , i.e. $(f + g)(\overline{a}) := f(g(\overline{a}), ..., g(\overline{a}))$ for all $\overline{a} \in \{0, 1\}^n$

#### Example

- $f_3 + f_4 = f_1$  since
- $f_3(f_4(0,0), f_4(0,0)) = f_3(1,1) = 1$
- $f_3(f_4(0,1), f_4(0,1)) = f_3(1,1) = 1$
- $f_3(f_4(1,0), f_4(1,0)) = f_3(0,0) = 1$
- $f_3(f_4(1,1), f_4(1,1)) = f_3(1,1) = 1$

•  $(P_2^n, +)$  is a semigroup

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2

• 
$$(P_2^n, +)$$
 is a semigroup

#### Fact

The semigroup  $(P_2^n, +)$  is well studied in Semigroup Theory.

Image: A matrix

A B F A B F

• 
$$(P_2^n, +)$$
 is a semigroup

#### Fact

The semigroup  $(P_2^n, +)$  is well studied in Semigroup Theory.

• Why?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

æ

• Let A be any set

э

3

- Let A be any set
- $\alpha : A \to A$  is called **transformation on** A

- Let A be any set
- $\alpha : A \rightarrow A$  is called **transformation on** A
- T(A) set of all transformations on A

- Let A be any set
- $\alpha : A \to A$  is called **transformation on** A
- T(A) set of all transformations on A
- $\alpha, \beta \in T(A)$

- Let A be any set
- $\alpha : A \to A$  is called **transformation on** A
- T(A) set of all transformations on A
- $\alpha, \beta \in T(A)$
- composition of transformations  $a(\alpha \cdot \beta) = a(\alpha \beta) = (a\alpha)\beta)$

- Let A be any set
- $\alpha : A \rightarrow A$  is called **transformation on** A
- T(A) set of all transformations on A
- $\alpha, \beta \in T(A)$
- composition of transformations  $a(\alpha \cdot \beta) = a(\alpha \beta) = (a\alpha)\beta)$
- T(A) forms a semigroup under composition

- Let A be any set
- $\alpha : A \to A$  is called **transformation on** A
- T(A) set of all transformations on A
- $\alpha, \beta \in T(A)$
- composition of transformations  $a(\alpha \cdot \beta) = a(\alpha \beta) = (a\alpha)\beta)$
- T(A) forms a semigroup under composition
- $im\alpha := \{a\alpha : a \in A\}$  is called **image of**  $\alpha$

- Let A be any set
- $\alpha : A \to A$  is called **transformation on** A
- T(A) set of all transformations on A
- $\alpha, \beta \in T(A)$
- composition of transformations  $a(\alpha \cdot \beta) = a(\alpha \beta) = (a\alpha)\beta)$
- T(A) forms a semigroup under composition
- $im\alpha := \{a\alpha : a \in A\}$  is called **image of**  $\alpha$
- *B* ⊆ *A*

- Let A be any set
- $\alpha : A \to A$  is called **transformation on** A
- T(A) set of all transformations on A
- $\alpha, \beta \in T(A)$
- composition of transformations  $a(\alpha \cdot \beta) = a(\alpha \beta) = (a\alpha)\beta)$
- T(A) forms a semigroup under composition
- $im\alpha := \{a\alpha : a \in A\}$  is called **image of**  $\alpha$
- *B* ⊆ *A*
- $T(A, B) := \{ \alpha \in T(A) : im \alpha \subseteq B \}$

# Transformations with restricted range

• 
$$T(A, B) \leq T(A)$$

3

# Transformations with restricted range

• 
$$T(A, B) \leq T(A)$$

• semigroup with restricted range (Symons, 1975)

- semigroup with restricted range (Symons, 1975)
- 2008: "Regularity and Green's Relations on a Semigroup of Transformations with Restricted Range", J. Sanwong, and Worachead Sommancee,

