Clone Introducing a field Finite Field

Monomial Clones on *E*

 $\begin{array}{l} \mbox{Monomial Clones on}\\ E_2\\ \mbox{Monomial Clones on}\\ E_3 \end{array}$

Monomials x ^s y ^t

Monomials x ^s y ^t One is weak; Two is strong Two is strong One is weak

Monomial Clones

Hajime Machida

Tokyo, Japan

SSAOS 2016

Trojanovice, Czech Republic September 3 4 5 6 7 8 9 2016

Joint work with J. Pantović (Novi Sad)

Outline

Monomial Clones

Introduction Clone Introducing a field Finite Field

Monomial Clones on *E*

Monomial Clones on E₂ Monomial Clones on E₃

Monomials $x^{s} v^{t}$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

1 Introduction

2 Monomial Clones on E_3

3 Monomials $x^s y^t$

Introduction

Clone Introducing a field Finite Field

Monomial Clones on *E*

Monomial Clones on E_2 Monomial Clones on E_3

Monomials $x^{s} y^{t}$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong

Introduction

I

Introduction

Clone

Introducing a field Finite Field

Monomial Clones on Eg

Monomial Clones on E_2 Monomial Clones on E_3

Monomials

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

What is a clone?

For
$$k > 1$$
 let $E_k = \{0, 1, \dots, k-1\}$

$$f(x_1, \dots, x_n): n \text{-variable function on } E_k$$

i.e., $f: (E_k)^n \longrightarrow E_k$

 $\mathcal{O}_k^{(n)}$: the set of *n*-variable functions on E_k $\mathcal{O}_k = \bigcup_{n=1}^{\infty} \mathcal{O}_k^{(n)}$

 $e_i^n(x_1, \dots, x_i, \dots, x_n) = x_i$: (*n*-variable *i*-th) projection \mathcal{J}_k : the set of projections on E_k

Introduction

Clone

Introducing a field Finite Field

Monomial Clones on *E*

Monomial Clones on E_2 Monomial Clones on E_3

Monomials $x^{s} v^{t}$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak We define (functional) *"composition"* of functions in a usual way.

Example of composition

Given
$$f(x_1, x_2, x_3) \in \mathcal{O}_k^{(3)}$$
 and $g(x_1, x_2) \in \mathcal{O}_k^{(2)}$,
an example of composition of f and g is

 $f(g(x_1, x_2), x_3, x_4).$

Introduction

Clone

Introducing a fiel Finite Field

Monomial Clones on *E*

Monomial Clones on E_2 Monomial Clones on E_3

Monomials x ^s y ^t

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong

One is weak

Definition

 \Leftrightarrow

 $C \ (\subseteq \mathcal{O}_k)$: clone on E_k

(i) $C \supseteq \mathcal{J}_k$

(ii) C is closed under composition

Introduction

Clone

Introducing a field Finite Field

Monomial Clones on *E*

Monomial Clones on E_2 Monomial Clones on E_3

Monomials $x \stackrel{s}{} y \stackrel{t}{} t$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

Definition

 \Leftrightarrow

- $C \ (\subseteq \mathcal{O}_k)$: clone on E_k
- (i) $C \supseteq \mathcal{J}_k$
- (ii) C is closed under composition
- \mathcal{L}_k : the set of all clones on E_k ,
 - " lattice of clones " on E_k

Introduction

Clone

Introducing a fiel Finite Field

Monomial Clones on *E*

Monomial Clones on E_2 Monomial Clones on E_3

```
Monomials x^{s} y^{t}
```

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

Definition

 \Leftrightarrow

- $C \ (\subseteq \mathcal{O}_k)$: clone on E_k
- (i) $C \supseteq \mathcal{J}_k$
- (ii) C is closed under composition
- \mathcal{L}_k : the set of all clones on E_k ,
 - " lattice of clones " on E_k

\mathcal{L}_k contains

- the greatest element: \mathcal{O}_k
- the least element: \mathcal{J}_k

Introduction

Clone

Introducing a field Finite Field

Monomial Clones on E

Monomial Clones on E_2 Monomial Clones on E_3

Monomials x ^s y ^t

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong

One is weak

Basic Facts on Clones

(1) For k = 2, \mathcal{L}_2 : countable completely known (E. Post)

(2) For $k \ge 3$, \mathcal{L}_k : continuum mostly **un**known

Introduction

Clone

Introducing a field Finite Field

Monomial Clones on *E*g

Monomial Clones on E_2 Monomial Clones on E_3

Monomials x ^s y ^t

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

Basic Facts on Clones

(1) For k = 2, \mathcal{L}_2 : countable completely known (E. Post)

(2) For $k \ge 3$, \mathcal{L}_k : continuum mostly **un**known

(3) Maximal clones For each $k \ge 2$, completely known (I. Rosenberg)

(4) Minimal clones
For k = 2, completely known (E. Post)
For k = 3, completely known (B. Csákány)
For k = 4, ???
For k ≥ 5, very little is known

Introduction

Introducing a field Finite Field

Monomial Clones on E₃ Monomial Clones on

 E_2 Monomial Clones on E_3

Monomials

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

Introducing the structure of a field into E_k

We introduce the structure of a field into E_k .

For this purpose, it is required that

k = a prime power,

i.e., $k = p^e$ for a prime p and a positive integer e.

Then, consider $E_k = \{0, 1, \dots, k\}$ as the finite field GF (k).

Introduction

Clone

Introducing a field Finite Field

Monomial Clones on *E*a

Monomial Clones on E_2 Monomial Clones on E_3

Monomials $x^{s} y^{t}$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

Polynomials over K

For arbitrary field K and a positive integer n, an (n-variable) polynomial over K is an n-variable function

$$\sum_{0\leq i_1,\ldots,i_n\leq e}a_{i_1,\ldots,i_n}x_1^{i_1}\cdots x_n^{i_n}$$

for some $e \in \mathbb{N}$ and $a_{i_1,...,i_n} \in K$. In other words, a polynomial is a finite sum of terms.

Introduction

Clone

Introducing a field Finite Field

Monomial Clones on *E*a

Monomial Clones on E_2 Monomial Clones on E_3

Monomials x ^s v ^t

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

Polynomials over K

For arbitrary field K and a positive integer n, an (n-variable) polynomial over K is an n-variable function

$$\sum_{0\leq i_1,\ldots,i_n\leq e}a_{i_1,\ldots,i_n}x_1^{i_1}\cdots x_n^{i_n}$$

for some $e \in \mathbb{N}$ and $a_{i_1,...,i_n} \in K$. In other words, a polynomial is a finite sum of terms.

Well-known: An *n*-variable function $f(x_1, \ldots, x_n)$ over *K* is uniquely expressed as a polynomial.

Quiz 1

Monomial Clones

Introduction

Clone

Introducing a field Finite Field

Monomial Clones on *E*

Monomial Clones on E_2 Monomial Clones on E_3

Monomials $x^{s} y^{t}$

Monomials x ^s Monomials x ^s y ^t One is weak; Two is strong Two is strong One is weak Consider two functions *f* and *g* expressed as polynomials on E_2 (= {0, 1}).

1
$$f(x, y) = x y + 1$$

2 $g(x, y) = x y + x + y$

Quiz 1

Monomial Clones

Introduction

Clone

Introducing a field Finite Field

Monomial Clones on *E*-

Monomial Clones on E_2 Monomial Clones on E_3

Monomials $x = y^{t}$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak Consider two functions *f* and *g* expressed as polynomials on E_2 (= {0, 1}).

