Permutation classes closed under pattern involvement and composition

Erkko Lehtonen

Institut für Algebra
Technische Universität Dresden
Erkko.Lehtonen@tu-dresden.de
joint work with
Reinhard Pöschel
54th Summer School on General Algebra and Ordered Sets (SSAOS 2016)
Trojanovice, 3-9 September 2016

Permutations

We consider permutations of $\{1, \ldots, n\}$, for some $n \in \mathbb{N}_{+}$.
On the one hand, a permutation is a bijective map on $\{1, \ldots, n\}$.
On the other hand, a permutation $\pi \in S_{n}$ will be considered as a string of length n :

$$
\pi=\pi_{1} \pi_{2} \ldots \pi_{n}
$$

where $\pi_{i}=\pi(i)$.

Permutation patterns

$$
\sigma=\sigma_{1} \ldots \sigma_{\ell} \in S_{\ell} \quad \tau=\tau_{1} \ldots \tau_{\ell} \in S_{n} \quad(\ell \leq n)
$$

σ is a pattern of τ (or τ involves σ), in symbols, $\sigma \leq \tau$, if there exists a substring $\tau_{i_{1}} \ldots \tau_{i_{\ell}}\left(i_{1}<i_{2}<\cdots<i_{\ell}\right)$ that is order-isomorphic to $\sigma_{1} \ldots \sigma_{\ell}$.

Example

$$
\begin{array}{cc}
5132674 \\
5 & 26 \\
3 & 4 \\
3 & 2
\end{array}
$$

Permutation patterns

$$
\sigma=\sigma_{1} \ldots \sigma_{\ell} \in S_{\ell} \quad \tau=\tau_{1} \ldots \tau_{\ell} \in S_{n} \quad(\ell \leq n)
$$

σ is a pattern of τ (or τ involves σ), in symbols, $\sigma \leq \tau$, if there exists a substring $\tau_{i_{1}} \ldots \tau_{i_{\ell}}\left(i_{1}<i_{2}<\cdots<i_{\ell}\right)$ that is order-isomorphic to $\sigma_{1} \ldots \sigma_{\ell}$.

Example

$$
\begin{gathered}
5132674 \\
5 \\
3 \quad 14 \\
3 \quad 14 \\
3142 \leq 5132674
\end{gathered}
$$

Permutation patterns

$$
\sigma=\sigma_{1} \ldots \sigma_{\ell} \in S_{\ell} \quad \tau=\tau_{1} \ldots \tau_{\ell} \in S_{n} \quad(\ell \leq n)
$$

σ is a pattern of τ (or τ involves σ), in symbols, $\sigma \leq \tau$, if there exists a substring $\tau_{i_{1}} \ldots \tau_{i_{\ell}}\left(i_{1}<i_{2}<\cdots<i_{\ell}\right)$ that is order-isomorphic to $\sigma_{1} \ldots \sigma_{\ell}$.

Example

> 5132674 5 364 3 3142

Permutation patterns

$$
\sigma=\sigma_{1} \ldots \sigma_{\ell} \in S_{\ell} \quad \tau=\tau_{1} \ldots \tau_{\ell} \in S_{n} \quad(\ell \leq n)
$$

σ is a pattern of τ (or τ involves σ), in symbols, $\sigma \leq \tau$, if there exists a substring $\tau_{i_{1}} \ldots \tau_{i_{\ell}}\left(i_{1}<i_{2}<\cdots<i_{\ell}\right)$ that is order-isomorphic to $\sigma_{1} \ldots \sigma_{\ell}$.

Example

$$
\begin{array}{lr}
5132674 \\
5 & 26 \\
3 & 14
\end{array}
$$

$3142 \leq 5132674$

Permutation patterns

$$
\sigma=\sigma_{1} \ldots \sigma_{\ell} \in S_{\ell} \quad \tau=\tau_{1} \ldots \tau_{\ell} \in S_{n} \quad(\ell \leq n)
$$

σ is a pattern of τ (or τ involves σ), in symbols, $\sigma \leq \tau$, if there exists a substring $\tau_{i_{1}} \ldots \tau_{i_{\ell}}\left(i_{1}<i_{2}<\cdots<i_{\ell}\right)$ that is order-isomorphic to $\sigma_{1} \ldots \sigma_{\ell}$.

