Strong Partial Clones and the Complexity of Constraint Satisfaction Problems

Who? Victor Lagerkvist

From? TU Dresden, Institut für Algebra

When? September 8
The constraint satisfaction problem is a widely studied computational problem.
Motivation

- The *constraint satisfaction problem* is a widely studied computational problem.
- The *algebraic approach* offers a systematic approach for studying its complexity.
Motivation

- The *constraint satisfaction problem* is a widely studied computational problem.
- The *algebraic approach* offers a systematic approach for studying its complexity.
- Most research is devoted to separating *tractable* from *intractable* problems.
Motivation

- The constraint satisfaction problem is a widely studied computational problem.
- The algebraic approach offers a systematic approach for studying its complexity.
- Most research is devoted to separating tractable from intractable problems.
- In this talk we will look at generalizations allowing a more fine-grained complexity analysis.
Outline of the Presentation

1. The constraint satisfaction problem.
2. The algebraic approach.
3. A more refined approach.
4. Two non-trivial applications.
The Constraint Satisfaction Problem

Assume that we are given a map of Australia and want to colour its states with three colours, in such a way that two adjacent states are not assigned the same colour.
The Constraint Satisfaction Problem

This kind of problem is an example of a constraint satisfaction problem.
The Constraint Satisfaction Problem

This kind of problem is an example of a constraint satisfaction problem.

We have some objects that we want to assign values to.
The Constraint Satisfaction Problem

This kind of problem is an example of a constraint satisfaction problem.

- We have some objects that we want to assign values to.
- But when assigning values we have to do it in such a way that all constraints are satisfied.
The Constraint Satisfaction Problem

This kind of problem is an example of a *constraint satisfaction problem*.

- We have some objects that we want to assign values to.
- But when assigning values we have to do it in such a way that all *constraints* are satisfied.
The Constraint Satisfaction Problem

Definition

Let D be a finite set of values. A k-ary relation over D is a subset of the k-ary Cartesian product of D. A set of relations S is called a constraint language.
Let D be a finite set of values. A k-ary relation over D is a subset of the k-ary Cartesian product of D.
A set of relations S is called a constraint language. The constraint satisfaction problem over S (CSP(S)) is defined as follows.

Instance: A tuple (V, C) where V is a set of variables and C a set of constraints over V and S.

Question: Does there exist a function $f : V \rightarrow D$ such that $(f(x_1, \ldots, x_k)) \in R$ for every constraint $R(x_1, \ldots, x_k)$ in C?
The Constraint Satisfaction Problem

If S is Boolean the CSP(S) problem is sometimes denoted by SAT(S), the so-called *generalised satisfiability problem*.

Example Let $R_1/3 = \{(0,0,1), (0,1,0), (1,0,0)\}$ and let $R_{NAE} = \{0,1\}^3 \setminus \{(0,0,0), (1,1,1)\}$. Then the two well-known NP-complete problems monotone 1-in-3-SAT and NOT-ALL-EQUAL-3-SAT can be formulated as SAT($\{R_1/3\}$) and SAT($\{R_{NAE}\}$).
The Constraint Satisfaction Problem

If S is Boolean the CSP(S) problem is sometimes denoted by SAT(S), the so-called *generalised satisfiability problem*.

Example

Let $R_{1/3} = \{(0,0,1), (0,1,0), (1,0,0)\}$ and let $R_{\text{NAE}} = \{0,1\}^3 \setminus \{(0,0,0), (1,1,1)\}$. Then the two well-known NP-complete problems monotone 1-in-3-SAT and NOT-ALL-EQUAL-3-SAT can be formulated as SAT($\{R_{1/3}\}$) and SAT($\{R_{\text{NAE}}\}$).
The Algebraic Approach

Given a constraint language S, is CSP(S) tractable or intractable?
The Algebraic Approach

- Given a constraint language S, is CSP(S) tractable or intractable?
- The most successful approach to study this question is based on relating constraint languages with algebras.
The Algebraic Approach

Definition

Let R be a relation. An n-ary function f is a \textit{polymorphism} of R if $f(t_1, \ldots, t_n) \in R$ for every $t_1, \ldots, t_n \in R$ (applied componentwise).
The Algebraic Approach

Definition

Let R be a relation. An n-ary function f is a polymorphism of R if $f(t_1, \ldots, t_n) \in R$ for every $t_1, \ldots, t_n \in R$ (applied componentwise).

Similarly f is a polymorphism of a constraint language S if it is a polymorphism of every relation in S. We also say that S is invariant under f or that f preserves S.

Example

Let $R_{\text{NAE}} = \{(0, 0, 0), (1, 1, 1)\}$ and let $R_{1/3} = \{(0, 0, 1), (0, 1, 0), (1, 0, 0)\}$. Let neg be the unary function defined as $\text{neg}(0) = 1$ and $\text{neg}(1) = 0$.