1
$$f(x, y) = x y + 1$$

2 $g(x, y) = x y + x + y$

Q1: Which function is stronger with respect to the 'productive power' by (functional) composition ?

Introduction

Clone

Introducing a field Finite Field

Monomial Clones on *E*-

Monomial Clones on E_2 Monomial Clones on E_3

Monomials x ^s y ^t

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

Quiz 1 (EASY)

Consider two functions *f* and *g* expressed as polynomials on E_2 (= {0,1}).

1
$$f(x, y) = x y + 1$$

2 $g(x, y) = x y + x + y$

Q1: Which function is stronger with respect to the 'productive power' by (functional) composition ?

- A : f is stronger. In fact.
 - f(x, y) = NAND(x, y)
 - $(2 \quad g(x,y) = \operatorname{OR}(x,y)$

Introduction

Clone

Introducing a field Finite Field

Monomial Clones on *E*g

Monomial Clones on E_2 Monomial Clones on E_3

Monomials

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong

Consider three functions u, v and w expressed as polynomials on E_3 (= {0, 1, 2}).

1
$$u(x, y) = x^2 y^2 + x y^2 + x^2 y + 2xy + x + y$$

2 $v(x, y) = x^2 y^2 + x y^2 + x^2 y + xy + x + y$
3 $w(x, y) = x^2 y^2 + x y^2 + x^2 y + 2xy + x + y + 1$

Quiz 2

Introduction

Clone

Introducing a field Finite Field

Monomial Clones on *E*g

Monomial Clones on E_2 Monomial Clones on E_3

Monomials $x^{s} v^{t}$

Monomials x ^s Monomials x ^sy ^r One is weak; Two is strong Two is strong One is weak

Consider three functions u, v and w expressed as polynomials on E_3 (= {0, 1, 2}).

1
$$u(x, y) = x^2 y^2 + x y^2 + x^2 y + 2xy + x + y$$

2 $v(x, y) = x^2 y^2 + x y^2 + x^2 y + xy + x + y$
3 $w(x, y) = x^2 y^2 + x y^2 + x^2 y + 2xy + x + y + 1$

Quiz 2

Q2: Which function is the weakest ?

Introduction

Clone

Introducing a field Finite Field

Monomial Clones on *E*s

Monomial Clones on E_2 Monomial Clones on E_3

Monomials $x^{s} v^{t}$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

Quiz 2 (HARD)

Consider three functions u, v and w expressed as polynomials on E_3 (= {0, 1, 2}).

1
$$u(x, y) = x^2 y^2 + x y^2 + x^2 y + 2xy + x + y$$

2 $v(x, y) = x^2 y^2 + x y^2 + x^2 y + xy + x + y$
3 $w(x, y) = x^2 y^2 + x y^2 + x^2 y + 2xy + x + y + 1$

Q2: Which function is the weakest ?

A: *u* is the weakest.

Introduction

Clone

Introducing a field Finite Field

Monomial Clones on *E*s

Monomial Clones on E_2 Monomial Clones on E_3

Monomials $x \stackrel{s}{v} v \stackrel{t}{v}$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

Quiz 2 (HARD)

Consider three functions u, v and w expressed as polynomials on E_3 (= {0, 1, 2}).

1
$$u(x, y) = x^2 y^2 + x y^2 + x^2 y + 2xy + x + y$$

2 $v(x, y) = x^2 y^2 + x y^2 + x^2 y + xy + x + y$
3 $w(x, y) = x^2 y^2 + x y^2 + x^2 y + 2xy + x + y + 1$

- Q2: Which function is the weakest ?
- A: *u* is the weakest. In fact,
- (1) u(x, y) generates a minimal clone,
- (2) w(x, y) is Webb function (= max(x, y) + 1) which is known to generate all functions on E_3 , and
- (3) v(x, y) stays somewhere in-between.

Introduction

Clone

Introducing a field Finite Field

Monomial Clones on *E*

Monomial Clones on E_2 Monomial Clones on E_3

Monomials $x^{s} y^{t}$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

How to get a polynomial corresponding to a function:

GIVEN: $f(x_1,\ldots,x_n)$

i.e., a mapping $f: K^n \longrightarrow K$

To GET:

 $\sum_{0\leq i_1,\ldots,i_n\leq e}a_{i_1,\ldots,i_n}x_1^{i_1}\cdots x_n^{i_n}$

Introduction

Clone

Introducing a field Finite Field

Monomial Clones on *E*

Monomial Clones on E_2 Monomial Clones on E_3

Monomials $x^{s} y^{t}$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

How to get a polynomial corresponding to a function:

GIVEN: $f(x_1,\ldots,x_n)$

i.e., a mapping $f: K^n \longrightarrow K$

To GET:

$$\sum_{0 \leq i_1, \ldots, i_n \leq e} a_{i_1, \ldots, i_n} x_1^{i_1} \cdots x_n^{i_n}$$

METHOD: "Lagrange interpolation formula"

Introduction

Cione

Introducing a field Finite Field

Monomial Clones on *E*

Monomial Clones on E_2 Monomial Clones on E_3

Monomials x ^s v ^t

Monomials x ^s Monomials x ^s y ^t One is weak; Two is strong Two is strong One is weak

Example

Suppose f(x, y, z) is a 3-variable function on $E_3 = \{0, 1, 2\}$. For $a, b, c \in E_3$, define

$$t_{abc}(x,y,z) = \prod_{a'\in E_3\setminus\{a\}} \frac{x-a'}{a-a'} \cdot \prod_{b'\in E_3\setminus\{b\}} \frac{y-b'}{b-b'} \cdot \prod_{c'\in E_3\setminus\{c\}} \frac{z-c'}{c-c'}$$

Then

 $t_{abc}(x, y, z) = \begin{cases} 1 & \text{if } x = a, y = b, z = c \\ 0 & \text{otherwise} \end{cases}$

Hence

$$f(x, y, z) = \sum_{(a, b, c) \in E_3^3} f(a, b, c) \cdot t_{abc}(x, y, z)$$

ntroduction

Clone

Introducing a field Finite Field

Monomial Clones on *E*a

Monomial Clones on E_2 Monomial Clones on E_3

Monomials $x^{s} y^{t}$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

In General

For an *n*-variable function $f(x_1, \ldots, x_n)$ on E_k , we have

$$f(x_1,\ldots,x_n) = \sum_{(a_1,\ldots,a_n)\in E_k^n} f(a_1,\ldots,a_n) \cdot t_{a_1\ldots,a_n}(x_1,\ldots,x_n)$$

where

$$t_{a_1\ldots a_n}(x_1,\ldots,x_n) = \prod_{1\leq i\leq n} \left(\prod_{a_i'\in E_k\setminus\{a_i\}} \frac{x_i-a_i'}{a_i-a_i'}\right)$$

Introduction

Clone

Introducing a field Finite Field

Monomial Clones on *E*

Monomial Clones on E₂ Monomial Clones on E₃

Monomials $x^{s} y^{t}$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong

One is weak

Example Let f(x, y, z) be a function defined by f(x, x, y) = f(x, y, x) = f(y, x, x) = x

and

f(x, y, z) = 0 if $|\{x, y, z\}| = 3$.

Introduction

Clone

Introducing a field Finite Field

Monomial Clones on *E*

Monomial Clones on E_2 Monomial Clones on E_3

Monomials

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

Example Let f(x, y, z) be a function defined by f(x, x, y) = f(x, y, x) = f(y, x, x) = x

and

$$f(x, y, z) = 0$$
 if $|\{x, y, z\}| = 3$.