Example

$$
\begin{gathered}
5132674 \\
5 \quad 264 \\
3 \quad 142 \\
3142 \leq 5132674
\end{gathered}
$$

Permutation patterns

$$
\sigma=\sigma_{1} \ldots \sigma_{\ell} \in S_{\ell} \quad \tau=\tau_{1} \ldots \tau_{\ell} \in S_{n} \quad(\ell \leq n)
$$

σ is a pattern of τ (or τ involves σ), in symbols, $\sigma \leq \tau$, if there exists a substring $\tau_{i_{1}} \ldots \tau_{i_{\ell}}\left(i_{1}<i_{2}<\cdots<i_{\ell}\right)$ that is order-isomorphic to $\sigma_{1} \ldots \sigma_{\ell}$.

Example

Permutation patterns

$$
\sigma=\sigma_{1} \ldots \sigma_{\ell} \in S_{\ell} \quad \tau=\tau_{1} \ldots \tau_{\ell} \in S_{n} \quad(\ell \leq n)
$$

σ is a pattern of τ (or τ involves σ), in symbols, $\sigma \leq \tau$, if there exists a substring $\tau_{i_{1}} \ldots \tau_{i_{\ell}}\left(i_{1}<i_{2}<\cdots<i_{\ell}\right)$ that is order-isomorphic to $\sigma_{1} \ldots \sigma_{\ell}$.

Example

Permutation patterns

$$
\sigma=\sigma_{1} \ldots \sigma_{\ell} \in S_{\ell} \quad \tau=\tau_{1} \ldots \tau_{\ell} \in S_{n} \quad(\ell \leq n)
$$

σ is a pattern of τ (or τ involves σ), in symbols, $\sigma \leq \tau$, if there exists a substring $\tau_{i_{1}} \ldots \tau_{i_{\ell}}\left(i_{1}<i_{2}<\cdots<i_{\ell}\right)$ that is order-isomorphic to $\sigma_{1} \ldots \sigma_{\ell}$.

Example

Permutation patterns

$$
\sigma=\sigma_{1} \ldots \sigma_{\ell} \in S_{\ell} \quad \tau=\tau_{1} \ldots \tau_{\ell} \in S_{n} \quad(\ell \leq n)
$$

σ is a pattern of τ (or τ involves σ), in symbols, $\sigma \leq \tau$, if there exists a substring $\tau_{i_{1}} \ldots \tau_{i_{\ell}}\left(i_{1}<i_{2}<\cdots<i_{\ell}\right)$ that is order-isomorphic to $\sigma_{1} \ldots \sigma_{\ell}$.

Example

Permutation patterns

$$
\sigma=\sigma_{1} \ldots \sigma_{\ell} \in S_{\ell} \quad \tau=\tau_{1} \ldots \tau_{\ell} \in S_{n} \quad(\ell \leq n)
$$

σ is a pattern of τ (or τ involves σ), in symbols, $\sigma \leq \tau$, if there exists a substring $\tau_{i_{1}} \ldots \tau_{i_{\ell}}\left(i_{1}<i_{2}<\cdots<i_{\ell}\right)$ that is order-isomorphic to $\sigma_{1} \ldots \sigma_{\ell}$.
τ avoids σ if $\sigma \not \leq \tau$.
The pattern involvement relation \leq is a partial order on the set $\mathbb{P}:=\bigcup_{n \geq 1} S_{n}$ of all finite permutations. Downward closed subsets of \mathbb{P} under \leq are called permutation classes.

Permutation patterns

$$
\sigma \leq \tau
$$

Permutation patterns

Permutation patterns

Permutation patterns

Galois connection

The operators Pat ${ }^{(\ell)}$ and Comp ${ }^{(n)}$ constitute a monotone Galois connection between $\mathcal{P}\left(S_{\ell}\right)$ and $\mathcal{P}\left(S_{n}\right)$.
This is in fact the monotone Galois connection induced by the pattern avoidance relation $\not \approx$ between S_{ℓ} and S_{n}.
$S \subseteq S_{\ell}, T \subseteq S_{n}(\ell \leq n)$
Comp $^{(n)} S:=\left\{\tau \in S_{n} \mid\right.$ Pat $\left.^{(\ell)} \tau \subseteq S\right\}=\left\{\tau \in S_{n} \mid \forall \sigma \in S_{\ell} \backslash S: \sigma \not \leq \tau\right\}$,

$$
\operatorname{Pat}^{(\ell)} T:=\bigcup \text { Pat }^{(\ell)} \tau \quad=S_{\ell} \backslash\left\{\sigma \in S_{\ell} \mid \forall \tau \in T: \sigma \not \leq \tau\right\} .
$$