Then neg is a polymorphism of R_{NAE}, but neg is not a polymorphism of $R_{1/3}$ since $\text{neg}((0, 0, 1)) = (1, 1, 0) / \notin R_{1/3}$.
The Algebraic Approach

Definition

Let R be a relation. An n-ary function f is a \textit{polymorphism} of R if $f(t_1, \ldots, t_n) \in R$ for every $t_1, \ldots, t_n \in R$ (applied componentwise). Similarly f is a polymorphism of a constraint language S if it is a polymorphism of every relation in S. We also say that S is \textit{invariant} under f or that f \textit{preserves} S.

Example

Let $R_{\text{NAE}} = \{0, 1\}^3 \setminus \{(0, 0, 0), (1, 1, 1)\}$ and let $R_{1/3} = \{(0, 0, 1), (0, 1, 0), (1, 0, 0)\}$. Let neg be the unary function defined as $\text{neg}(0) = 1$ and $\text{neg}(1) = 0$.
The Algebraic Approach

Definition

Let R be a relation. An n-ary function f is a polymorphism of R if $f(t_1, \ldots, t_n) \in R$ for every $t_1, \ldots, t_n \in R$ (applied componentwise).

Similarly f is a polymorphism of a constraint language S if it is a polymorphism of every relation in S. We also say that S is invariant under f or that f preserves S.

Example

Let $R_{\text{NAE}} = \{0, 1\}^3 \setminus \{(0, 0, 0), (1, 1, 1)\}$ and let $R_{1/3} = \{(0, 0, 1), (0, 1, 0), (1, 0, 0)\}$. Let neg be the unary function defined as $\text{neg}(0) = 1$ and $\text{neg}(1) = 0$. Then neg is a polymorphism of R_{NAE}, but
The Algebraic Approach

Definition

Let R be a relation. An n-ary function f is a polymorphism of R if $f(t_1, \ldots, t_n) \in R$ for every $t_1, \ldots, t_n \in R$ (applied componentwise).

Similarly f is a polymorphism of a constraint language S if it is a polymorphism of every relation in S. We also say that S is invariant under f or that f preserves S.

Example

Let $R_{NAE} = \{0, 1\}^3 \setminus \{(0, 0, 0), (1, 1, 1)\}$ and let $R_{1/3} = \{(0, 0, 1), (0, 1, 0), (1, 0, 0)\}$. Let neg be the unary function defined as $\text{neg}(0) = 1$ and $\text{neg}(1) = 0$.

Then

- neg is a polymorphism of R_{NAE}, but
- neg is not a polymorphism of $R_{1/3}$ since $\text{neg}((0, 0, 1)) = (1, 1, 0) \notin R_{1/3}$.
The Algebraic Approach

Definition

If \(S \) is a constraint language then we let \(\text{Pol}(S) \) be the set of all polymorphisms of \(S \).
The Algebraic Approach

Definition

If S is a constraint language then we let $\text{Pol}(S)$ be the set of all polymorphisms of S.

Sets of the form $\text{Pol}(S)$ are known as *clones*.
The Algebraic Approach

Definition

If S is a constraint language then we let $\text{Pol}(S)$ be the set of all polymorphisms of S.

- Sets of the form $\text{Pol}(S)$ are known as cl\-\-\-ones.
- Clones are sets of functions closed under functional composition.
The Algebraic Approach

The polymorphisms of a constraint language determines the complexity of the CSP problem up to polynomial-time reductions.

Theorem (Jeavons et al.)

Let S and S' be two finite constraint languages. If $\text{Pol}(S) \subseteq \text{Pol}(S')$ then $\text{CSP}(S')$ is polynomial-time many-one reducible to $\text{CSP}(S)$.

Very useful when separating tractable CSP problems from NP-complete CSP problems...
The Algebraic Approach

The polymorphisms of a constraint language determines the complexity of the CSP problem up to polynomial-time reductions.

Theorem (Jeavons et al.)

Let S and S' be two finite constraint languages. If $\text{Pol}(S) \subseteq \text{Pol}(S')$ then $\text{CSP}(S')$ is polynomial-time many-one reducible to $\text{CSP}(S)$. Very useful when separating tractable CSP problems from NP-complete CSP problems...
The Algebraic Approach

... But does not say anything about the relative worst-case time complexity for the NP-complete cases.
The Algebraic Approach

... But does not say anything about the relative worst-case time complexity for the NP-complete cases. 1-in-3-SAT is solvable in roughly $O(1.09^n)$ time.
The Algebraic Approach

... But does not say anything about the relative worst-case time complexity for the NP-complete cases.

- 1-in-3-SAT is solvable in roughly $O(1.09^n)$ time.
- 3-SAT is only known to be solvable in $O(1.308^n)$ time.
The Algebraic Approach

... But does not say anything about the relative worst-case time complexity for the NP-complete cases.