Then

f

Introduction

Clone

Introducing a field Finite Field

Monomial Clones on *E*

Monomial Clones on E_2 Monomial Clones on E_3

Monomials $x^{s} y^{t}$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong

One is weak

Monomials over K

An (*n*-variable) *monomial* over *K* is an *n*-variable polynomial consisting of one term, i.e.,

$$a x_1^{i_1} \cdots x_n^{i_n}$$

for
$$a \in K$$
 and $i_1, \ldots, i_n \in \mathbb{N}$.

Introduction

Clone

Introducing a field Finite Field

Monomial Clones on *E*

Monomial Clones on E_2 Monomial Clones on E_3

Monomials $x^{s} y^{t}$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

An (*n*-variable) *monomial* over *K* is an *n*-variable polynomial consisting of one term, i.e.,

Monomials over K

$$a x_1^{i_1} \cdots x_n^{i_n}$$

for
$$a \in K$$
 and $i_1, \ldots, i_n \in \mathbb{N}$.

 $\langle\langle$ In the rest of my talk, we shall take a more restrictive view of monomials. $\rangle\rangle$

Introduction

Clone

Introducing a field Finite Field

Monomial Clones on *E*a

Monomial Clones on E_2 Monomial Clones on E_3

Monomials x ^s y ^t

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

An (*n*-variable) *monomial* over *K* is an *n*-variable polynomial consisting of one term, i.e.,

Monomials over K

$$a x_1^{i_1} \cdots x_n^{i_n}$$

for $a \in K$ and $i_1, \ldots, i_n \in \mathbb{N}$.

 $\langle\langle$ In the rest of my talk, we shall take a more restrictive view of monomials. $\rangle\rangle$

An (*n*-variable) monomial m over K is a *monic monomial* if the coefficient of m is 1, i.e., if m is

$$x_1^{i_1}\cdots x_n^{i_n}$$

for $i_1, \ldots, i_n \in \mathbb{N}$.

Introduction

Clone

Introducing a field Finite Field

Monomial Clones on *E*

Monomial Clones on E_2 Monomial Clones on E_3

Monomials $x^{s} y^{t}$

```
Monomials x <sup>s</sup>
Monomials x <sup>s</sup>y <sup>t</sup>
One is weak; Two is
strong
Two is strong
```

In what follows, by a monomial we shall mean a monic monomial, that is,

"monomial =
$$x_1^{i_1} \cdots x_n^{i_n}$$
"

Introduction

Introducing a field Finite Field

Monomial Clones on *E*-

Monomial Clones on E_2 Monomial Clones on E_3

Monomials

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak In what follows, by a monomial we shall mean a monic monomial, that is,

"monomial =
$$x_1^{i_1} \cdots x_n^{i_n}$$
"

A monomial clone is defined as follows.

Clone Introducing a field

Finite Field

Monomial Clones on *E*a

Monomial Clones on E₂ Monomial Clones on E₃

Monomials x ^s v ^t

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak In what follows, by a monomial we shall mean a monic monomial, that is,

"monomial = $x_1^{i_1} \cdots x_n^{i_n}$ "

A monomial clone is defined as follows.

Definition

A clone *C* over *K* is a *monomial clone* if *C* is generated by some monomial *m* over *K*, i.e., $C = \langle m \rangle$.

Introduction Clone Introducing a field Finite Field

Monomial Clones on *E*g

Monomial Clones on E_2 Monomial Clones on E_3

```
Monomials
x <sup>s</sup> y <sup>t</sup>
```

```
Monomials x <sup>s</sup>
Monomials x <sup>s</sup>y <sup>t</sup>
One is weak; Two is
strong
Two is strong
One is weak
```

We review fundamental properties of finite fields. Proposition

 For any prime power k, there exists a finite field K whose cardinality is k. It is unique up to isomorphism, and is denoted by GF(k).

Finite Field

(2) Over GF (k), it holds that $x^{k} = x$ for every $x \in GF(k)$.

Hence, we have:

Corollary

Any *n*-variable monomial *m* over GF(k) is expressed as

$$m=x_1^{i_1}\cdots x_n^{i_n}$$

for some $i_1, ..., i_n$ with $0 < i_1, ..., i_n < k$.

Introduction Clone Introducing a field Finite Field

Monomial Clones on E_3

 $\begin{array}{l} \mbox{Monomial Clones on}\\ E_2\\ \mbox{Monomial Clones on}\\ E_3 \end{array}$

Monomials $x^{s} y^{t}$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong

One is weak

Monomial Clones on E_3

Introduction

Clone Introducing a field Finite Field

Monomial Clones on *E*

Monomial Clones on E₂ Monomial Clones on E₃

Monomials $x^{s} y^{t}$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

To determine all monomial clones on *E*₃

In this section we determine all monomial clones on E_3 .

Clone Introducing a field

Monomial Clones on *E*g

Monomial Clones on E₂ Monomial Clones on E₃

Monomials x ^s y ^t

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

To determine all monomial clones on *E*₃

In this section we determine all monomial clones on E_3 .

Before doing so, we describe monomial clones on E_2 .
Introduction Clone Introducing a field

Monomial Clones on *E*g

Monomial Clones on *E*₂ Monomial Clones on *E*₃

Monomials x ^s y ^t

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

Monomial Clones on E2

Considering the fact that $x^2 = x$ holds on E_2 , it is immediate to see that there exist only two monomial clones over E_2 .

They are:

(1) $\langle x_1 \rangle$ (2) $\langle x_1 x_2 \rangle$

Notice that

(1) $\langle x_1 \rangle$ is the least clone \mathcal{J}_2 , and

(2) $\langle x_1 x_2 \rangle$ is the set of all monomials on E_2 .

Introduction Clone Introducing a field Finite Field

Monomial Clones on *E*

Monomial Clones on E_2 Monomial Clones on E_3

Monomials x ^s v ^t

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

Now we study monomial clones on E_3 .

Since the equality $x^3 = x$ holds on E_3 , and GF(3) is commutative, monomials that need to be considered are

$$x_1 \cdots x_s x_{s+1}^2 \cdots x_{s+t}^2$$

Monomial Clones on E_3

for s, $t \ge 0$ and s + t > 0.

Introduction

Clone Introducing a

Monomial

Clones on E₃ Monomial Clones on

Monomial Clones on E₃

Monomials $x \stackrel{s}{} y \stackrel{t}{} t$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

$s \setminus t$	0	1	2	3
0		x ₁ ²	$x_1^2 x_2^2$	$x_1^2 x_2^2 x_3^2$
1	X 1	$x_1 x_2^2$	$x_1 x_2^2 x_3^2$	$x_1 x_2^2 x_3^2 x_4^2$
2	X ₁ X ₂	$x_1 x_2 x_3^2$	$x_1 x_2 x_3^2 x_4^2$	$x_1 x_2 x_3^2 x_4^2 x_5^2$
3	X ₁ X ₂ X ₃	$x_1 x_2 x_3 x_4^2$	$x_1 x_2 x_3 x_4^2 x_5^2$	$x_1 x_2 x_3 x_4^2 x_5^2 x_6^2$
4	$X_1 X_2 X_3 X_4$	$x_1 x_2 x_3 x_4 x_5^2$	$x_1 x_2 x_3 x_4 x_5^2 x_6^2$	$x_1 x_2 x_3 x_4 x_5^2 x_6^2 x_7^2$
5	$X_1 X_2 X_3 X_4 X_5$	$x_1 x_2 x_3 x_4 x_5 x_6^2$	$x_1 x_2 x_3 x_4 x_5 x_6^2 x_7^2$	$x_1 x_2 x_3 x_4 x_5 x_6^2 x_7^2 x_8^2$