Closures and kernels:

$$
\begin{aligned}
& \operatorname{Pat}^{(\ell)} \operatorname{Comp}^{(n)} S \subseteq S, \\
& T \subseteq \operatorname{Comp}^{(n)} \operatorname{Pat}^{(\ell)} T, \\
& \operatorname{Comp}^{(n)} S=\operatorname{Comp}^{(n)} \operatorname{Pat}^{(\ell)} \operatorname{Comp}^{(n)} S, \\
& \operatorname{Pat}^{(\ell)} T=\operatorname{Pat}^{(\ell)} \operatorname{Comp}^{(n)} \operatorname{Pat}^{(\ell)} T .
\end{aligned}
$$

Galois connection

Further details on this Galois connection and the related Galois connection between the subgroup lattices of S_{ℓ} and S_{n} in
E. Lehtonen, R. Pöschel,

Permutation groups, pattern involvement, and Galois connections, arXiv:1605.04516.

The group case for $\mathrm{Comp}^{(n)} S$

Proposition

If S is a subgroup of S_{ℓ}, then Comp $^{(n)} S$ is a subgroup of S_{n}.

Sketch of a proof.

Assume that $S \leq S_{\ell}$. Let $\pi, \tau \in \operatorname{Comp}^{(n)} S$.
Thus Pat ${ }^{(\ell)} \pi$, Pat $^{(\ell)} \tau \subseteq S$.
It holds that

$$
\begin{gathered}
\operatorname{Pat}^{(\ell)} \pi^{-1}=\left(\operatorname{Pat}^{(\ell)} \pi\right)^{-1}:=\left\{\sigma^{-1} \mid \sigma \in \operatorname{Pat}^{(\ell)} \pi\right\} \\
\operatorname{Pat}^{(\ell)} \pi \tau \subseteq\left(\operatorname{Pat}^{(\ell)} \pi\right)\left(\operatorname{Pat}^{(\ell)} \tau\right)=\left\{\sigma \sigma^{\prime} \mid \sigma \in \operatorname{Pat}^{(\ell)} \pi, \sigma^{\prime} \in \operatorname{Pat}^{(\ell)} \tau\right\}
\end{gathered}
$$

Since S is a group, it contains the inverses and products of its members. Consequently, π^{-1} and $\pi \tau$ also belong to Comp ${ }^{(n)} S$. Thus Comp ${ }^{(n)} S$ is a group.

The group case for Comp ${ }^{(n)} S$, continued

The converse of the Proposition does not hold.
There even exist subgroups $H \leq S_{n}$ which are of the form Comp $^{(n)} S$ for some $S \subseteq S_{\ell}$ but there is no subgroup $G \leq S_{\ell}$ such that $H=\operatorname{Comp}^{(\bar{n})} G$.

However, for $\ell \leq n$ and $\ell \leq 3$, it holds that for every $S \subseteq S_{\ell}, \operatorname{Comp}^{(n)} S$ is a subgroup of S_{n} if and only if S is a subgroup of S_{ℓ}.

Permutation groups arising from pattern avoidance

Group classes

M. D. Atkinson, R. Beals,

Permuting mechanisms and closed classes of permutations, in: C. S. Calude, M. J. Dinneen (eds.), Combinatorics, Computation \& Logic, Proc. DMTCS '99 and CATS '99 (Auckland), Aust. Comput. Sci. Commun., 21, No. 3, Springer, Singapore, 1999, pp. 117-127.
M. D. Atkinson, R. Beals,

Permutation involvement and groups,
Q. J. Math. 52 (2001) 415-421.

