Solving the prisoner in memory-one strategies

David Kruml ${ }^{1}$

SSAOS 2016,Trojanovice

${ }^{1}$ Supported by the project GAČR I 1923-N25.

One-round game

D dominates $C: 5>3,1>0$.

Iterated prisoner's dilemma

Players can react differently to every sequence of previous rounds (history) - much more strategies.
Popular simplifications - limited memory (automata, Markov strategies). Let us consider memory-one strategies. They react to the previous round situation. The expected pay-off is a mean pay-off for an infinitely iterated game.

Making the opponent cooperate is more profitable than just "stealing" some extra points by defection.
Strategies appreciating long run mutual cooperation are more successful. Concepts of revenge, forgiveness, temptation, etc. Applications in biology (evolution of altruism), economy (oligopoly), social and political studies, ethics (golden rule), etc.

Examples of memory-one strategies

AIIC
always cooperate

AllD always defect

tit-for-tat imitate opponent's last move

Pavlov

loose (CD, DD) - switch

TFT vs. TFT

$3 / 3$

Pavlov vs. Pavlov

$3 / 3$

$3 / 3$

Other combats

$1 / 1$

$0.5 / 3$

Tournaments

Evolutionary stability

Population with x All D and y TFT. Simulated evolution - more successful strategy is awarded by a larger offspring.

TFT invades AllD and TFT resists to AllD, for any ratio.

Probability memory-one strategies

Noise - probabilities restricted to [e,1-e] for some small fixed $e>0$. The induced Markov chain is ergodic, tends to a unique stationary vector, and the first round actions are irrelevant. The strategies are quadruples $p=\left[p_{0}, p_{1}, p_{2}, p_{3}\right], q=\left[q_{0}, q_{1}, q_{2}, q_{3}\right]$.

Adjust your avatar!

$p_{0} \quad(C C \rightarrow C) \quad$ niceness
$p_{1} \quad(\mathrm{CD} \rightarrow \mathrm{C})$ gratuity
$p_{2} \quad(\mathrm{DC} \rightarrow \mathrm{C})$ forgiveness
$p_{3} \quad(\mathrm{DD} \rightarrow \mathrm{C})$ conciliatoryness

$1-p_{0}$	$(\mathrm{CC} \rightarrow \mathrm{D})$	nastiness
$1-p_{1}$	$(\mathrm{CD} \rightarrow \mathrm{D})$	retaliation
$1-p_{2}$	$(\mathrm{DC} \rightarrow \mathrm{D})$	impenitence
$1-p_{3}$	$(\mathrm{DD} \rightarrow \mathrm{D})$	cautiousness

Axelrod's recommendation: be nice + retaliate + forgive.

Notation for strategies

[1, 0, 1, 0]
TFT
ioio
$[1,1,1,1] \quad$ AllC
iiii
$[0,0,0,0] \quad$ AlID
0000
[1, 0, 0, 1] Pavlov
iooi

$$
[1,1 / 3,1,2 / 3] \quad \text { GTFT (gratuitous TFT) ixiy }
$$

Noised versions: [1-e,e,1-e,e] is noised TFT, written as ioio.

Strategy space

0000	iOOO
oooi	iooi
ooio	ioio
ooii	ioii
oioo	iioo
oioi	$i i o i$
oiio	iilo
Oinı	ili2

16 corners (0 -faces), 32 edges (1 -faces), 24 squares (2 -faces), 8 cubes (3-faces), 1 hypercube (4 -face).

Notation: ?oi? stands for 2-face conv(ooio, ooii, ioio, ioii).

Who wins?

Non-noised TFT won the first Axelrod's tournament (against many sophisticated strategies) and has steady good results against any opponents (robust strategy).
0000 (AIID) is an evolutionary stable strategy (ESS) in any noised version of IPD, but scores poorly.
iooi (Pavlov) and iooo (Grim trigger) can be ESS too for some game settings.
There is no universal answer which strategy is best.

Evolution dynamics

[Nowak \& Sigmund 1993]: Simulated evolution of strategies.

p is a best reply to q if $u(p, q) \geq u(\bar{p}, q)$ for every \bar{p}.
(p, q) is a Nash equilibrium if p is BR to q and q is BR to p.
Nash equilibria are "stable islands" in the evolution drift.