Table : Monomials on E_3 (for small *s* and *t*)

$$x_1 \cdots x_s x_{s+1}^2 \cdots x_{s+t}^2$$
 (*s*, *t* ≥ 0, *s*+*t* > 0)

Clone Introducing a field

Clones on E_3 Monomial Clones on E_2 Monomial Clones on

E₃

```
Monomials x s
Monomials x^{s}y^{t}
One is weak: Two is
strong
Two is strong
```

One is weak

t = 0Lemma

(i)
$$s \ge 2$$
: even $\implies \langle x_1 \cdots x_s \rangle = \langle x_1 x_2 \rangle$
(ii) $s \ge 3$: odd $\implies \langle x_1 \cdots x_s \rangle = \langle x_1 x_2 x_3 \rangle$

Introduction Clone Introducing a field Finite Field

Monomial Clones on E_3 Monomial Clones on E_2 Monomial Clones on E_2

Monomials $x^{s} y^{t}$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

t = 0

Lemma

(i) $s \ge 2$: even $\implies \langle x_1 \cdots x_s \rangle = \langle x_1 x_2 \rangle$ (ii) $s \ge 3$: odd $\implies \langle x_1 \cdots x_s \rangle = \langle x_1 x_2 x_3 \rangle$

Claim 1 (M-clones generated by a monomial with t = 0) (i) There are three monomial clones:

 $\langle x_1 \rangle$, $\langle x_1 x_2 \rangle$ and $\langle x_1 x_2 x_3 \rangle$.

(ii) $\langle x_1 \rangle$ = the least clone \mathcal{J}_3 $\langle x_1 x_2 \rangle$ = the set of all monomials on E_3

(iii) $\langle x_1 \rangle \subset \langle x_1 \, x_2 \, x_3 \rangle \subset \langle x_1 \, x_2 \rangle$

(Note: \subset denotes the strict inclusion)

Introduction Clone Introducing a field Finite Field

Monomial Clones on E_3 Monomial Clones on E_2 Monomial Clones on E_2

Monomials $x^{s} y^{t}$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

t = 0

Lemma

(i) $s \ge 2$: even $\implies \langle x_1 \cdots x_s \rangle = \langle x_1 x_2 \rangle$ (ii) $s \ge 3$: odd $\implies \langle x_1 \cdots x_s \rangle = \langle x_1 x_2 x_3 \rangle$

Claim 1 (M-clones generated by a monomial with t = 0) (i) There are three monomial clones:

 $\langle x_1 \rangle$, $\langle x_1 x_2 \rangle$ and $\langle x_1 x_2 x_3 \rangle$.

(ii) $\langle x_1 \rangle$ = the least clone \mathcal{J}_3 $\langle x_1 x_2 \rangle$ = the set of all monomials on E_3

(iii) $\langle x_1 \rangle \subset \langle x_1 \, x_2 \, x_3 \rangle \subset \langle x_1 \, x_2 \rangle$

(Note: \subset denotes the strict inclusion)

Proof (i) From Lemma. (ii) Trivial. (iii) The first inclusion is clear. For the second inclusion, see the next page. $\hfill\square$

Introduction

Clone Introducing a field Finite Field

Monomial Clones on E₃ Monomial Clones on E₂ Monomial Clones on

E₃

Monomials x ^s y ^t

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

Proof of " $\langle x_1 x_2 x_3 \rangle \subset \langle x_1 x_2 \rangle$ ": Let

$$\rho = \left\{ \left(\begin{array}{c} \mathbf{1} \\ \mathbf{2} \end{array} \right), \left(\begin{array}{c} \mathbf{2} \\ \mathbf{2} \end{array} \right) \right\}$$

Then

 $x_1x_2x_3 \in \operatorname{Pol}\rho$ but $x_1x_2 \notin \operatorname{Pol}\rho$

Hence,

and

 $x_1 x_2 \not\in \langle x_1 x_2 x_3 \rangle$

 $\langle x_1 x_2 x_3 \rangle \neq \langle x_1 x_2 \rangle$

Introduction

Clone Introducing a f

Monomial Clones on *E*3

 $\begin{array}{l} \mbox{Monomial Clones on}\\ E_2\\ \mbox{Monomial Clones on}\\ E_3 \end{array}$

Monomials x ^s y ^t

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

$s \setminus t$	0	1	2	3
0		x ₁ ²	$x_1^2 x_2^2$	$x_1^2 x_2^2 x_3^2$
1	X ₁	$x_1 x_2^2$	$x_1 x_2^2 x_3^2$	$x_1 x_2^2 x_3^2 x_4^2$
2	X 1 X 2	$x_1 x_2 x_3^2$	$x_1 x_2 x_3^2 x_4^2$	$x_1 x_2 x_3^2 x_4^2 x_5^2$
3	X ₁ X ₂ X ₃	$x_1 x_2 x_3 x_4^2$	$x_1 x_2 x_3 x_4^2 x_5^2$	$x_1 x_2 x_3 x_4^2 x_5^2 x_6^2$
4	_	$x_1 x_2 x_3 x_4 x_5^2$	$x_1 x_2 x_3 x_4 x_5^2 x_6^2$	$x_1 x_2 x_3 x_4 x_5^2 x_6^2 x_7^2$
5	_	$x_1 x_2 x_3 x_4 x_5 x_6^2$	$x_1 x_2 x_3 x_4 x_5 x_6^2 x_7^2$	$x_1 x_2 x_3 x_4 x_5 x_6^2 x_7^2 x_8^2$

Table : Monomials on E₃

Introduction Clone Introducing a field Finite Field

Monomial Clones on E₃ Monomial Clones on E₂

Monomial Clones on $E_{\rm 3}$

Monomials x ^s y ^t

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

t > 0

Lemma

For t > 0 we have:

Proof Easy from

$$x \cdot x^2 = x$$
 and $x^2 \cdot x^2 = x^2$.

ntroduction Clone Introducing a field Finite Field

Monomial Clones on E₃ Monomial Clones on E₂ Monomial Clones on

E₃

Monomials $x \stackrel{s}{} y \stackrel{t}{}$ Monomials $x \stackrel{s}{}$

Monomials x ^o y ['] One is weak; Two is strong Two is strong One is weak

t > 0

Lemma

For t > 0 we have:

Proof Easy from

$$x \cdot x^2 = x$$
 and $x^2 \cdot x^2 = x^2$

Claim 2 (M-clones generated by a monomial with t = 1) (i) There are two such clones $\langle x_1^2 \rangle$ and $\langle x_1 x_2^2 \rangle$. (ii) $\langle x_1 \rangle \subset \langle x_1^2 \rangle \subset \langle x_1 x_2 \rangle$ (iii) $\langle x_1 \rangle \subset \langle x_1 x_2^2 \rangle \subset \langle x_1 x_2 x_3 \rangle$

Introduction

Clone Introducing a

Monomial Clones on F

Monomial Clones on E₂ Monomial Clones on E₃

Monomials $x = y^{t}$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

$s \setminus t$	0	1	2	3
0		x ₁ ²	$x_1^2 x_2^2$	$x_1^2 x_2^2 x_3^2$
1	X 1	$x_1 x_2^2$	$x_1 x_2^2 x_3^2$	$x_1 x_2^2 x_3^2 x_4^2$
2	X 1 X 2	_	$x_1 x_2 x_3^2 x_4^2$	$x_1 x_2 x_3^2 x_4^2 x_5^2$
3	x ₁ x ₂ x ₃	-	$x_1 x_2 x_3 x_4^2 x_5^2$	$x_1 x_2 x_3 x_4^2 x_5^2 x_6^2$
4	-	_	$x_1 x_2 x_3 x_4 x_5^2 x_6^2$	$x_1 x_2 x_3 x_4 x_5^2 x_6^2 x_7^2$
5	_	_	$x_1 x_2 x_3 x_4 x_5 x_6^2 x_7^2$	$x_1 x_2 x_3 x_4 x_5 x_6^2 x_7^2 x_8^2$