- semigroup with restricted range (Symons, 1975)
- 2008: "Regularity and Green's Relations on a Semigroup of Transformations with Restricted Range", J. Sanwong, and Worachead Sommancee,
- 2011: "The Ideal Structure of Semigroups of Transformations with restricted range", Suzana Mendes-Gonçales and R. P. Sullivan

- semigroup with restricted range (Symons, 1975)
- 2008: "Regularity and Green's Relations on a Semigroup of Transformations with Restricted Range", J. Sanwong, and Worachead Sommancee,
- 2011: "The Ideal Structure of Semigroups of Transformations with restricted range", Suzana Mendes-Gonçales and R. P. Sullivan
- 2011: "The regular part of a semigroup of transformations with restricted range", J Sanwong

- semigroup with restricted range (Symons, 1975)
- 2008: "Regularity and Green's Relations on a Semigroup of Transformations with Restricted Range", J. Sanwong, and Worachead Sommancee,
- 2011: "The Ideal Structure of Semigroups of Transformations with restricted range", Suzana Mendes-Gonçales and R. P. Sullivan
- 2011: "The regular part of a semigroup of transformations with restricted range", J Sanwong
- 2013: "Rank and idempotent rank of finite full transformation semigroups with restricted range", Worachead Sommanee,

- semigroup with restricted range (Symons, 1975)
- 2008: "Regularity and Green's Relations on a Semigroup of Transformations with Restricted Range", J. Sanwong, and Worachead Sommancee,
- 2011: "The Ideal Structure of Semigroups of Transformations with restricted range", Suzana Mendes-Gonçales and R. P. Sullivan
- 2011: "The regular part of a semigroup of transformations with restricted range", J Sanwong
- 2013: "Rank and idempotent rank of finite full transformation semigroups with restricted range", Worachead Sommanee,
- 2016: "On Semigroups of Orientation-preserving Transformations with Restricted Range", Vítor H. Fernandes, Preeyanuch Honyamb, Teresa M. Quinteiroc, and Boorapa Singhad

• 
$$A = \{0, 1\}^n$$

æ

イロト イヨト イヨト イヨト



SSAOS 2016 (05/09/2016)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

8 / 15

3
# Bijection

• 
$$A = \{0, 1\}^n$$
  
•  $B = \Delta_{\times n} := \{(\underbrace{0, \dots, 0}_{n \text{ times}}), (\underbrace{1, \dots, 1}_{n \text{ times}})\} \subseteq \{0, 1\}^n$   
Definition  
 $f \in P_2^n, \alpha_f : \{0, 1\}^n \to \Delta_{\times n} \text{ by } \overline{a}\alpha_f := (\underbrace{f(\overline{a}), \dots, f(\overline{a})}_{n \text{ times}}).$ 

SSAOS 2016 (05/09/2016) 8 /

æ

イロト イヨト イヨト イヨト

/ 15

• 
$$A = \{0, 1\}^n$$
  
•  $B = \Delta_{\times n} := \{(\underbrace{0, \dots, 0}_{n \text{ times}}), (\underbrace{1, \dots, 1}_{n \text{ times}})\} \subseteq \{0, 1\}^n$   
Definition  
 $f \in P_2^n, \alpha_f : \{0, 1\}^n \to \Delta_{\times n} \text{ by } \overline{a}\alpha_f := (\underbrace{f(\overline{a}), \dots, f(\overline{a})}_{n \text{ times}}).$ 

•  $\{\alpha_f : f \in P_2^n\} \subseteq T(\{0,1\}^n, \Delta_{\times n})$ 

SSAOS 2016 (05/09/2016)

-

-

3

8 / 15

• 
$$A = \{0, 1\}^n$$
  
•  $B = \Delta_{\times n} := \{(\underbrace{0, \dots, 0}_{n \text{ times}}), (\underbrace{1, \dots, 1}_{n \text{ times}})\} \subseteq \{0, 1\}^n$ 

