Notes on quasiorder lattices

Gábor Czédli and Júlia Kulin

Bolyai Institute University of Szeged

54th Summer School on General Algebra and Ordered Sets 5 September 2016

Generating Quord(A)

Gábor Czédli and Júlia Kulin Notes on quasiorder lattices

æ

< ≣ >

Previous results

- H. Strietz (1975), L. Zádori (1986): a four-element generating set for Equ(A) if A is finite.
- G. Czédli (1996): Equ(A) is four-generated if there is no inaccessible cardinal m such that m ≤ |A|.
- I. Chajda and G. Czédli (1996): a six-element generating set for Quord(A) for all finite and some infinite sets.
- G. Takách (1996): Quord(A) is six-generated if there is no inaccessible cardinal m such that m ≤ |A|.
- T. Dolgos (2015): a five-element generating set for Quord(A) and an eight-element generating set for Tran(A) for countable sets.

Theorem (Kulin)

Let A be a set with at least three elements.

- If there is no inaccessible cardinal m such that $m \le |A|$, then Quord(A) has a five-element generating set.
- If $\aleph_0 ≤ |A| ≤ 2^{\aleph_0}$, then Quord(A) has a five-element generating set.

Let
$$A_0 = \{a_0, b_0, a_1, b_1, a_2, b_2, \dots\}.$$

We define five quasiorders on A_0 : α_0^0 , α_1^0 , α_2^0 , β^0 , and β_*^0 .

→ <

Let
$$A_0 = \{a_0, b_0, a_1, b_1, a_2, b_2, \dots\}.$$

We define five quasiorders on A_0 : α_0^0 , α_1^0 , α_2^0 , β^0 , and β_*^0 .

Figure: Quasiorders on A_0

Let
$$A_0 = \{a_0, b_0, a_1, b_1, a_2, b_2, \dots\}.$$

We define five quasiorders on A_0 : α_0^0 , α_1^0 , α_2^0 , β^0 , and β_*^0 .

Figure: Quasiorders on A_0

 Let κ be an arbitrary cardinal such that $\aleph_0 \leq \kappa \leq 2^{\aleph_0}$. Let $I = \{2, 3, 4, \dots\}$, and $H \subseteq \mathcal{P}(I)$ such that $|H| = \kappa$.

For $U \in H$:

- $A_0(U) = \{a_0(U), b_0(U), a_1(U), b_1(U), a_2(U), b_2(U), \dots\},\$
- we copy the previous edges,
- and we replace the dotted edges with "real" edges (e'_i, e_i) for $i \in U$ and (e_i, e'_i) for $i \in I \setminus U$.

A new colored graph:

 $A = \{A_0(U) : U \in H\}$, the previous edges, and some β -colored directed edges in addition, connecting $A_0(\emptyset)$ with $A_0(U)$ for all $U \in H$.

→ <

A new colored graph: $A = \{A_0(U) : U \in H\}$, the previous edges, and some β -colored directed edges in addition, connecting $A_0(\emptyset)$ with $A_0(U)$ for all $U \in H$.

Figure: A part of $\beta \in \text{Quord}(A)$ if $H = \{\emptyset, \{2,3\}, \{2,4,5\}\}$

A new colored graph: $A = \{A_0(U) : U \in H\}$, the previous edges, and some β -colored directed edges in addition, connecting $A_0(\emptyset)$ with $A_0(U)$ for all $U \in H$.

Figure: A part of $\beta \in \text{Quord}(A)$ if $H = \{\emptyset, \{2,3\}, \{2,4,5\}\}$

Five generators: α_0 , α_1 , α_2 , β , and $\beta_* := \beta^{-1}$

Gábor Czédli and Júlia Kulin Notes on quasiorder lattices

If A is a set with $|A| \in \{n \in \mathbb{N} : n \ge 11\} \cup \{2,3,5,7,9,\aleph_0\}$, then Quord(A) is a four-generated lattice.

★ ∃ →

If A is a set with $|A| \in \{n \in \mathbb{N} : n \ge 11\} \cup \{2,3,5,7,9,\aleph_0\}$, then Quord(A) is a four-generated lattice.

Three generators are not enough.

If A is a set with $|A| \in \{n \in \mathbb{N} : n \ge 11\} \cup \{2,3,5,7,9,\aleph_0\}$, then Quord(A) is a four-generated lattice.

Three generators are not enough.

Theorem (Czédli, Kulin)

If $|A| \ge 5$ and there is no inaccessible cardinal *m* such that $m \le |A|$, then Quord(A) is four-generated.

If A is a set with $|A| \in \{n \in \mathbb{N} : n \ge 11\} \cup \{2,3,5,7,9,\aleph_0\}$, then Quord(A) is a four-generated lattice.

Three generators are not enough.

Theorem (Czédli, Kulin)

If $|A| \ge 5$ and there is no inaccessible cardinal *m* such that $m \le |A|$, then Quord(A) is four-generated.

Theorem (Czédli, Kulin)

If $|A| \ge 58$ and there is no inaccessible cardinal *m* such that $m \le |A|$, then Quord(A) is (1 + 1 + 2)-generated.

Generating Tran(A)

Gábor Czédli and Júlia Kulin Notes on quasiorder lattices

æ

∢ ≣ ≯

Theorem (Czédli, Kulin)

Let A be a set with at least three elements. If there is no inaccessible cardinal m such that $m \leq |A|$, then Tran(A) has a six-element generating set.

References

- I. Chajda, G. Czédli: How to generate the involution lattice of quasiorders?, Studia Sci. Math. Hungar. 32 (1996), 415-427.
- G. Czédli: Four-generated large equivalence lattices, Acta Sci. Math. 62 (1996), 47-69.
- G. Czédli: Four-generated quasiorder lattices and their atoms in a four-generated sublattice, Communications in Algebra, submitted in 2015.
- G. Czédli, J. Kulin: A concise approach to small generating sets of lattices of quasiorders and transitive relations, on the authors' webpage.
- T. Dolgos: Generating equivalence and quasiorder lattices over finite sets (in Hungarian), BSc Thesis, University of Szeged (2015).
- J. Kulin: Quasiorder lattices are five-generated, Discussiones Mathematicae -General Algebra and Application, 36 (2016), 59-60.
- I. Strietz: Finite partition lattices are four-generated, Proc. Lattice Th. Conf. Ulm (1975), 257-259.
- 6 G. Takách: Three-generated quasiorder lattices, Discussiones Matematicae, Algebra and Stochastic Methods 16 (1996), 81–98.
- L. Zádori. Generation of finite partition lattices, Lectures in Universal Algebra, Colloquia Math. Soc. J. Bolyai 43, Proc. Conf. Szeged (1983), 573–586, North Holland, Amsterdam—Oxford—New York (1986).

< ロ > < 同 > < 回 > < 回 > < 回 > <