Monomial Clones

Hajime Machida

Tokyo, Japan

SSAOS 2016

Trojanovice, Czech Republic
September 34567892016

Joint work with J. Pantović (Novi Sad)

Monomial
Clones

Outline

(1) Introduction

(2) Monomial Clones on E_{3}
(3) Monomials $x^{s} y^{t}$

| Introduction

What is a clone?

For $k>1$ let $E_{k}=\{0,1, \ldots, k-1\}$
$f\left(x_{1}, \ldots, x_{n}\right): n$-variable function on E_{k} i.e., $\quad f:\left(E_{k}\right)^{n} \longrightarrow E_{k}$
$\mathcal{O}_{k}^{(n)}$: the set of n-variable functions on E_{k}
$\mathcal{O}_{k}=\bigcup_{n=1}^{\infty} \mathcal{O}_{k}^{(n)}$
$e_{i}^{n}\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)=x_{i}:(n$-variable i-th) projection
\mathcal{J}_{k} : the set of projections on E_{k}

We define (functional) "composition" of functions in a usual way.

Example of composition

Given $f\left(x_{1}, x_{2}, x_{3}\right) \in \mathcal{O}_{k}^{(3)}$ and $g\left(x_{1}, x_{2}\right) \in \mathcal{O}_{k}^{(2)}$, an example of composition of f and g is

$$
f\left(g\left(x_{1}, x_{2}\right), x_{3}, x_{4}\right) .
$$

Monomial
Clones

Introduction

Clone

Introducing a field Finite Field

Monomial
Clones on E_{3}
Monomial Clones on
Monomial Clones on E_{3}

Monomials $x^{s} y^{t}$ Monomials x^{8} Monomials $x^{5} y^{4}$ One is weak; Two is strong
Two is strong
One is weak

Definition

$C\left(\subseteq \mathcal{O}_{k}\right)$: clone on E_{k}
\Longleftrightarrow
(i) $\quad C \supseteq \mathcal{J}_{k}$
(ii) C is closed under composition

Definition

Clone
Introducing a field Finite Field

Monomial
Clones on E_{3}
$C\left(\subseteq \mathcal{O}_{k}\right)$: clone on E_{k}

(i) $\quad C \supseteq \mathcal{J}_{k}$
(ii) C is closed under composition
\mathcal{L}_{k} : the set of all clones on E_{k},
" lattice of clones" on E_{k}

Definition

$C\left(\subseteq \mathcal{O}_{k}\right)$: clone on E_{k}
(i) $\quad C \supseteq \mathcal{J}_{k}$
(ii) C is closed under composition
\mathcal{L}_{k} : the set of all clones on E_{k},
" lattice of clones" on E_{k}
\mathcal{L}_{k} contains

- the greatest element: \mathcal{O}_{k}
- the least element: \mathcal{J}_{k}

Basic Facts on Clones

Introduction
Clone
Introducing a field Finite Field

Monomial
(1) For $k=2, \mathcal{L}_{2}$: countable completely known (E. Post)
(2) For $k \geq 3, \mathcal{L}_{k}$: continuum mostly unknown

Basic Facts on Clones

(1) For $k=2, \mathcal{L}_{2}$: countable completely known (E. Post)
(2) For $k \geq 3, \mathcal{L}_{k}$: continuum mostly unknown
(3) Maximal clones For each $k \geq 2$, completely known (I. Rosenberg)
(4) Minimal clones

For $k=2$, completely known (E. Post)
For $k=3$, completely known (B. Csákány)
For $k=4$, ???
For $k \geq 5$, very little is known

Introducing the structure of a field into E_{k}

We introduce the structure of a field into E_{k}.

For this purpose, it is required that
$k=$ a prime power,
i.e., $k=p^{e}$ for a prime p and a positive integer e.

Then, consider $E_{k}=\{0,1, \ldots, k\}$ as the finite field $\operatorname{GF}(k)$.

Polynomials over K

For arbitrary field K and a positive integer n, an (n-variable) polynomial over K is an n-variable function

$$
\sum_{0 \leq i_{1}, \ldots, i_{n} \leq e} a_{i_{1}, \ldots, i_{n}} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}
$$

for some $e \in \mathbb{N}$ and $a_{i_{1}, \ldots, i_{n}} \in K$. In other words, a polynomial is a finite sum of terms.

Polynomials over K

For arbitrary field K and a positive integer n, an (n-variable) polynomial over K is an n-variable function

$$
\sum_{i_{1}, \ldots, i_{n} \leq e} a_{i_{1}, \ldots, i_{n}} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}
$$

for some $e \in \mathbb{N}$ and $a_{i}, \ldots, i_{n} \in K$. In other words, a polynomial is a finite sum of terms.

Well-known: An n-variable function $f\left(x_{1}, \ldots, x_{n}\right)$ over K is uniquely expressed as a polynomial.

Quiz 1

Consider two functions f and g expressed as polynomials on $E_{2}(=\{0,1\})$.
(1) $f(x, y)=x y+1$
(2) $g(x, y)=x y+x+y$

Quiz 1

Consider two functions f and g expressed as polynomials on $E_{2}(=\{0,1\})$.
(1) $f(x, y)=x y+1$
(2) $g(x, y)=x y+x+y$

Q1: Which function is stronger with respect to the 'productive power' by (functional) composition?