Group classes

Theorem (Atkinson, Beals)

If C is a permutation class in which every level $C^{(n)}$ is a permutation group, then the level sequence $C^{(1)}, C^{(2)}, \ldots$ eventually coincides with one of the following families of groups:
(1) the groups $S_{n}^{a, b}$ for some fixed

$$
a, b \in \mathbb{N}_{+}
$$

(2) the natural cyclic groups Z_{n},
(3) the full symmetric groups S_{n},
(4) the groups $\left\langle G_{n}, \delta_{n}\right\rangle$, where $\left(G_{n}\right)_{n \in \mathbb{N}}$
is one of the above families (with
$a=b$ in (1)).

Group classes

Theorem (Atkinson, Beals)

If C is a permutation class in which every level $C^{(n)}$ is a permutation group, then the level sequence $C^{(1)}, C^{(2)}, \ldots$ eventually coincides with one of the following families of groups:
(1) the groups $S_{n}^{a, b}$ for some fixed

$$
a, b \in \mathbb{N}_{+},
$$

(2) the natural cyclic groups Z_{n},
(3) the full symmetric groups S_{n},
(4) the groups $\left\langle G_{n}, \delta_{n}\right\rangle$, where $\left(G_{n}\right)_{n \in \mathbb{N}}$

$$
S_{n}^{a, b}
$$

 is one of the above families (with $a=b$ in (1)).

Group classes

Theorem (Atkinson, Beals)

If C is a permutation class in which every level $C^{(n)}$ is a permutation group, then the level sequence $C^{(1)}, C^{(2)}, \ldots$ eventually coincides with one of the following families of groups:
(1) the groups $S_{n}^{a, b}$ for some fixed

$$
a, b \in \mathbb{N}_{+}
$$

(2) the natural cyclic groups Z_{n},
(3) the full symmetric groups S_{n},
(4) the groups $\left\langle G_{n}, \delta_{n}\right\rangle$, where $\left(G_{n}\right)_{n \in \mathbb{N}}$ is one of the above families (with $a=b$ in (1)).

Group classes

Theorem (Atkinson, Beals)

If C is a permutation class in which every level $C^{(n)}$ is a permutation group, then the level sequence $C^{(1)}, C^{(2)}, \ldots$ eventually coincides with one of the following families of groups:
(1) the groups $S_{n}^{a, b}$ for some fixed

$$
a, b \in \mathbb{N}_{+}
$$

(2) the natural cyclic groups Z_{n},
(3) the full symmetric groups S_{n},

$$
\delta_{n}=n(n-1) \ldots 1
$$

(4) the groups $\left\langle G_{n}, \delta_{n}\right\rangle$, where $\left(G_{n}\right)_{n \in \mathbb{N}}$ is one of the above families (with $a=b$ in (1)).

Group classes

Theorem (Atkinson, Beals)

Let C be a permutation class in which every level $C^{(n)}$ is a transitive group. Then, with the exception of at most two levels, one of the following holds.
(1) $C^{(n)}=S_{n}$ for all $n \in \mathbb{N}_{+}$.
(2) For some $M \in \mathbb{N}, C^{(n)}=S_{n}$ for $1 \leq n \leq M$, and $C^{(n)}=D_{n}$ for $n>M$.
(3) For some $M, N \in \mathbb{N}$ with $M \leq N, C^{(n)}=S_{n}$ for $1 \leq n \leq M, C^{(n)}=D_{n}$ for $M+1 \leq n \leq N$, and $C^{(n)}=Z_{n}$ for $n>N$.

The exceptions, if any, may occur in the second and third cases and are of the following two possible types:
(i) $C^{(M+1)}=A_{M+1}$ and $C^{(M+2)}$ is an anomalous group that is neither D_{M+2} nor Z_{M+2}, or
(ii) $C^{(M+1)}$ is a proper overgroup of Z_{M+1} but is not D_{M+1}.

Group classes

Theorem (Atkinson, Beals)

Let C be a permutation class in which every level $C^{(n)}$ is a transitive group. Then, with the exception of at most two levels, one of the following holds.
(1) $C^{(n)}=S_{n}$ for all $n \in \mathbb{N}_{+}$.
(2) For some $M \in \mathbb{N}, C^{(n)}=S_{n}$ for $1 \leq n \leq M$, and $C^{(n)}=D_{n}$ for $n>M$.
(3) For some $M, N \in \mathbb{N}$ with $M \leq N, C^{(n)}=S_{n}$ for $1 \leq n \leq M, C^{(n)}=D_{n}$ for $M+1 \leq n \leq N$, and $C^{(n)}=Z_{n}$ for $n>N$.