- 1-in-3-SAT is solvable in roughly $O(1.09^n)$ time.
- 3-SAT is only known to be solvable in $O(1.308^n)$ time.
- But both problems correspond to the same clone and are polynomial-time reducible to each other.
The Algebraic Approach

- Want something more fine-grained than polymorphisms.
The Algebraic Approach

- Want something more fine-grained than polymorphisms.
- One alternative is to consider *partial polymorphisms*.
A More Refined Approach

Definition

Let R be a relation. A partial function f is a *partial polymorphism* of R if $f(t_1, \ldots, t_n) \in R$ for every $t_1, \ldots, t_n \in R$ such that $f(t_1, \ldots, t_n)$ is defined for each componentwise application.
A More Refined Approach

Definition

Let R be a relation. A partial function f is a partial polymorphism of R if $f(t_1, \ldots, t_n) \in R$ for every $t_1, \ldots, t_n \in R$ such that $f(t_1, \ldots, t_n)$ is defined for each componentwise application.

Example

Recall that the function $\text{neg}(x) = 1 - x$ was not a polymorphism of $R_{1/3} = \{(0, 0, 1), (0, 1, 0), (1, 0, 0)\}$. Define the partial unary function neg' as $\text{neg}'(0) = 1$ and let it be undefined for 1. Then neg' is a partial polymorphism of $R_{1/3}$ since it will always be undefined on any application of a tuple from $R_{1/3}$.
Let $pPol(S)$ be the set of all partial polymorphisms of a constraint language S.
A More Refined Approach

- Let $\text{pPol}(S)$ be the set of all partial polymorphisms of a constraint language S.
- Sets of the form $\text{pPol}(S)$ are known as strong partial clones.
A More Refined Approach

- Let \(\text{pPol}(S) \) be the set of all partial polymorphisms of a constraint language \(S \).
- Sets of the form \(\text{pPol}(S) \) are known as strong partial clones.
- Strong partial clones are sets of partial functions closed under functional composition and containing all subfunctions.
A More Refined Approach

The partial polymorphisms determines the complexity of CSP problems up to $O(c^n)$ time complexity.

Theorem (Jonsson et al.)

Let S and S' be two finite constraint languages. If $\text{pPol}(S) \subseteq \text{pPol}(S')$ and CSP(S) is solvable in $O(c^n)$ time, then CSP(S') is also solvable in $O(c^n)$ time.
A More Refined Approach

The lattice of Boolean strong partial clones is uncountably infinite. Even worse:

Theorem (Schölzel)

Assume $P \neq NP$. Then the set \{pPol(S) | SAT(S) is NP-complete} is uncountably infinite.
A More Refined Approach

The lattice of Boolean strong partial clones is uncountably infinite. Even worse:

Theorem (Schölzel)

Assume $P \neq NP$. Then the set \{pPol(S) | SAT(S) is NP-complete\} is uncountably infinite.

Theorem (Lagerkvist & Roy)

Assume $P \neq NP$. Then the set \{pPol(S) | pPol(S) \supset pPol($\{R_{1/3}\}$)\} is (at least) countably infinite.
A More Refined Approach

The lattice of Boolean strong partial clones is uncountably infinite. Even worse:

Theorem (Schölzel)

Assume \(P \neq NP \). Then the set \(\{ \text{pPol}(S) \mid \text{SAT}(S) \text{ is NP-complete} \} \) is uncountably infinite.

Theorem (Lagerkvist & Roy)

Assume \(P \neq NP \). Then the set \(\{ \text{pPol}(S) \mid \text{pPol}(S) \supset \text{pPol}(\{R_{1/3}\}) \} \) is (at least) countably infinite.

Theorem (Lagerkvist & Wahlström)

Let \(\text{Pol}(S) \) be an essentially unary clone over a finite domain. If \(S \) is finite then \(\text{pPol}(S) \) does not have a finite base.
A More Refined Approach

The lattice of Boolean strong partial clones is uncountably infinite. Even worse:

Theorem (Schölzel)
Assume $P \neq NP$. Then the set \{$pPol(S) \mid SAT(S) \text{ is NP-complete}$\} is uncountably infinite.

Theorem (Lagerkvist & Roy)
Assume $P \neq NP$. Then the set \{$pPol(S) \mid pPol(S) \supset pPol(\{R_{1/3}\})$\} is (at least) countably infinite.

Let $Pol(S)$ be an essentially unary clone over a finite domain. If S is finite then $pPol(S)$ does not have a finite base.

Implies that reasoning with partial polymorphisms is almost always difficult.
Two Non-Trivial Applications

The “easiest NP-complete SAT(S) problem”.