Table : Monomials on E_3

Introduction Clone Introducing a field Finite Field

Monomial Clones on *E*

Monomial Clones on E₂ Monomial Clones on E₃

Monomials x ^s y ^t

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

t > 0

Lemma For t > 0 we have:

(i)
$$s = 0 \implies \langle x_1^2 x_2^2 \cdots x_{t+1}^2 \rangle = \langle x_1^2 x_2^2 \rangle$$

(ii) $s = 1 \implies \langle x_1 x_2^2 \cdots x_{t+1}^2 \rangle = \langle x_1 x_2^2 \rangle$
(iii) $s \ge 2$: even $\implies \langle x_1 \cdots x_s x_{s+1}^2 \cdots x_{s+t}^2 \rangle = \langle x_1 x_2 \rangle$
(iv) $s \ge 3$: odd $\implies \langle x_1 \cdots x_s x_{s+1}^2 \cdots x_{s+t}^2 \rangle = \langle x_1 x_2 x_3 \rangle$

Claim 3 (M-clones generated by a monomial with t = 2) (i) There is only one such clone $\langle x_1^2 x_2^2 \rangle$. (ii) $\langle x_1^2 \rangle \subset \langle x_1^2 x_2^2 \rangle \subset \langle x_1 x_2 \rangle$

Introduction

Clone Introducing a fie Finite Field

Monomial Clones on *E*

 $\begin{array}{l} \mbox{Monomial Clones on} \\ E_2 \\ \mbox{Monomial Clones on} \\ E_3 \end{array}$

Monomials x ^s y ^t

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

$s \setminus t$	0	1	2	3
0		x ₁ ²	$x_1^2 x_2^2$	_
1	x ₁	$x_1 x_2^2$	_	_
2	X ₁ X ₂	_	_	_
3	X ₁ X ₂ X ₃	_	_	_
4	_	_	_	_
5	_	_	_	_

Table : Monomials on E_3

Hence, monomial clones over E_3 are the following:

(1)
$$\langle x_1 \rangle$$
 (4) $\langle x_1^2 \rangle$ (6) $\langle x_1^2 x_2^2 \rangle$
(2) $\langle x_1 x_2 \rangle$ (5) $\langle x_1 x_2^2 \rangle$
(3) $\langle x_1 x_2 x_3 \rangle$

Introduction

Clone Introducing a field Finite Field

Monomial Clones on *E*

Monomial Clones on E_2 Monomial Clones on E_3

Monomials x ^s y ^t

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

For example, we show:

$\langle x_1^2 \, x_2^2 \rangle$ and $\langle x_1 \, x_2 \, x_3 \rangle$ are incomparable.

Proof

(a) $\langle x_1^2 x_2^2 \rangle \not\subset \langle x_1 x_2 x_3 \rangle$

Let

$$\rho = \left\{ \left(\begin{array}{c} \mathbf{2} \\ \mathbf{2} \end{array} \right) \right\}$$

Then

$$x_1 x_2 x_3 \in \operatorname{Pol} \rho$$
 but $x_1^2 x_2^2 \notin \operatorname{Pol} \rho$

Hence,

$$x_1^2 x_2^2 \not\in \langle x_1 x_2 x_3 \rangle$$

and

$$\langle x_1^2 x_2^2 \rangle \not\subset \langle x_1 x_2 x_3 \rangle$$
.

Monomial Clones on E_2 Monomial Clones on E_3

Monomials x ^s v ^t

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak (b) $\langle x_1 x_2 x_3 \rangle \not\subset \langle x_1^2 x_2^2 \rangle$

Let

$$\tau = \left\{ \left(\begin{array}{c} 1\\1 \end{array} \right), \left(\begin{array}{c} 1\\2 \end{array} \right), \left(\begin{array}{c} 2\\1 \end{array} \right) \right\}$$

Then

 $x_1^2 x_2^2 \in \operatorname{Pol} \tau$ but $x_1 x_2 x_3 \notin \operatorname{Pol} \tau$

Hence,

and

$$\langle x_1 \, x_2 \, x_3 \rangle \not\subset \langle x_1^2 \, x_2^2 \rangle$$
.

 $x_1 x_2 x_3 \notin \langle x_1^2 x_2^2 \rangle$

From (a) and (b) we see that $\langle x_1^2 x_2^2 \rangle$ and $\langle x_1 x_2 x_3 \rangle$ are incomparable.

Introduction

Introducing a field Finite Field

Summary

Monomial Clones on *I*

Monomial Clones on E_2 Monomial Clones on E_3

Monomials $x^{s} y^{t}$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

(a1) $\langle x_1 \rangle \subset \langle x_1 \, x_2^2 \rangle \subset \langle x_1 \, x_2 \, x_3 \rangle \subset \langle x_1 \, x_2 \rangle$ (a2) $\langle x_1 \rangle \subset \langle x_1^2 \rangle \subset \langle x_1^2 \, x_2^2 \rangle \subset \langle x_1 \, x_2 \rangle$ (b1) $\langle x_1^2 \rangle \not\subset \langle x_1 \, x_2^2 \rangle$, $\langle x_1 \, x_2^2 \rangle \not\subset \langle x_1^2 \rangle$ (b2) $\langle x_1^2 \rangle \not\subset \langle x_1 \, x_2 \, x_3 \rangle$, $\langle x_1 \, x_2 \, x_3 \rangle \not\subset \langle x_1^2 \rangle$ (b3) $\langle x_1^2 \, x_2^2 \rangle \not\subset \langle x_1 \, x_2^2 \rangle$, $\langle x_1 \, x_2^2 \rangle \not\subset \langle x_1^2 \, x_2^2 \rangle$ (b4) $\langle x_1^2 \, x_2^2 \rangle \not\subset \langle x_1 \, x_2 \, x_3 \rangle$, $\langle x_1 \, x_2 \, x_3 \rangle \not\subset \langle x_1^2 \, x_2^2 \rangle$

Introduction Clone Introducing a field Finite Field

Monomial Clones on *E*

 $\begin{array}{l} \mbox{Monomial Clones on} \\ E_2 \\ \mbox{Monomial Clones on} \\ E_3 \end{array}$

Monomials $x^{s} y^{t}$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

Note: $\langle x_1 x_2 \rangle$ = the set of all monomials on E_3 $\langle x_1 \rangle = \mathcal{J}_3$

Introduction Clone Introducing a field Finite Field

Monomial Clones on *E*

Monomial Clones on E_2 Monomial Clones on E_3

Monomials $x^{s} y^{t}$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

Monomials $x^{s}y^{t}$

Introduction Clone Introducing a field Finite Field

Monomial Clones on *E*

Monomial Clones on E₂ Monomial Clones on E₃

Monomials $x^{s} y^{t}$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak In this section we investigate monomial clones on E_k which are generated by unary functions (1-variable functions) and binary functions (2-variable functions).

We put emphasis on monomials which generate minimal clones in the lattice \mathcal{L}_k of clones.

Introduction Clone

Introducing a field Finite Field

Monomial Clones on *E*

Monomial Clones on E_2 Monomial Clones on E_3

Monomials $x^{s} y^{t}$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

Let \mathcal{M}_k be the set of monomial clones on E_k .