### Definition

$$f \in P_2^n$$
,  $\alpha_f : \{0, 1\}^n \to \Delta_{\times n}$  by  $\overline{a}\alpha_f := (\underbrace{f(\overline{a}), \dots, f(\overline{a})}_{n \text{ times}}).$ 

• 
$$\{\alpha_f : f \in P_2^n\} \subseteq T(\{0,1\}^n, \Delta_{\times n})$$

#### Fact

 $h: P_2^n \to T(\{0,1\}^n, \Delta_{\times n})$  with  $h: f \mapsto \alpha_f$  is bijective.

2

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• We can show that *h* is isomorphism

-

æ

#### • We can show that *h* is isomorphism

### Theorem

 $(P_2^n;+) \cong T(\{0,1\}^n, \Delta_{\times n}).$ 

-

#### • We can show that *h* is isomorphism

### Theorem

$$(P_2^n;+) \cong T(\{0,1\}^n, \Delta_{\times n}).$$

#### • We can show that *h* is isomorphism

#### Theorem

 $(P_2^n;+)\cong T(\{0,1\}^n,\Delta_{\times n}).$ 

### Proof.

• Let  $h: P_2^n \to T(\{0,1\}^n, \Delta_{\times n})$  with  $h: f \mapsto \alpha_f$ 

#### • We can show that *h* is isomorphism

#### Theorem

 $(P_2^n;+) \cong T(\{0,1\}^n, \Delta_{\times n}).$ 

- Let  $h: P_2^n \to T(\{0,1\}^n, \Delta_{\times n})$  with  $h: f \mapsto \alpha_f$
- *h* is bijective

#### • We can show that *h* is isomorphism

#### Theorem

$$(P_2^n;+)\cong T(\{0,1\}^n,\Delta_{\times n}).$$

- Let  $h: P_2^n \to T(\{0,1\}^n, \Delta_{\times n})$  with  $h: f \mapsto \alpha_f$
- *h* is bijective
- $\overline{a}(h(f+g)) = \overline{a}\alpha_{(f+g)}$

#### • We can show that *h* is isomorphism

#### Theorem

$$(P_2^n;+)\cong T(\{0,1\}^n,\Delta_{\times n}).$$

- Let  $h: P_2^n \to T(\{0,1\}^n, \Delta_{\times n})$  with  $h: f \mapsto \alpha_f$
- *h* is bijective
- $\overline{a}(h(f+g)) = \overline{a}\alpha_{(f+g)}$
- =  $(f + g(\overline{a}), \dots, f + g(\overline{a}))$

#### • We can show that *h* is isomorphism

#### Theorem

$$(P_2^n;+)\cong T(\{0,1\}^n,\Delta_{\times n}).$$

- Let  $h: P_2^n \to T(\{0,1\}^n, \Delta_{\times n})$  with  $h: f \mapsto \alpha_f$
- *h* is bijective
- $\overline{a}(h(f+g)) = \overline{a}\alpha_{(f+g)}$
- =  $(f + g(\overline{a}), \dots, f + g(\overline{a}))$
- =  $(f(g(\overline{a}), \ldots, g(\overline{a})), \ldots, f(g(\overline{a}), \ldots, g(\overline{a})))$

#### • We can show that *h* is isomorphism

#### Theorem

$$(P_2^n;+)\cong T(\{0,1\}^n,\Delta_{\times n}).$$

### Proof.

- Let  $h: P_2^n \to T(\{0,1\}^n, \Delta_{\times n})$  with  $h: f \mapsto \alpha_f$
- *h* is bijective
- $\overline{a}(h(f+g)) = \overline{a}\alpha_{(f+g)}$
- =  $(f + g(\overline{a}), \dots, f + g(\overline{a}))$
- =  $(f(g(\overline{a}), \ldots, g(\overline{a})), \ldots, f(g(\overline{a}), \ldots, g(\overline{a})))$
- =  $(g(\overline{a}), \ldots, g(\overline{a}))\alpha_f = (\overline{a}\alpha_g)\alpha_f = \overline{a}(\alpha_g\alpha_f)$