Markov chain for two fixed strategies

Probability distribution $a=\left[a_{0}, a_{1}, a_{2}, a_{3}\right]$ of round n provides distribution $a N$ of round $n+1$ by transition matrix

$$
N=\left(\begin{array}{llll}
p_{0} q_{0} & p_{0}\left(1-q_{0}\right) & \left(1-p_{0}\right) q_{0} & \left(1-p_{0}\right)\left(1-q_{0}\right) \\
p_{1} q_{2} & p_{1}\left(1-q_{2}\right) & \left(1-p_{1}\right) q_{2} & \left(1-p_{1}\right)\left(1-q_{2}\right) \\
p_{2} q_{1} & p_{2}\left(1-q_{1}\right) & \left(1-p_{2}\right) q_{1} & \left(1-p_{2}\right)\left(1-q_{1}\right) \\
p_{3} q_{3} & p_{3}\left(1-q_{3}\right) & \left(1-p_{3}\right) q_{3} & \left(1-p_{3}\right)\left(1-q_{3}\right)
\end{array}\right)
$$

The stationary vector s satisfies $s=s N$, i. e. it is a normalized eigenvector for $\lambda=1$.
s is a unique solution of $s(M 1)=[0,0,0,1]$ where

$$
M=\left(\begin{array}{ccc}
p_{0} q_{0}-1 & p_{0}-1 & q_{0}-1 \\
p_{1} q_{2} & p_{1}-1 & q_{2} \\
p_{2} q_{1} & p_{2} & q_{1}-1 \\
p_{3} q_{3} & p_{3} & q_{3}
\end{array}\right) .
$$

Noised TFT vs. noised TFT

$$
s=[0.25,0.25,0.25,0.25]
$$

Pay-off in Markov games

$w=\left[w_{0}, w_{1}, w_{2}, w_{3}\right] \ldots$ the pay-off vector $([3,0,5,1])$.
Mean pay-off: $u=s_{0} w_{0}+s_{1} w_{1}+s_{2} w_{2}+s_{3} w_{3}$.
s can be also calculated by Crammer's rule: $s_{j}=\left|M_{j} 1\right| /|M 1|$.
[Press \& Dyson 2012] Using the Laplace expansion,

$$
u=\frac{|M w|}{|M 1|}
$$

To find a best reply to q means to maximize u in variable p. So, let us derive it in parameters p_{j}.

Gradient of u

p_{0} occupies only the first row of M, thus can be separated:

$$
\left|\begin{array}{cc}
m_{0} & w_{0} \\
\bar{M} & \bar{w}
\end{array}\right|=p_{0}\left|\begin{array}{cc}
m_{0}^{\prime} & 0 \\
\bar{M} & \bar{w}
\end{array}\right|+\left|\begin{array}{cc}
n_{0} & w_{0} \\
\bar{M} & \bar{w}
\end{array}\right|,\left|\begin{array}{cc}
m_{0} & 1 \\
\bar{M} & 1
\end{array}\right|=p_{0}\left|\begin{array}{cc}
m_{0}^{\prime} & 0 \\
\bar{M} & 1
\end{array}\right|+\left|\begin{array}{cc}
n_{0} & 1 \\
\bar{M} & 1
\end{array}\right|
$$

where m_{0}^{\prime} is a derivation of the first row m_{0}, and n_{0} its evaluation at $p_{0}=0, \bar{M}, \bar{w}$ the rests of M, w.
This makes u a linear fractional function in p_{0} :

$$
u=\frac{\alpha p_{0}+\beta}{\gamma p_{0}+\delta} \quad u^{\prime}=\frac{\alpha \delta-\beta \gamma}{\left(\gamma p_{0}+\delta\right)^{2}}
$$

The graph of u is a hyperbola, a denominator of u^{\prime} is positive, and a nominator constant. Hence, u^{\prime} is of constant sign, u is either strictly increasing, strictly decreasing, or constant, and acquires its maxima on the boundary or everywhere.

Best replies - comparison algorithm

Proposition

Let f be a face and q opponent's strategy.
If p is an inner point of f and a best reply to q, then any other point of f is also a best reply to q.
If all corners of f are best replies to q, then all points of f are also best replies.
The faces of best replies can be found by comparison of u at (finitely many) corner strategies.