Remark

For any $C \in \mathcal{M}_k$,

C is minimal in $\mathcal{M}_k \implies C$ is minimal in \mathcal{L}_k (i.e., *C* is a minimal clone)

ntroduction Clone Introducing a field Finite Field

Monomial Clones on E₃ Monomial Clones on E₂ Monomial Clones on

Monomials $x^{s} y^{t}$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

Let \mathcal{M}_k be the set of monomial clones on E_k .

Remark

For any $C \in \mathcal{M}_k$,

C is minimal in $\mathcal{M}_k \implies C$ is minimal in \mathcal{L}_k (i.e., C is a minimal clone)

Hence, we want to find:

monomial clones which are minimal in \mathcal{M}_k .

(= a motivation for the later study of 2-variable monomials)

Monomials x^s

Clone Introducing a field Finite Field

Monomial Clones

Monomial Clones on *E*g

Monomial Clones on E_2 Monomial Clones on E_3

Monomials $x^{s} y^{t}$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak As for unary functions generating minimal clones, the next fact is well-known.

Fact: A unary function $f \in \mathcal{O}_k^{(1)}$ generates a minimal clone if and only if

(1) f is a permutation of prime order, or

(2) *f* is not a permutation and satisfies $f \circ f = f$.

Clone Introducing a field Finite Field

Monomial Clones on *E*

Monomial Clones on E_2 Monomial Clones on E_3

Monomials $x^{s} y^{t}$

Monomials x s

Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak Now, when is a unary monomial x^s a permutation? A (trivial) answer is:

Lemma

For a prime-power k > 1 and 0 < s < k, the following are equivalent.

- (1) x^s is a permutation on E_k
- (2) $s^i \equiv 1 \pmod{k-1}$ for some i > 1

(3) *s* and k - 1 are co-prime, i.e., (s, k - 1) = 1.

(Remark: Due to Fermat-Euler Theorem)

Introduction

Clone Introducing a fie Finite Field

Monomial Clones on *E*

Monomial Clones on E₂ Monomial Clones on E₃

Monomials x ^s y ^t

Monomials x s

Monomials x ^s y ^t One is weak; Two is strong Two is strong One is weak

Example: Unary minimal monomials for k = 3, 5, 7, 11, 13

(1) k = 3: $\langle x^2 \rangle$ is minimal.

(2)
$$k = 5$$
: $\langle x^s \rangle$ is minimal for $s = 3, 4$.
 $\langle x^4 \rangle \subset \langle x^2 \rangle$

3)
$$k = 7$$
: $\langle x^s \rangle$ is minimal for $s = 3, 4, 5, 6$.
 $\langle x^4 \rangle \subset \langle x^2 \rangle$

(4)
$$k = 11$$
: $\langle x^{s} \rangle$ is minimal for $s = 5, 6, 9$.
 $\langle x^{6} \rangle \subset \langle x^{4} \rangle \subset \langle x^{2} \rangle = \langle x^{8} \rangle$
 $\langle x^{9} \rangle \subset \langle x^{3} \rangle = \langle x^{7} \rangle$

(5)
$$k = 13$$
: $\langle x^s \rangle$ is minimal for $s = 4, 5, 6, 7, 9, 11$
 $\langle x^4 \rangle \subset \langle x^8 \rangle \subset \langle x^2 \rangle; \langle x^4 \rangle \subset \langle x^{10} \rangle$
 $\langle x^9 \rangle \subset \langle x^3 \rangle$

Introduction Clone Introducing a field Finite Field

Monomial Clones on *E*

Monomial Clones on E_2 Monomial Clones on E_3

Monomials x ^s y ^t

Monomials x ^s

Monomials x ^sy ^t One is weak; Two is strong Two is strong

One is weak

Monomials x^sy^t

Now, we consider 2-variable monomials $x^s y^t$ and clones generated by them. (For convenience we use x and y, instead of x_1 and x_2 , for the variable symbols.)

More precisely, we consider

 $x^s y^t$ for 0 < s, t < k

with the additional condition

s+t = k.

ntroduction Clone Introducing a field Finite Field

Monomial Clones on *E*

Monomial Clones on E_2 Monomial Clones on E_3

Monomials x ^s y ^t

Monomials x^{s} Monomials $x^{s}v^{t}$

One is weak; Two is strong Two is strong One is weak **Note 1**: If *m* is a monomial which generates a **non-unary minimal clone** then

(1) *m* must be a 2-variable monomial $x^s y^t$ and.

(2) since $\langle x^s y^t \rangle$ does not contain any non-trivial unary functions, the condition s + t = k must be satisfied.

ntroduction Clone Introducing a field Finite Field

Monomial Clones on *E*

Monomial Clones on E_2 Monomial Clones on E_3

Monomials x ^s y ^t Monomials x ^s

Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak I

Note 1: If *m* is a monomial which generates a **non-unary minimal clone** then

(1) *m* must be a 2-variable monomial $x^s y^t$ and,

(2) since $\langle x^s y^t \rangle$ does not contain any non-trivial unary functions, the condition s + t = k must be satisfied.

Note 2: For
$$u, v \in \mathbb{N}$$
 with $0 < u, v < k$,

$$x^{u} y^{v} \in \langle x^{s} y^{t} \rangle \implies u + v = k$$

i.e., this condition on the exponents is *preserved* by composition.

ntroduction Clone Introducing a field Finite Field

Monomial Clones on *E*

Monomial Clones on E_2 Monomial Clones on E_3

Monomials x ^s y ^t Monomials x ^s

Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak **Note 1**: If *m* is a monomial which generates a **non-unary minimal clone** then

(1) *m* must be a 2-variable monomial $x^s y^t$ and,

(2) since $\langle x^s y^t \rangle$ does not contain any non-trivial unary functions, the condition $\underline{s+t=k}$ must be satisfied.

Note 2: For $u, v \in \mathbb{N}$ with 0 < u, v < k,

$$x^{u} y^{v} \in \langle x^{s} y^{t} \rangle \implies u + v = k$$

i.e., this condition on the exponents is *preserved* by composition.

Introduction

Clone Introducing a field Finite Field

Monomial Clones on *E*

Monomial Clones on E_2 Monomial Clones on E_3

Monomials x ^s y ^t

Monomials x ^s

Monomials x ^sy ^t One is weak; Two is strong Two is strong

One is weak

Case: *k* = 5, 7, 11

k = 5 k = 7 k = 11

Introduction Clone

Finite Field

Monomial Clones on E

Monomial Clones on E_2 Monomial Clones on E_3

Monomials x ^s y ^t

Monomials x ^s

Monomials x s y t

One is weak; Two is strong Two is strong One is weak

Case: *k* = 13

k = 13

Introduction Clone

Introducing a field Finite Field

Monomial Clones on *E*s

Monomial Clones on E₂ Monomial Clones on E₃

Monomials $x^{s} y^{t}$

Monomials x ^s

Monomials x s y t

One is weak; Two is strong Two is strong One is weak

Now, what observation do you get from these results ?

Introduction Clone Introducing a field Finite Field

Monomial Clones on *E*g

Monomial Clones on E_2 Monomial Clones on E_3

Monomials $x^{s} y^{t}$

Monomials x^{s} Monomials $x^{s}v^{t}$

One is weak; Two is strong Two is strong One is weak Now, what observation do you get from these results ? My observation is:

One is weak, and two is strong !

Introduction

Clone Introducing a fiel Finite Field

Monomial Clones on *E*

Monomial Clones on E_2 Monomial Clones on E_3

Monomials $x^{s} y^{t}$

```
Monomials x\ ^s
```

Monomials x y'

One is weak; Two is strong Two is strong

Lemma

Let *k* be a prime power. For clones on GF(k) we have the following.