9 / 15

#### • We can show that *h* is isomorphism

#### Theorem

$$(P_2^n;+)\cong T(\{0,1\}^n,\Delta_{\times n}).$$

### Proof.

- Let  $h: P_2^n \to T(\{0,1\}^n, \Delta_{\times n})$  with  $h: f \mapsto \alpha_f$
- *h* is bijective
- $\overline{a}(h(f+g)) = \overline{a}\alpha_{(f+g)}$
- =  $(f + g(\overline{a}), \dots, f + g(\overline{a}))$
- =  $(f(g(\overline{a}), \ldots, g(\overline{a})), \ldots, f(g(\overline{a}), \ldots, g(\overline{a})))$
- =  $(g(\overline{a}), \ldots, g(\overline{a}))\alpha_f = (\overline{a}\alpha_g)\alpha_f = \overline{a}(\alpha_g\alpha_f)$
- =  $\overline{a}(h(g)h(f))$ .

9 / 15

#### • We can show that *h* is isomorphism

### Theorem

$$(P_2^n;+)\cong T(\{0,1\}^n,\Delta_{\times n}).$$

- Let  $h: P_2^n \to T(\{0,1\}^n, \Delta_{\times n})$  with  $h: f \mapsto \alpha_f$
- *h* is bijective

• 
$$\overline{a}(h(f+g)) = \overline{a}\alpha_{(f+g)}$$

• = 
$$(f + g(\overline{a}), \dots, f + g(\overline{a}))$$

- =  $(f(g(\overline{a}), \ldots, g(\overline{a})), \ldots, f(g(\overline{a}), \ldots, g(\overline{a})))$
- =  $(g(\overline{a}), \ldots, g(\overline{a}))\alpha_f = (\overline{a}\alpha_g)\alpha_f = \overline{a}(\alpha_g\alpha_f)$
- =  $\overline{a}(h(g)h(f)).$
- This shows  $h(f+g) = h(g) \cdot h(f)$ .

• 
$$|\{0,1\}^n| = 2^n, X_{2^n} := \{1,2,\ldots,2^n\}$$

Jörg Koppitz (Institute)

SSAOS 2016 (05/09/2016)

<ロ> (日) (日) (日) (日) (日)

10 / 15

•  $|\{0,1\}^n| = 2^n, X_{2^n} := \{1,2,\ldots,2^n\}$ •  $T(\{0,1\}^n, \Delta_{\times n}) \cong T(X_{2^n}, \{1,2\})$ 

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

10 / 15

• 
$$|\{0,1\}^n| = 2^n, X_{2^n} := \{1,2,\ldots,2^n\}$$
  
•  $T(\{0,1\}^n, \Delta_{\times n}) \cong T(X_{2^n}, \{1,2\})$   
•  $P_2^{\times n} := T(X_{2^n}, \{1,2\})$ 

l≣⊧≣ ∽⊂ 19/2016) 10/

<ロ> (日) (日) (日) (日) (日)