The exceptions, if any, may occur in the second and third cases and are of the following two possible types:
(i) $C^{(M+1)}=A_{M+1}$ and $C^{(M+2)}$ is an anomalous group that is neither D_{M+2} nor Z_{M+2}, or
(ii) $C^{(M+1)}$ is a proper overgroup of Z_{M+1} but is not D_{M+1}.

Group classes

Theorem (Atkinson, Beals)

Let C be a permutation class in which every level $C^{(n)}$ is a transitive group. Then, with the exception of at most two levels, one of the following holds.
(1) $C^{(n)}=S_{n}$ for all $n \in \mathbb{N}_{+}$.
(2) For some $M \in \mathbb{N}, C^{(n)}=S_{n}$ for $1 \leq n \leq M$, and $C^{(n)}=D_{n}$ for $n>M$.
(3) For some $M, N \in \mathbb{N}$ with $M \leq N, C^{(n)}=S_{n}$ for $1 \leq n \leq M, C^{(n)}=D_{n}$ for $M+1 \leq n \leq N$, and $C^{(n)}=Z_{n}$ for $n>N$.

The exceptions, if any, may occur in the second and third cases and are of the following two possible types:
(i) $C^{(M+1)}=A_{M+1}$ and $C^{(M+2)}$ is an anomalous group that is neither D_{M+2} nor Z_{M+2}, or
(ii) $C^{(M+1)}$ is a proper overgroup of Z_{M+1} but is not D_{M+1}.

Group classes

Theorem (Atkinson, Beals)

Let C be a permutation class in which every level $C^{(n)}$ is a transitive group. Then, with the exception of at most two levels, one of the following holds.
(1) $C^{(n)}=S_{n}$ for all $n \in \mathbb{N}_{+}$.
(2) For some $M \in \mathbb{N}, C^{(n)}=S_{n}$ for $1 \leq n \leq M$, and $C^{(n)}=D_{n}$ for $n>M$.
(3) For some $M, N \in \mathbb{N}$ with $M \leq N, C^{(n)}=S_{n}$ for $1 \leq n \leq M, C^{(n)}=D_{n}$ for $M+1 \leq n \leq N$, and $C^{(n)}=Z_{n}$ for $n>N$.

The exceptions, if any, may occur in the second and third cases and are of the following two possible types:
(i) $C^{(M+1)}=A_{M+1}$ and $C^{(M+2)}$ is an anomalous group that is neither D_{M+2} nor Z_{M+2}, or
(ii) $C^{(M+1)}$ is a proper overgroup of Z_{M+1} but is not D_{M+1}.

Group classes

Theorem (Atkinson, Beals)

Let C be a permutation class in which every level $C^{(n)}$ is a transitive group. Then, with the exception of at most two levels, one of the following holds.
(1) $C^{(n)}=S_{n}$ for all $n \in \mathbb{N}_{+}$.
(2) For some $M \in \mathbb{N}, C^{(n)}=S_{n}$ for $1 \leq n \leq M$, and $C^{(n)}=D_{n}$ for $n>M$.
(3) For some $M, N \in \mathbb{N}$ with $M \leq N, C^{(n)}=S_{n}$ for $1 \leq n \leq M, C^{(n)}=D_{n}$ for $M+1 \leq n \leq N$, and $C^{(n)}=Z_{n}$ for $n>N$.

The exceptions, if any, may occur in the second and third cases and are of the following two possible types:
(i) $C^{(M+1)}=A_{M+1}$ and $C^{(M+2)}$ is an anomalous group that is neither D_{M+2} nor Z_{M+2}, or
(ii) $C^{(M+1)}$ is a proper overgroup of Z_{M+1} but is not D_{M+1}.

Group classes

Theorem (Atkinson, Beals)

Let C be a permutation class in which every level $C^{(n)}$ is a transitive group. Then, with the exception of at most two levels, one of the following holds.
(1) $C^{(n)}=S_{n}$ for all $n \in \mathbb{N}_{+}$.
(2) For some $M \in \mathbb{N}, C^{(n)}=S_{n}$ for $1 \leq n \leq M$, and $C^{(n)}=D_{n}$ for $n>M$.
(3) For some $M, N \in \mathbb{N}$ with $M \leq N, C^{(n)}=S_{n}$ for $1 \leq n \leq M, C^{(n)}=D_{n}$ for $M+1 \leq n \leq N$, and $C^{(n)}=Z_{n}$ for $n>N$.