(1)
$$\langle x y^{k-1} \rangle \subseteq \langle x^2 y^{k-2} \rangle$$

(2) $\langle x^4 y^{k-4} \rangle \subseteq \langle x^3 y^{k-3} \rangle$

Introduction

Clone Introducing a field Finite Field

Monomial Clones on *E*

Monomial Clones on E_2 Monomial Clones on E_3

Monomials $x^{s} y^{t}$

Monomials *x*

Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

Lemma

Let *k* be a prime power. For clones on GF(k) we have the following.

(1)
$$\langle x y^{k-1} \rangle \subseteq \langle x^2 y^{k-2} \rangle$$

(2) $\langle x^4 y^{k-4} \rangle \subseteq \langle x^3 y^{k-3} \rangle$

Proof (i) Since

$$(k-2)^2 = ((k-1)-1)^2$$

= $(k-1)^2 - 2(k-1) + 1 \equiv 1 \pmod{k-1}$

we have $x^2(x^2y^{k-2})^{k-2} = x^{k-1}y$.

Introduction

Clone Introducing a field Finite Field

Monomial Clones on *E*

Monomial Clones on E_2 Monomial Clones on E_3

Monomials $x^{s} y^{t}$

Monomials x^{s}

Monomials x ^sy ^t One is weak; Two is strong Two is strong One is weak

Lemma

Let k be a prime power. For clones on GF(k) we have the following.

(1)
$$\langle x y^{k-1} \rangle \subseteq \langle x^2 y^{k-2} \rangle$$

(2) $\langle x^4 y^{k-4} \rangle \subseteq \langle x^3 y^{k-3} \rangle$

Proof (i) Since

$$(k-2)^2 = ((k-1)-1)^2$$

= $(k-1)^2 - 2(k-1) + 1 \equiv 1 \pmod{k-1}$

we have $x^{2}(x^{2}y^{k-2})^{k-2} = x^{k-1}y$. (ii) Similarly, $(k-3)^{2} = ((k-1)-2)^{2}$

$$(k-3)^2 = ((k-1)-2)^2$$

= $(k-1)^2 - 4(k-1) + 4 \equiv 4 \pmod{k-1}$

implies $x^3(x^3y^{k-3})^{k-3} = x^{k-4}y^4$.

Introduction Clone Introducing a field Finite Field

Monomial Clones on *E*a

Monomial Clones on E_2 Monomial Clones on E_3

Monomials $x^{s} v^{t}$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong **Two is strong**

One is weak

Two is strong

Proposition

For any prime power k > 1 and **any** 0 < s < k, it holds

$$\langle x^{s}y^{k-s}\rangle \subseteq \langle x^{2}y^{k-2}\rangle.$$

on GF(k).
Introduction Clone Introducing a field Finite Field

Monomial Clones on *E*3

Monomial Clones on E_2 Monomial Clones on E_3

Monomials

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong

One is weak

Two is strong

Proposition

For any prime power k > 1 and **any** 0 < s < k, it holds

$$\langle x^{s}y^{k-s}\rangle \subseteq \langle x^{2}y^{k-2}\rangle.$$

on GF(k).

Proof Proof by induction.

Basis:
$$y^2(y^2x^{k-2})^{k-2} = x^{(k-2)^2}y^{2k-2} = xy^{k-1}$$

Inductive Step: $(x^{s}y^{k-s})^{2}x^{k-2} = x^{2s+k-2}y^{2k-2s} = x^{2s-1}y^{k-2s+1}$ $(x^{s}y^{k-s})^{2}y^{k-2} = x^{2s}y^{3k-2s-2} = x^{2s}y^{k-2s}$

One is weak

Introduction Clone Introducing a field Finite Field

Monomial Clones

Monomial Clones on *E*

Monomial Clones on E_2 Monomial Clones on E_3

Monomials

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong

One is weak

Lemma $\langle xy^{k-1} \rangle$ is minimal in \mathcal{M}_k .

Proof For any monomial m in $\langle xy^{k-1} \rangle \setminus \mathcal{J}_k$, it is easy to verify that $xy^{k-1} \in \langle m \rangle$.

Introduction

Clone Introducing a field Finite Field

Monomial Clones on *E*g

Monomial Clones on E_2 Monomial Clones on E_3

Monomials $x^{s} y^{t}$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong

One is weak

Question: Is $\langle xy^{k-1} \rangle$ uniquely minimal in \mathcal{M}_k ?

Introduction

Clone Introducing a field Finite Field

Monomial Clones on *E*-

Monomial Clones on E₂ Monomial Clones on E₃

Monomials $x^{s} y^{t}$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong

One is weak

Question: Is $\langle xy^{k-1} \rangle$ uniquely minimal in \mathcal{M}_k ?

Conjecture: YES,

Introduction Clone

Introducing a field Finite Field

Monomial Clones on *E*a

Monomial Clones on E_2 Monomial Clones on E_3

Monomials x ^s y ^t Monomials x ^s

Monomials x ^sy ^t One is weak; Two is strong Two is strong

One is weak

Question: Is $\langle xy^{k-1} \rangle$ uniquely minimal in \mathcal{M}_k ?

Conjecture: YES,

that is:

For any prime power k > 1 and any 0 < s < k, it holds that

$$\langle xy^{k-1}\rangle \subseteq \langle x^sy^{k-s}\rangle,$$

in other words,

$$\underline{xy^{k-1}\in\langle x^sy^{k-s}\rangle}.$$

Introduction

Clone Introducing a field Finite Field

Monomial Clones on *E*

Monomial Clones on E_2 Monomial Clones on E_3

Monomials $x^{s} y^{t}$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong

One is weak

Partial results concerning the conjecture

Lemma Let k = 2m + 1. Then

$$xy^{k-1} \in \langle x^m y^{k-m} \rangle$$

Proof Note that k - 1 = 2m.

$$(x^{m}y^{m+1})^{m}(y^{m}x^{m+1})^{m+1} = x^{m^{2}+(m+1)^{2}}y^{2m(m+1)}$$

= $xy^{2m} = xy^{k-1}$

Introduction

Clone Introducing a

Monomial Clones on E

Monomial Clones on E_2 Monomial Clones on E_3

Monomials x ^s y ^t

```
Monomials x <sup>s</sup>
Monomials x <sup>s</sup>y <sup>t</sup>
One is weak; Two is
strong
Two is strong
```

One is weak

Lemma

For k > 2 and 1 < a < k, if there exists e > 1 satisfying

(i)
$$a^e \equiv 1 \pmod{k-1}$$

or

(ii)
$$a^e \equiv a \pmod{k-1}$$

 $xy^{k-1} \in \langle x^a y^{k-a} \rangle$.

then

Introduction

Clone

Introducing a fiel Finite Field

Monomial Clones on *E*

Monomial Clones on E_2 Monomial Clones on E_3

Monomials

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong

One is weak

Lemma

For k > 2 and 1 < a < k, if there exists e > 1 satisfying

(i)
$$a^e \equiv 1 \pmod{k-1}$$

or

(ii) $a^e \equiv a \pmod{k-1}$

then $xy^{k-1} \in \langle x^a y^{k-a} \rangle$.

