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Generating Quord(A)

Previous results

@ H. Strietz (1975), L. Zadori (1986): a four-element generating
set for Equ(A) if A is finite.

o G. Czédli (1996): Equ(A) is four-generated if there is no
inaccessible cardinal m such that m < |A.

@ |. Chajda and G. Czédli (1996): a six-element generating set
for Quord(A) for all finite and some infinite sets.

o G. Takach (1996): Quord(A) is six-generated if there is no
inaccessible cardinal m such that m < |A.

e T. Dolgos (2015): a five-element generating set for Quord(A)
and an eight-element generating set for Tran(A) for countable
sets.

Gabor Czédli and Jalia Kulin Notes on quasiorder lattices



Quord(A) is five-generated

Theorem (Kulin)

Let A be a set with at least three elements.

Q If there is no inaccessible cardinal m such that m < |A|, then
Quord(A) has a five-element generating set.

Q If Rg < |A] < 2%, then Quord(A) has a five-element
generating set.

Gabor Czédli and Jalia Kulin Notes on quasiorder lattices



Proof of part (2) of the Theorem

Let Ay = {ao,bo,al, bl,az,bQ, ... }

We define five quasiorders on Ag: o, of, o3, %, and B2.
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Proof of part (2) of the Theorem

Let Ay = {ao,bo,al, b],az,bQ, ... }

We define five quasiorders on Ag: o, of, o3, %, and B2.

Notation: af: —, af: M7 ad: , and [)’0:\\/4,\

Figure: Quasiorders on Ag
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Proof of part (2) of the Theorem

Let Ay = {ao,bo,al, b],az,bQ, ... }

We define five quasiorders on Ag: o, of, o3, %, and B2.

Notation: af: —, af: M7 ad: , and [)’0:\\/4,\

Figure: Quasiorders on Ag

B =(8%)7*
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Proof of part (2) of the Theorem

Let x be an arbitrary cardinal such that Xg < k < 2%0. Let
I ={2,3,4,...}, and H C P(/) such that |H| = k.
For U € H:

o Ao(U) = {ao(U), bo(U),al(U),bl(U),QQ(U),bQ(U), . },
@ we copy the previous edges,

o and we replace the dotted edges with “real” edges (e, e;) for
i€ Uand (e,€) forie I\ U.
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Proof of part (2) of the Theorem

A new colored graph:

A = {Ao(U) : U € H}, the previous edges, and some (-colored
directed edges in addition, connecting Ag(()) with Ag(U) for all
UeH.
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Proof of part (2) of the Theorem

A new colored graph:

A = {Ao(U) : U € H}, the previous edges, and some (-colored
directed edges in addition, connecting Ag(0) with Aq(U) for all
UeH.
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Figure: A part of 3 € Quord(A) if H = {0,{2,3},{2,4,5}}
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Proof of part (2) of the Theorem

A new colored graph:

A = {Ao(U) : U € H}, the previous edges, and some (-colored
directed edges in addition, connecting Ag(0) with Aq(U) for all
UeH.
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Figure: A part of 3 € Quord(A) if H = {0,{2,3},{2,4,5}}

Five generators: ag, o, oo, 3, and 3, = 71,
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Quord(A) is four-generated, but not three-generated

Theorem (Czédli)

If Ais aset with |A| € {ne N:n>11}U{2,3,5,7,9,N}, then
Quord(A) is a four-generated lattice.
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Quord(A) is four-generated, but not three-generated

Theorem (Czédli)

If Ais aset with |A| € {ne N:n>11}U{2,3,5,7,9,N}, then
Quord(A) is a four-generated lattice.

Three generators are not enough.
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Quord(A) is four-generated, but not three-generated

Theorem (Czédli)

If Ais aset with |A| € {ne N:n>11}U{2,3,5,7,9,N}, then
Quord(A) is a four-generated lattice.

Three generators are not enough.

Theorem (Czédli, Kulin)

If |[A| > 5 and there is no inaccessible cardinal m such that
m < |A|, then Quord(A) is four-generated.

Gabor Czédli and Jalia Kulin Notes on quasiorder lattices



Quord(A) is four-generated, but not three-generated

Theorem (Czédli)

If Ais aset with |A| € {ne N:n>11}U{2,3,5,7,9,N}, then
Quord(A) is a four-generated lattice.

Three generators are not enough.

Theorem (Czédli, Kulin)

If |[A| > 5 and there is no inaccessible cardinal m such that
m < |A|, then Quord(A) is four-generated.

Theorem (Czédli, Kulin)

If |A| > 58 and there is no inaccessible cardinal m such that
m < |A|, then Quord(A) is (1 + 1 + 2)-generated.
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Generating Tran(A)
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Generating Tran(A)

Theorem (Czédli, Kulin)

Let A be a set with at least three elements. If there is no
inaccessible cardinal m such that m < |A|, then Tran(A) has a
six-element generating set.
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