2-face net for $w=[3,0,5,1], e=0.01$

2-face net for $w=[2,0,9,1], e=0.01$

2-face net for $w=[8,0,9,1], e=0.01$

2 -face net for $w=[8,0,9,7], e=0.01$

Desnanot-Jacobi identity

\left|$$
\begin{array}{ccc}
a & m & b \\
v & A & w \\
c & n & d
\end{array}
$$\right| \cdot|A|=\left|$$
\begin{array}{cc}
a & m \\
v & A
\end{array}
$$\right| \cdot\left|$$
\begin{array}{cc}
A & w \\
n & d
\end{array}
$$\right|-\left|$$
\begin{array}{cc}
m & b \\
A & w
\end{array}
$$\right| \cdot\left|$$
\begin{array}{cc}
v & A \\
c & m
\end{array}
$$\right|
\]

Application on $\frac{\partial u}{\partial p_{j}}$:

$$
\begin{aligned}
\frac{\partial u}{\partial p_{j}}=\frac{|\bar{M}|}{|M 1|} \cdot \frac{D_{j}}{|M 1|} & \text { where } D_{j}=\left|\begin{array}{ccc}
m_{j}^{\prime} & 0 & 0 \\
M & w & 1
\end{array}\right| \\
& \text { and } \bar{M} \text { is } M \text { without } j \text { th row }
\end{aligned}
$$

D_{j} is the only factor responsible for the sign of $\frac{\partial u}{\partial p_{j}}$.

Sieve method, depth-first-seach

Nash equilibria

Good candidates for strategies forming NE:

- corners of the hypercube,
- equalizers (next slide),
- critical points of u - boundary points of monochromatic regions.

The equalizers and critical points are solutions of one or more equations $D_{j}=0$. The sets of best replies are higher-dimensional faces and can contain other critical points/equalizers \rightarrow chance to find non-corner equilibria.

Equalizers

$$
D_{j}=\left|\begin{array}{ccccc}
q_{\pi(j)} & 1 & 0 & 0 & 0 \\
p_{0} q_{0}-1 & p_{0}-1 & q_{0}-1 & w_{0} & 1 \\
p_{1} q_{2} & p_{1}-1 & q_{2} & w_{1} & 1 \\
p_{2} q_{1} & p_{2} & q_{1}-1 & w_{2} & 1 \\
p_{3} q_{3} & p_{3} & q_{3} & w_{3} & 1
\end{array}\right|
$$

for $\pi=\left(\begin{array}{llll}0 & 1 & 2 & 3 \\ 0 & 2 & 1 & 3\end{array}\right)$.
If the last three columns are linearly dependent then all $D_{j}=0$ regardless on p. The player has a constant pay-off and every p is a best reply to q.

Such q is called equalizer [Boerlijst, Nowak, Sigmund 1997].
Equalizers form a plane, extremal points $=$ intersections with 2-faces.

Two equalizers \rightarrow Nash equilibrium.

Critical points

$D_{j} \mathrm{~s}$ differ only in the left upper corner $\left(q_{\pi(j)}\right)$. If $D_{j}=D_{k}=0$ then $q_{\pi(j)}=q_{\pi(k)}$ or \ldots (non-interesting cases).
D_{j} is quadratic in $q_{\pi(j)}$, linear in $q_{k}, k \neq \pi(j)$.
$D_{j}=0$ is an unbounded quadric of "hyperbolic shape". Intersections of more quadrics lie on main diagonals of 2-, 3-, 4 -faces.
Search of critical points is algorithmic.
We solve linear/quadratic equations in one variable!

Example: ?oio and oo?o for $w=[3,0,5,1], e=0.01]$

A

B

A - three critical points, each provides a 1-face of best replies:

- Start in corner ooio, BR is ioii.
- Smallest root $e<x<1-e$ of some $D_{j}($ ioii, xoio $)=0$ is $x=0.502$ for $j=0$, BR changes to ooii.
- Smallest root $x<y<1-e$ of some D_{j} (ooii, yoio) $=0$ is $y=0.742$ again for $j=0$, BR changes back to ioii.
- Next root $y<z<1-e$ of some D_{j} (ioii, zoio) $=0$ is $z=0.796$ for $j=1$, BR changes to iiii.
- No more roots $z<a<1$ for $D_{j}($ iiii, aoio $)=0$, the search is finished.

B - one critical point, BR changes from oooo to ioii, 3-face of best replies.

Classification of Nash equilibria

Moving within the face of best replies and within the region "of the same colours" does not change pay-offs.

Nash equilibria which yield the same pay-offs are called equivalent.

Theorem

Every Nash equilibrium of a 2×2 game is equivalent to a situation formed by a pair of strategies from a finite set containing:

- corners,
- extremal equalizers,
- and critical points on edges and main diagonals of faces.