Proof (i) By repeating substitution of $x^a y^{k-a}$ into *x e* times, we obtain:

$$((\cdots ((x^{a}y^{k-a})^{a}y^{k-a})^{a}\cdots)^{a}y^{k-a})^{a}y^{k-a}$$

= $x^{a^{a}}y^{*}$
= xy^{k-1}

(ii) Similarly, we have:

$$((\cdots ((x^{a}y^{k-a})^{a}y^{k-a})^{a}\cdots)^{a}y^{k-a})^{a}x^{k-a}$$

= $x^{a^{e}+(k-a)}y^{*}$
= $x^{a+(k-a)}y^{*} = x^{k}y^{k-1} = xy^{k-1}$

Introduction

Clone Introducing a field Finite Field

Monomial Clones on *E*

Monomial Clones on E₂ Monomial Clones on E₃

Monomials $x^{s} y^{t}$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong

One is weak

In most cases, the following property holds for 1 < a < k.

$$(\exists e > 1) a^e \equiv a \pmod{k-1}$$

Introduction

Clone Introducing a field Finite Field

Monomial Clones on *E*g

Monomial Clones on E_2 Monomial Clones on E_3

Monomials x ^s y ^t

Monomials x ^s Monomials x ^s y ^t One is weak; Two is strong

Two is strong One is weak

In most cases, the following property holds for 1 < a < k.

$$(\exists e > 1) a^e \equiv a \pmod{k-1}$$

Example
$$(k = 11)$$
 Table of $a^e \pmod{10}$

a \ e	1	2	3	4	5	•••
2	2	4	8	6	2	
9	9	1	9	•••		
3	3	9	7	1	3	
8	8	4	2	6	8	
4	4	6	4			
7	7	9	3	1	7	
5	5	5				
6	6	6				

Introduction

Clone

Introducing a fiel Finite Field

Monomial Clones on *E*

Monomial Clones on E_2 Monomial Clones on E_3

Monomials x ^s y ^t

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong

Two is strong One is weak

Counter-example (k = 37) Table of $a^e \pmod{36}$

a∖e	1	2	3	4	5	6	7	8
2	2	4	8	16	32	28	20	4
35	35	1	35					
3	3	9	27	9				
34	34	4	28	16	4			
4	4	16	28	4				
33	33	9	10	9				
	a \ e 2 35 3 34 4 33	$ \begin{array}{c ccc} a \setminus e & 1 \\ 2 & 2 \\ 35 & 35 \\ 3 & 3 \\ 34 & 34 \\ 4 & 4 \\ 33 & 33 \\ \end{array} $	$\begin{array}{c ccccc} a \setminus e & 1 & 2 \\ 2 & 2 & 4 \\ 35 & 35 & 1 \\ 3 & 3 & 9 \\ 34 & 34 & 4 \\ 4 & 4 & 16 \\ 33 & 33 & 9 \end{array}$	$a \setminus e$ 123224835351353392734344284416283333910	$a \setminus e$ 1234224816353513535339279343442816441628433339109	$a \setminus e$ 12345224816323535135 \cdots 3392793434428164441628433339109	$a \setminus e$ 12345622481632283535135 \cdots \cdots 339279 \cdots 3434428164 \cdots 4416284 \cdots 33339109 \cdots	$a \setminus e$ 12345672248163228203535135 \cdots \cdots \cdots 339279 \cdots \cdots 3434428164 \cdots 4416284 \cdots 33339109 \cdots

(

Introduction

Clone

Introducing a field Finite Field

Monomial Clones on E

Monomial Clones on E_2 Monomial Clones on E_3

Monomials x ^s y ^t

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong

One is weak

Counter-example	(k = 37)) Table of <i>a^e</i>	(mod 36
Journel-example	(n - 0)		(11100-50

$a \setminus e$	1	2	3	4	5	6	7	8
2	2	4	8	16	32	28	20	4
35	35	1	35					
3	3	9	27	9				
34	34	4	28	16	4			
4	4	16	28	4				
33	33	9	10	9				

However, even in this case, $x y^{36} \in \langle x^3 y^{34} \rangle$ holds because

$$3^2 + 34^3 \equiv 9 + 28 \equiv 1 \pmod{600}$$
 (mod 36)

and

$$(x^3y^{34})^3 (y^3(y^3x^{34})^{34})^{34} = x y^{36}$$

Introduction Clone Introducing a field

Monomial Clones on *E*g

Monomial Clones on E_2 Monomial Clones on E_3

Monomials x ^s y ^t

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong

One is weak

Lemma

Let k > 2 be a prime and *a* be a positive integer. If *a* and k - 1 are coprime, i.e., GCD(a, k - 1) = 1 then

$$xy^{k-1} \in \langle x^a y^{k-a} \rangle$$

Proof If there exists e > 0 such that $a^e \equiv 1 \pmod{k-1}$ then the result follows from (i) of the preceding Lemma. Otherwise, there exist d, e such that 1 < d < e satisfying $a^d \equiv a^e \pmod{k-1}$. Then we have

$$a^d(a^{e-d}-1)\equiv 0 \pmod{k-1}.$$

Since GCD(a, k - 1) = 1, it follows that

$$a^{e-d} \equiv 1 \pmod{k-1},$$

which implies

$$x^{a^{e-d}}y^{k-a^{e-d}} = xy^{k-1}$$

and the conclusion follows.

Introduction Clone Introducing a field Finite Field

Monomial Clones on *E*

Monomial Clones on E_2 Monomial Clones on E_3

Monomials $x^{s} y^{t}$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong

One is weak

One more property, which may be of interest:

Introduction Clone Introducing a field Finite Field

Monomial Clones on *E*s

Monomial Clones on E_2 Monomial Clones on E_3

Monomials $x^{s} y^{t}$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong

One is weak

Lemma Let k be an odd prime power and suppose that

$$k = 2m + 1$$
 $\left(\Leftrightarrow m = \frac{k-1}{2} \right)$

for $m \ge 3$. Then, for every $s \in \{2, \dots, m-1\}$, we have $x^s y^{k-s} \notin \langle x^m y^{k-m} \rangle$

on GF(k).

Introduction

Clone Introducing a field Finite Field

Monomial Clones on *E*3

Monomial Clones on E_2 Monomial Clones on E_3

Monomials x ^s y ^t

Monomials x ^sy ^t One is weak; Two is strong Two is strong

One is weak

Proof Note that k - 1 = 2m. We can show below that all of m^2 , $(m+1)^2$ and m(m+1) are equivalent to one of 0, 1, m and $m+1 \mod k - 1$. Here the equivalence (\equiv) is taken for mod k - 1.

$$m^{2} = \begin{cases} m(m-1) + m \equiv m & \text{if } m : \text{odd} \\ m \cdot m \equiv 0 & \text{if } m : \text{even} \end{cases}$$
$$(m+1)^{2} = m^{2} + 2m + 1 \equiv m^{2} + 1$$
$$\equiv \begin{cases} m+1 & \text{if } m : \text{odd} \\ 1 & \text{if } m : \text{even} \end{cases}$$
$$m(m+1) \equiv \begin{cases} 0 & \text{if } m : \text{odd} \\ m^{2} + m = m & \text{if } m : \text{even} \end{cases}$$

Hence, among $x^s y^{k-s}$ for $s \in \{1, ..., m\}$, the terms that can be produced from $x^m y^{k-m}$ by composition are only xy^{k-1} and $x^m y^{k-m}$.

Clone Introducing a field Finite Field

Monomial Clones on *E*

 $\begin{array}{l} \mbox{Monomial Clones on} \\ E_2 \\ \mbox{Monomial Clones on} \\ E_3 \end{array}$

Monomials $x^{s} y^{t}$

Monomials x ^s Monomials x ^sy ^t One is weak; Two is strong Two is strong

One is weak

Thank you

for your attention !