• 
$$|\{0,1\}^n| = 2^n, X_{2^n} := \{1,2,\ldots,2^n\}$$

• 
$$T(\{0,1\}^n, \Delta_{\times n}) \cong T(X_{2^n}, \{1,2\})$$

• 
$$P_2^{\times n} := T(X_{2^n}, \{1, 2\})$$

•  $SetP_2^{\times n}$  set of all non-empty subsets of  $P_2^{\times n}$ 

10 / 15

2

• 
$$|\{0,1\}^n| = 2^n, X_{2^n} := \{1,2,\ldots,2^n\}$$

• 
$$T(\{0,1\}^n, \Delta_{\times n}) \cong T(X_{2^n}, \{1,2\})$$

• 
$$P_2^{\times n} := T(X_{2^n}, \{1, 2\})$$

•  $SetP_2^{\times n}$  set of all non-empty subsets of  $P_2^{\times n}$ 

• 
$$|SetP_2^{\times n}| = 2^{|P_2^{\times n}|} - 1$$

ヘロト 人間 とくほ とくほ とう

• 
$$|\{0,1\}^n| = 2^n, X_{2^n} := \{1,2,\ldots,2^n\}$$

• 
$$T(\{0,1\}^n, \Delta_{\times n}) \cong T(X_{2^n}, \{1,2\})$$

• 
$$P_2^{\times n} := T(X_{2^n}, \{1, 2\})$$

•  $SetP_2^{\times n}$  set of all non-empty subsets of  $P_2^{\times n}$ 

• 
$$|SetP_2^{\times n}| = 2^{|P_2^{\times n}|} - 1$$

### Example

$$(n = 2) |SetP_2^{\times 2}| = 2^{|P_2^{\times 2}|} - 1 = 2^{16} - 1$$

(B)

• 
$$|\{0,1\}^n| = 2^n, X_{2^n} := \{1,2,\ldots,2^n\}$$

• 
$$T(\{0,1\}^n, \Delta_{\times n}) \cong T(X_{2^n}, \{1,2\})$$

• 
$$P_2^{\times n} := T(X_{2^n}, \{1, 2\})$$

•  $SetP_2^{\times n}$  set of all non-empty subsets of  $P_2^{\times n}$ 

• 
$$\left| Set P_2^{\times n} \right| = 2^{\left| P_2^{\times n} \right|} - 1$$

### Example

$$(n = 2) |SetP_2^{\times 2}| = 2^{|P_2^{\times 2}|} - 1 = 2^{16} - 1$$

We introduce a binary operation \* on SetP<sub>2</sub><sup>×2</sup> by A \* B := {ab : a ∈ A, b ∈ B}

(B)

• 
$$|\{0,1\}^n| = 2^n, X_{2^n} := \{1,2,\ldots,2^n\}$$

• 
$$T(\{0,1\}^n, \Delta_{\times n}) \cong T(X_{2^n}, \{1,2\})$$

• 
$$P_2^{\times n} := T(X_{2^n}, \{1, 2\})$$

•  $SetP_2^{\times n}$  set of all non-empty subsets of  $P_2^{\times n}$ 

• 
$$\left| Set P_2^{\times n} \right| = 2^{\left| P_2^{\times n} \right|} - 1$$

### Example

$$(n = 2) |SetP_2^{\times 2}| = 2^{|P_2^{\times 2}|} - 1 = 2^{16} - 1$$

- We introduce a binary operation \* on SetP<sub>2</sub><sup>×2</sup> by A \* B := {ab : a ∈ A, b ∈ B}
- $(SetP_2^{\times n}, *)$  forms a semigroup

• 
$$|\{0,1\}^n| = 2^n, X_{2^n} := \{1,2,\ldots,2^n\}$$

• 
$$T(\{0,1\}^n, \Delta_{\times n}) \cong T(X_{2^n}, \{1,2\})$$

• 
$$P_2^{\times n} := T(X_{2^n}, \{1, 2\})$$

•  $SetP_2^{\times n}$  set of all non-empty subsets of  $P_2^{\times n}$ 

• 
$$\left| Set P_2^{\times n} \right| = 2^{\left| P_2^{\times n} \right|} - 1$$

### Example

$$(n = 2) |SetP_2^{\times 2}| = 2^{|P_2^{\times 2}|} - 1 = 2^{16} - 1$$

- We introduce a binary operation \* on SetP<sub>2</sub><sup>×2</sup> by A \* B := {ab : a ∈ A, b ∈ B}
- $(SetP_2^{\times n}, *)$  forms a semigroup
- $(SetP_2^{\times n}; \cup, *)$  forms a semiring