The exceptions, if any, may occur in the second and third cases and are of the following two possible types:
(i) $C^{(M+1)}=A_{M+1}$ and $C^{(M+2)}$ is an anomalous group that is neither D_{M+2} nor Z_{M+2}, or
(ii) $C^{(M+1)}$ is a proper overgroup of Z_{M+1} but is not D_{M+1}.

Group classes

Theorem (Atkinson, Beals)

Let C be a permutation class in which every level $C^{(n)}$ is a transitive group. Then, with the exception of at most two levels, one of the following holds.
(1) $C^{(n)}=S_{n}$ for all $n \in \mathbb{N}_{+}$.
(2) For some $M \in \mathbb{N}, C^{(n)}=S_{n}$ for $1 \leq n \leq M$, and $C^{(n)}=D_{n}$ for $n>M$.
(3) For some $M, N \in \mathbb{N}$ with $M \leq N, C^{(n)}=S_{n}$ for $1 \leq n \leq M, C^{(n)}=D_{n}$ for $M+1 \leq n \leq N$, and $C^{(n)}=Z_{n}$ for $n>N$.

The exceptions, if any, may occur in the second and third cases and are of the following two possible types:
(i) $C^{(M+1)}=A_{M+1}$ and $C^{(M+2)}$ is an anomalous group that is neither D_{M+2} nor Z_{M+2}, or
(ii) $C^{(M+1)}$ is a proper overgroup of Z_{M+1} but is not D_{M+1}.

Roadmap

- $S_{n},\left\langle\delta_{n}\right\rangle$, trivial
- A_{n}

$$
\zeta_{n}=(12 \cdots n)
$$

- $\zeta_{n} \in G$ and
$A_{n} \not \leq G$
- $\zeta_{n} \notin G$:
- intransitive
- transitive:
- imprimitive
- primitive

$$
\delta_{n}=n(n-1) \ldots 1
$$

Executive summary

Proposition

Let $G \leq S_{n}$. Then, unless $\zeta_{n} \notin G$ and G is intransitive or imprimitive, the smallest $i \in \mathbb{N}_{+}$for which Comp $^{(n+i)} G$ is one of the asymptotic groups is at most 2.

E. LEHTONEN,

Permutation groups arising from pattern involvement, arXiv:1605.05571.

Simple observations

Lemma

Let $n, m \in \mathbb{N}_{+}$with $n \leq m$. Let $G \leq S_{n}$. Then $\delta_{m} \in \operatorname{Comp}^{(m)} G$ if and only if $\delta_{n} \in G$.

Lemma

Let $G \leq S_{n}$.
(a) The following statements are equivalent.
(i) $Z_{n} \leq G$.
(ii) $Z_{n+1} \leq$ Comp $^{(n+1)} G$.
(iii) $\operatorname{Comp}^{(n+1)} G$ contains a permutation $\pi \in Z_{n+1} \backslash\left\{\iota_{n+1}\right\}$.
(b) The following statements are equivalent.
(i) $D_{n} \leq G$.
(ii) $D_{n+1} \leq C o m p^{(n+1)} G$.
(iii) $\mathrm{Comp}^{(n+1)} G$ contains a permutation $\pi \in D_{n+1} \backslash\left(Z_{n+1} \cup\left\{\delta_{n+1}\right\}\right)$.

Symmetric, trivial, ...

Theorem

The following statements hold for all $n \in \mathbb{N}_{+}$.
(a) $\operatorname{Comp}^{(n+1)} S_{n}=S_{n+1}$.
(b) If $n \geq 2$, then $\operatorname{Comp}^{(n+1)}\left\{\iota_{n}\right\}=\left\{\iota_{n+1}\right\}$.
(c) If $n \geq 3$, then Comp $^{(n+1)}\left\langle\delta_{n}\right\rangle=\left\langle\delta_{n+1}\right\rangle$.