Example: $w=[3,0,5,1], e=0.01$ I

critical point strategies		
strat.	value	b. r.
ooxo	$x=0.266345$?o??
ooix	$x=0.387302$	ioi?
ooiy	$y=0.586000$?o?o
oxxo	$x=0.216122$?oo?
oxio	$x=0.417338$	io?i
oxix	$x=0.388532$	io??
oixo	$x=0.027563$?oo?
oiix	$x=0.399779$	ioo?
oiiy	$y=0.776061$?ooo
xooo	$x=0.645085$?ooo
xoxo	$x=0.263133$	oo??
yoyo	$y=0.512488$	$? ?$?ii
xoio	$x=0.502042$?oii
yoio	$y=0.741645$?oii
zoio	$z=0.796101$	i?ii

strat.	value	b. r.
xoix	$x=0.404639$	$?$ oi?
xxio	$x=0.449288$	$? o ? i$
xxix	$x=0.400732$	$? o ? ?$
xiio	$x=0.334563$	$?$ ooi
xiix	$x=0.383853$	$? o o ?$
ioox	$x=0.010335$	ioo?
iooy	$y=0.952823$	ioo?
iooz	$z=0.955572$	$? o o o$
ioxo	$x=0.010294$	i?oo
ioyo	$y=0.010303$	ii??
ioxx	$x=0.010317$	$i ? o ?$
ioyy	$y=0.964430$	$i ? o ?$
ioix	$x=0.658763$	ii?i
ioiy	$y=0.964875$	iio?
ioiz	$z=0.965323$	$? ? o o$
ixoo	$x=0.010309$	io?o

Example: $w=[3,0,5,1], e=0.01$ II

critical point strategies		
strat.	value	b. r.
iyoo	$y=0.969889$	io?o
izoo	$z=0.969899$?ooo
ixxo	$x=0.010294$	$i ? ? o$
iyyo	$y=0.804296$	$o ? ? i$
ixxx	$x=0.010318$	$i ? ? ?$
iyyy	$y=0.482182$	i???
ixio	$x=0.334257$??ii
iyio	$y=0.786849$	oo?i
ixix	$x=0.328870$??ii
iyiy	$y=0.591202$	oo??
iixo	$x=0.015127$	ooo?
iiyo	$y=0.015247$	$o ? o i$
iizo	$z=0.655894$	$o ? o i$
iiix	$x=0.535109$	ooo?

extremal equalizers		
strat.	values	
xoyo	$x=0.510000$	$y=0.260000$
xoiy	$x=0.802000$	$y=0.594000$
ixyo	$x=0.970000$	$y=0.020000$
ixiy	$x=0.323333$	$y=0.656667$

Example: $w=[3,0,5,1], e=0.01 \mathrm{III}$

Nash equilibria without pairs of equalizers			
oooo : oooo	iooo : iooo		
ooxo : ooxo	xooo : xooo	xoix : xoix	ioox : ioox
iooy : iooy	ixxo : ixxo	ixxx : ixxx	iyyy : iyyy
ooxo : xoxo	ooiy : xoxo	ioox : iooy	ioxo : ixoo
ioxo : iyoo	ixxx : iyyy		
ooxo : xoyo	ooxo : xoiy	ooiy : xoyo	xoix : xoiy
xxix : xoyo	xxix : xoiy	ixxo : ixyo	ixxx : ixyo
ixxx : ixiy	iyyy : ixyo	iyyy : ixiy	

By Theorem, the list contains "essentially all" Nash equilibria.

Conclusion

- Theory works for any iterated 2×2 game.
- u is strictly monotone in each variable, hence it typically achieve maxima on the boundary. ("Rigorous" strategies prevail "infirm" strategies.)
- For calculating best replies, only corner strategies must be inspected.
- Critical points demarcating "monochromatic" regions of best replies can be found by a search on edges and diagonals. Only linear or quadratic equations must be solved.
- There is a finite set of equivalence classes of Nash equilibria. Their representatives arise from corners, extremal equalizers, and critical points.
- The algorithms are direct and bypass dynamical modelling.

Perspectives

- Comprehensive discussion of solvability of $D_{j}=0$ w. r. t. game parameters \rightarrow ultimate classification of NE in memory-one IPD.
- Multi-player version, more actions for players ($m \times n$ games), memory-two strategies \rightarrow much more states, large determinants, need more effective methods.
- Study of polymorphic populations.

Thank you for your attention!