• 
$$|\{0,1\}^n| = 2^n, X_{2^n} := \{1,2,\ldots,2^n\}$$

• 
$$T(\{0,1\}^n, \Delta_{\times n}) \cong T(X_{2^n}, \{1,2\})$$

• 
$$P_2^{\times n} := T(X_{2^n}, \{1, 2\})$$

•  $SetP_2^{\times n}$  set of all non-empty subsets of  $P_2^{\times n}$ 

• 
$$\left| Set P_2^{\times n} \right| = 2^{\left| P_2^{\times n} \right|} - 1$$

### Example

$$(n = 2) |SetP_2^{\times 2}| = 2^{|P_2^{\times 2}|} - 1 = 2^{16} - 1$$

- We introduce a binary operation \* on SetP<sub>2</sub><sup>×2</sup> by A \* B := {ab : a ∈ A, b ∈ B}
- $(SetP_2^{\times n}, *)$  forms a semigroup
- $(SetP_2^{\times n}; \cup, *)$  forms a semiring

• 
$$g: P_2^{ imes n} o (Set P_2^{ imes n}, *)$$
 with  $a \longmapsto \{a\}$  is an embedding

### Problem

What about  $(SetP_2^{\times n}, *)$ ?

★ 3 > < 3 >

æ

### • $A \in SetP_2^{\times n}$ is called **idempotent** if A \* A = A

12 / 15

э

∃ ▶ ∢

A ∈ SetP<sub>2</sub><sup>×n</sup> is called idempotent if A \* A = A
E(SetP<sub>2</sub><sup>×n</sup>) set of all idempotents in SetP<sub>2</sub><sup>×n</sup>

12 / 15

3 K K 3 K

- $A \in SetP_2^{\times n}$  is called **idempotent** if A \* A = A
- $E(SetP_2^{\times n})$  set of all idempotents in  $SetP_2^{\times n}$

- $A \in SetP_2^{\times n}$  is called **idempotent** if A \* A = A
- $E(SetP_2^{\times n})$  set of all idempotents in  $SetP_2^{\times n}$

• *n* = 2

Jörg Koppitz (Institute)

SSAOS 2016 (05/09/2016)

12 / 15

- $A \in SetP_2^{\times n}$  is called **idempotent** if A \* A = A
- $E(SetP_2^{\times n})$  set of all idempotents in  $SetP_2^{\times n}$

• 
$$n = 2$$
  
•  $\left\{ \begin{pmatrix} \overline{13} & \overline{24} \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} \overline{13} & \overline{24} \\ 1 & 2 \end{pmatrix} \right\} \in E(SetP_2^{\times 2})$ 

- $A \in SetP_2^{\times n}$  is called **idempotent** if A \* A = A
- $E(SetP_2^{\times n})$  set of all idempotents in  $SetP_2^{\times n}$

• 
$$n = 2$$
  
•  $\left\{ \begin{pmatrix} \overline{13} & \overline{24} \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} \overline{13} & \overline{24} \\ 1 & 2 \end{pmatrix} \right\} \in E(SetP_2^{\times 2})$   
• although  $\begin{pmatrix} \overline{13} & \overline{24} \\ 2 & 1 \end{pmatrix}$  is not idempotent

•  $S \leq (SetP_2^{\times n}, *)$  is called **idempotent subsemigroup** (or **band**) if  $S \subseteq E(SetP_2^{\times n})$ .

13 / 15

(B)

- $S \leq (SetP_2^{\times n}, *)$  is called **idempotent subsemigroup** (or **band**) if  $S \subseteq E(SetP_2^{\times n})$ .
- $(SetP_2^{\times n}, *)$  is not a band.