Notation

Let Π be a partition of $[n]$.

$$
S_{\Pi}:=\left\{\pi \in S_{n} \mid \forall B \in \Pi: \pi(B)=B\right\}
$$

Alternating groups

$C E_{n+1}$ - partition of $[n+1$] into odd and even numbers
$S_{E_{n+1}}$ - permutations preserving blocks of $C E_{n+1}$
$W_{C E_{n+1}}$ - permutations interchanging blocks of $C E_{n+1}$
A_{n+1} - even permutations
O_{n+1} - odd permutations

Theorem

$$
\operatorname{Comp}^{(n+1)} A_{n}=\left(S_{E_{n+1}} \cap A_{n+1}\right) \cup\left(W_{E_{n+1}} \cap O_{n+1}\right) .
$$

Theorem

$$
\text { Comp }^{(n+2)} A_{n}=\left\{\begin{array}{lll}
\left\langle\delta_{n+2}\right\rangle, & \text { if } n \equiv 0 & (\bmod 4) \\
Z_{n+2}, & \text { if } n \equiv 1 & (\bmod 4) \\
\left\{\iota_{n+2}\right\}, & \text { if } n \equiv 2 & (\bmod 4) \\
D_{n+2}, & \text { if } n \equiv 3 & (\bmod 4)
\end{array}\right.
$$

Groups containing the natural cycle

Theorem

Let $G \leq S_{n}$, and assume that G contains the natural cycle ζ_{n}.
(i) If $D_{n} \leq G$ and $G \notin\left\{S_{n}, A_{n}\right\}$, then Comp ${ }^{(n+1)} G=D_{n+1}$.
(ii) If $D_{n} \not \leq G$, then $\operatorname{Comp}^{(n+1)} G=Z_{n+1}$.

Intransitive groups

Let $G \leq S_{n}$ be an intransitive group.
Let Orb G be the set of orbits of G.
Then $G \leq S_{\text {Orb }} G$.
Moreover, Orb G is the finest partition Π such that $G \leq S_{\Pi}$.

Intransitive groups

Let Π be a partition of $[n]$.
Define the partition Π^{\prime} of $[n+1]$ as follows.

Let I_{\square} be the coarsest interval partition that refines Π.
For each $[a, b] \in I_{\Pi}$, we let $\{a\}$ and [$a+1, b$] be blocks of Π^{\prime}.

Exceptions:

If $a=1$ and $b \neq n$, then $[a, b]$ is a block of Π^{\prime}.
If $a \neq 1$ and $b=n$, then $\{a\}$ and [$a+1, n+1$] are blocks of Π^{\prime}.
If $a=1$ and $b=n$, then $[1, n+1]$ is a block of Π^{\prime}.

Example

$$
\begin{aligned}
\Pi= & \{\{1,2,3,7,8,9,10\}, \\
& \{4,5,6,12,13,14\}, \\
& \{11\}\} \\
I_{\Pi}= & \{\{1,2,3\}, \\
& \{4,5,6\}, \\
& \{7,8,9,10\}, \\
& \{11\}, \\
& \{12,13,14\}\} \\
\Pi^{\prime}= & \{\{1,2,3\}, \\
& \{4\},\{5,6\}, \\
& \{7\},\{8,9,10\}, \\
& \{11\}, \\
& \{12\},\{13,14,15\}\}
\end{aligned}
$$

Intransitive groups

Theorem

Let Π be a partition of $[n]$.
(i) If $\delta_{n} \notin S_{\Pi}$, then Comp $^{(n+1)} S_{\Pi}=S_{\Pi^{\prime}}$.
(ii) If $\delta_{n} \in S_{\Pi}$, then $\operatorname{Comp}^{(n+1)} S_{\Pi}=S_{\Pi^{\prime}} \cup \delta_{n+1} S_{\Pi^{\prime}}=\left\langle S_{\Pi^{\prime}}, \delta_{n+1}\right\rangle$; moreover, $\Pi^{\prime}=\delta_{n+1}\left(\Pi^{\prime}\right)$.

Theorem

Let Π be a partition of $[n]$.
(i) Π^{\prime} is an interval partition with no consecutive non-trivial blocks.
(ii) If Π is an interval partition with no consecutive non-trivial blocks and $\Pi=\delta_{n}(\Pi)$, then $\operatorname{Comp}^{(n+1)}\left\langle S_{\Pi}, \delta_{n}\right\rangle=\left\langle S_{\Pi^{\prime}}, \delta_{n+1}\right\rangle$; moreover, $\Pi^{\prime}=\delta_{n+1}\left(\Pi^{\prime}\right)$.