Assume $P \neq NP$. Then there exists a relation R such that $SAT(\{R\})$ is NP-complete but not strictly harder than any other NP-complete $SAT(S)$ problem.
Two Non-Trivial Applications

The “easiest NP-complete SAT(S) problem”.

Assume $P \neq NP$. Then there exists a relation R such that $\text{SAT}(\{R\})$ is NP-complete but not strictly harder than any other NP-complete SAT(S) problem.

Proof sketch:
If $\text{pPol}(S) \subseteq \text{pPol}(S')$ then $\text{SAT}(S')$ is not computationally harder than $\text{SAT}(S)$.
Two Non-Trivial Applications

The “easiest NP-complete $\text{SAT}(S)$ problem”.

Assume $P \neq NP$. Then there exists a relation R such that $\text{SAT} \{R\}$ is NP-complete but not strictly harder than any other NP-complete $\text{SAT}(S)$ problem.

Proof sketch:

- If $\text{pPol}(S) \subseteq \text{pPol}(S')$ then $\text{SAT}(S')$ is not computationally harder than $\text{SAT}(S)$.
- It is possible to find a relation R such that $\text{pPol}(S) \subseteq \text{pPol}(\{R\})$ for any S such that $\text{SAT}(S)$ is NP-complete.
Two Non-Trivial Applications

A related problem to studying worst-case time complexity is *kernelization*.
Two Non-Trivial Applications

- A related problem to studying worst-case time complexity is kernelization.
- It can be seen as a preprocessing technique for reducing a problem to a smaller version of the problem, a kernel.
Two Non-Trivial Applications

- A related problem to studying worst-case time complexity is kernelization.
- It can be seen as a preprocessing technique for reducing a problem to a smaller version of the problem, a kernel.
- For SAT(S) we measure the size of the kernel with respect to the number of constraints.
Two Non-Trivial Applications

- A related problem to studying worst-case time complexity is \textit{kernelization}.
- It can be seen as a preprocessing technique for reducing a problem to a smaller version of the problem, a \textit{kernel}.
- For SAT(S) we measure the size of the kernel with respect to the number of constraints.
- Polymorphisms doesn’t work for studying kernelizability of SAT(S) problems.
Two Non-Trivial Applications

Theorem (Lagerkvist & Wahlström)

SAT(S) has a kernel with $O(n)$ constraints if S is “embeddable” into a language \hat{S} preserved by a Maltsev polymorphism.
Two Non-Trivial Applications

Theorem (Lagerkvist & Wahlström)

Proof.

SAT(S) has a kernel with $O(n)$ constraints if S is “embeddable” into a language \hat{S} preserved by a Maltsev polymorphism.

Translate instance I of SAT(S) to instance of SAT(\hat{S}).
Two Non-Trivial Applications

Theorem (Lagerkvist & Wahlström)

SAT(S) has a kernel with $O(n)$ constraints if S is “embeddable” into a language \hat{S} preserved by a Maltsev polymorphism.

Proof.

- Translate instance I of SAT(S) to instance of SAT(\hat{S}).
- Use a variation of the simple algorithm for Maltsev constraints to remove redundant constraints.
Two Non-Trivial Applications

Theorem (Lagerkvist & Wahlström)

SAT(S) has a kernel with $O(n)$ constraints if S is "embeddable" into a language \hat{S} preserved by a Maltsev polymorphism.

Proof.

- Translate instance I of SAT(S) to instance of SAT(\hat{S}).
- Use a variation of the simple algorithm for Maltsev constraints to remove redundant constraints.
- Reduce back to SAT(S).
Two Non-Trivial Applications

If S is not “embeddable” into a language preserved by a Maltsev polymorphism then this can be witnessed by certain Boolean partial Maltsev polymorphisms.

Theorem (Lagerkvist & Wahlström)

*If S is not preserved by a partial Maltsev operation then SAT(S) does not have a kernel with $O(n^{2-\varepsilon})$ constraints for any $\varepsilon > 0$.***
Two Non-Trivial Applications

If S is not “embeddable” into a language preserved by a Maltsev polymorphism then this can be witnessed by certain Boolean partial Maltsev polymorphisms.

Theorem (Lagerkvist & Wahlström)

If S is not preserved by a partial Maltsev operation then SAT(S) does not have a kernel with $O(n^{2-\varepsilon})$ constraints for any $\varepsilon > 0$.

Hence, the absence of partial polymorphisms provides a lot of structural information for a SAT problem.
Concluding Remarks

To study the worst-case time complexity of CSP problems we used partial polymorphisms instead of total polymorphisms.
Concluding Remarks

- To study the worst-case time complexity of CSP problems we used partial polymorphisms instead of total polymorphisms.
- The resulting theory is much more complicated.
Concluding Remarks

- To study the worst-case time complexity of CSP problems we used partial polymorphisms instead of total polymorphisms.
- The resulting theory is much more complicated.
- But non-trivial results can still be obtained.