13 / 15

(B)

- $S \leq (SetP_2^{\times n}, *)$  is called **idempotent subsemigroup** (or **band**) if  $S \subseteq E(SetP_2^{\times n})$ .
- $(SetP_2^{\times n}, *)$  is not a band.
- An idempotent subsemigroup S is called **maximal idempotent subsemigroup** if

$$S \leq T \Longrightarrow S = T$$
 or  $T \not\subseteq E(SetP_2^{\times n})$ .

(B)

- $S \leq (SetP_2^{\times n}, *)$  is called **idempotent subsemigroup** (or **band**) if  $S \subseteq E(SetP_2^{\times n})$ .
- $(SetP_2^{\times n}, *)$  is not a band.
- An idempotent subsemigroup S is called **maximal idempotent subsemigroup** if

$$S \leq T \Longrightarrow S = T$$
 or  $T \not\subseteq E(SetP_2^{\times n})$ .

#### Theorem

There are **exactly two** maximal idempotent subsemigroups of  $(SetP_2^{\times n}, *)$ .

•  $A \in SetP_2^{\times n}$  is called **regular** if there is  $B \in SetP_2^{\times n}$  with A \* B \* A = A.

A B F A B F

3

14 / 15
#### Fact

The idempotent elements are regular.

A B < A B <</p>

3

### Fact

The idempotent elements are regular.

## Example

Image: Image:

→ ∃ →

### Fact

The idempotent elements are regular.

## Example

Image: Image:

→ ∃ →

## Fact

The idempotent elements are regular.

# Example

• 
$$n = 2$$
  
•  $A = \left\{ \left( \begin{array}{cc} \overline{13} & \overline{24} \\ 2 & 1 \end{array} \right), \left( \begin{array}{cc} \overline{1234} \\ 1 \end{array} \right), \left( \begin{array}{cc} \overline{1234} \\ 2 \end{array} \right) \right\}$ 

## Fact

The idempotent elements are regular.

# Example

• 
$$n = 2$$
  
•  $A = \left\{ \left(\begin{array}{cc} \overline{13} & \overline{24} \\ 2 & 1 \end{array}\right), \left(\begin{array}{cc} \overline{1234} \\ 1 \end{array}\right), \left(\begin{array}{cc} \overline{1234} \\ 2 \end{array}\right) \right\}$   
•  $A$  is not idempotent since  $A * A = \left\{ \left(\begin{array}{cc} \overline{13} & \overline{24} \\ 1 & 2 \end{array}\right), \left(\begin{array}{cc} \overline{1234} \\ 1 \end{array}\right), \left(\begin{array}{cc} \overline{1234} \\ 2 \end{array}\right) \right\}$ 

Image: Image:

< ∃ > <</li>

## Fact

The idempotent elements are regular.

# Example

• 
$$n = 2$$
  
•  $A = \left\{ \begin{pmatrix} \overline{13} & \overline{24} \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} \overline{1234} \\ 1 \end{pmatrix}, \begin{pmatrix} \overline{1234} \\ 2 \end{pmatrix} \right\}$   
•  $A$  is not idempotent since  $A * A = \left\{ \begin{pmatrix} \overline{13} & \overline{24} \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} \overline{1234} \\ 1 \end{pmatrix}, \begin{pmatrix} \overline{1234} \\ 2 \end{pmatrix} \right\}$   
•  $A$  is regular since  $A * A * A = A$  (i.e.  $A = B$ )

14 / 15

-∢ ∃ ▶

Image: Image:



• = • •

Fact  $SetP_2^{\times n}$  is not regular

• A regular subsemigroup S is called maximal regular subsemigroup if

$$S \leq T \Longrightarrow S = T$$
 or  $T$  is not regular.

Fact  $SetP_2^{\times n}$  is not regular

• A regular subsemigroup S is called maximal regular subsemigroup if

$$S \leq T \Longrightarrow S = T$$
 or  $T$  is not regular.

#### Theorem

There are exactly two maximal regular subsemigroups of  $SetP_2^{\times n}$ .