Intransitive groups

Theorem

Let $G \leq S_{n}$ be an intransitive group, and let $\Pi:=$ Orb G. Let a and b be the largest numbers α and β, respectively, such that $S_{n}^{\alpha, \beta} \leq G$. Then for all $\ell \geq M_{a, b}(\Pi)$, it holds that $\operatorname{Comp}^{(n+\ell)} G=S_{n+\ell}^{a, b}$ or $\operatorname{Comp}^{(n+\ell)} G=\left\langle S_{n+\ell}^{a, b}, \delta_{n+\ell}\right\rangle$.

$$
\begin{gathered}
M(\Pi):=\max \left(\left\{|B|: B \in I_{\Pi}^{-}\right\} \cup\{1\}\right) \\
M_{a, b}(\Pi):=\max \left(M(\Pi),\left|1 / I_{\Pi}\right|-a+1,\left|n / I_{\Pi}\right|-b+1\right)
\end{gathered}
$$

Notation

Let Π be a partition of $[n]$.

$$
\text { Aut } \Pi:=\left\{\pi \in S_{n} \mid \forall B \in \Pi: \pi(B) \in \Pi\right\}
$$

Imprimitive groups

Theorem

Let Π be a partition of $[n]$ with no trivial blocks. Then

$$
\operatorname{Comp}^{(n+1)} \text { Aut } \Pi= \begin{cases}\left\langle S_{\Pi^{\prime}}, E_{\Pi}\right\rangle, & \text { if } \delta_{n} \notin \operatorname{Aut} \Pi, \\ \left\langle S_{\Pi^{\prime}}, E_{\Pi}, \delta_{n+1}\right\rangle, & \text { if } \delta_{n} \in \operatorname{Aut} \Pi,\end{cases}
$$

where E_{\square} is the following set of permutations:

- If $[1, \ell] \propto \Pi$ for some ℓ with $1<\ell<n$, then $\nu_{\ell}^{(n+1)} \in E_{\Pi}$.
- If $[m, n] \propto \Pi$ for some m with $1<m<n$, then $\lambda_{n-m+1}^{(n+1)} \in E_{\Pi}$.
- If $[1, n] \propto \Pi$, then $\zeta_{n+1} \in E_{\Pi}$.
- E_{Π} does not contain any other elements.

Primitive groups

Theorem

Assume that $G \leq S_{n}$ is a primitive group such that $\zeta_{n} \notin G$ and $A_{n} \notin G$.
(i) (a) $n=6$

G	Comp ${ }^{(n+1)} \mathrm{G}$
$\left\langle(1234),\left(\begin{array}{ll}4 & 5\end{array}\right)\right\rangle$	\{1234567, 2154376, 6734512, 7654321\}
$\langle(1234)$, (2 3456) \rangle	\{1234567, 1276543, 1543276, 1567234\}
$\langle(12345)$, (3 456) \rangle	$\{1234567,2165437,4561237,5432167\}$
$\langle(12345),(134)(256)\rangle$	$\left\langle\nu_{5}^{(7)}\right\rangle$
$\langle(23456),(125)(346)\rangle$	$\left\langle\lambda_{5}^{(7)}\right\rangle$

(b) $n \neq 6$

G	$\operatorname{Comp}^{(n+1)} G$	G	$\operatorname{Comp}^{(n+1)} G$
$D_{[1, n-1]} \leq G$	$\left\langle\nu_{n-1}^{(n+1)}\right\rangle$	$D_{[2, n]} \leq G$	$\left\langle\lambda_{n+1}^{(n+1)}\right\rangle$
$D_{[1, n-2]} \leq G$	$\left\langle\nu_{n-2}^{(n+1)}\right\rangle$	$D_{[3, n]} \leq G$	$\left\langle\lambda_{n-2}^{(n+1)}\right\rangle$

(c) Otherwise Comp ${ }^{(n+1)} G \leq\left\langle\delta_{n+1}\right\rangle$.
(ii) $\mathrm{Comp}^{(n+2)} G \leq\left\langle\delta_{n+2}\right\rangle$.

The end

Thank you!