Quiz 1 (EASY)

Consider two functions f and g expressed as polynomials on $E_{2}(=\{0,1\})$.
(1) $f(x, y)=x y+1$
(2) $g(x, y)=x y+x+y$

Q1: Which function is stronger with respect to the 'productive power' by (functional) composition?

A: f is stronger.
In fact,
(1) $f(x, y)=\operatorname{NAND}(x, y)$
(2) $g(x, y)=\operatorname{OR}(x, y)$

Quiz 2

Consider three functions u, v and w expressed as polynomials on $E_{3}(=\{0,1,2\})$.
(1) $u(x, y)=x^{2} y^{2}+x y^{2}+x^{2} y+2 x y+x+y$
(2) $v(x, y)=x^{2} y^{2}+x y^{2}+x^{2} y+x y+x+y$
(3) $w(x, y)=x^{2} y^{2}+x y^{2}+x^{2} y+2 x y+x+y+1$

Quiz 2

Consider three functions u, v and w expressed as polynomials on $E_{3}(=\{0,1,2\})$.
(1) $u(x, y)=x^{2} y^{2}+x y^{2}+x^{2} y+2 x y+x+y$
(2) $v(x, y)=x^{2} y^{2}+x y^{2}+x^{2} y+x y+x+y$
(3) $w(x, y)=x^{2} y^{2}+x y^{2}+x^{2} y+2 x y+x+y+1$

Q2 : Which function is the weakest?

Quiz 2 (HARD)

Consider three functions u, v and w expressed as polynomials on $E_{3}(=\{0,1,2\})$.
(1) $u(x, y)=x^{2} y^{2}+x y^{2}+x^{2} y+2 x y+x+y$
(2) $v(x, y)=x^{2} y^{2}+x y^{2}+x^{2} y+x y+x+y$
(3) $w(x, y)=x^{2} y^{2}+x y^{2}+x^{2} y+2 x y+x+y+1$

Q2 : Which function is the weakest?
A : u is the weakest.

Quiz 2 (HARD)

Consider three functions u, v and w expressed as polynomials on $E_{3}(=\{0,1,2\})$.
(1) $u(x, y)=x^{2} y^{2}+x y^{2}+x^{2} y+2 x y+x+y$
(2) $v(x, y)=x^{2} y^{2}+x y^{2}+x^{2} y+x y+x+y$
(3) $w(x, y)=x^{2} y^{2}+x y^{2}+x^{2} y+2 x y+x+y+1$

Q2 : Which function is the weakest?
A: u is the weakest. In fact,
(1) $u(x, y)$ generates a minimal clone,
(2) $w(x, y)$ is Webb function $(=\max (x, y)+1)$ which is known to generate all functions on E_{3}, and
(3) $v(x, y)$ stays somewhere in-between.

How to get a polynomial corresponding to a function:

GIVEN: $\quad f\left(x_{1}, \ldots, x_{n}\right)$

$$
\text { i.e., a mapping } f: K^{n} \longrightarrow K
$$

To GET:

$$
\sum_{0 \leq i_{1}, \ldots, i_{n} \leq e} a_{i_{1}, \ldots, i_{n}} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}
$$

GIVEN: $\quad f\left(x_{1}, \ldots, x_{n}\right)$
i.e., a mapping $f: K^{n} \longrightarrow K$

To GET:

$$
\sum_{0 \leq i_{1}, \ldots, i_{n} \leq e} a_{i_{1}, \ldots, i_{n}} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}
$$

METHOD:
"Lagrange interpolation formula "

Example

Suppose $f(x, y, z)$ is a 3-variable function on $E_{3}=\{0,1,2\}$. For $a, b, c \in E_{3}$, define

$$
t_{a b c}(x, y, z)=\prod_{a^{\prime} \in E_{3} \backslash\{a\}} \frac{x-a^{\prime}}{a-a^{\prime}} \cdot \prod_{b^{\prime} \in E_{3} \backslash\{b\}} \frac{y-b^{\prime}}{b-b^{\prime}} \cdot \prod_{c^{\prime} \in E_{3} \backslash\{c\}} \frac{z-c^{\prime}}{c-c^{\prime}}
$$

Then

$$
t_{a b c}(x, y, z)= \begin{cases}1 & \text { if } x=a, y=b, z=c \\ 0 & \text { otherwise }\end{cases}
$$

Hence

$$
f(x, y, z)=\sum_{(a, b, c) \in E_{3}^{3}} f(a, b, c) \cdot t_{a b c}(x, y, z)
$$

Monomial

In General

For an n-variable function $f\left(x_{1}, \ldots, x_{n}\right)$ on E_{k}, we have

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{\left(a_{1}, \ldots, a_{n}\right) \in E_{k}^{n}} f\left(a_{1}, \ldots, a_{n}\right) \cdot t_{a_{1} \ldots a_{n}}\left(x_{1}, \ldots, x_{n}\right)
$$

where

$$
t_{a_{1} \ldots a_{n}}\left(x_{1}, \ldots, x_{n}\right)=\prod_{1 \leq i \leq n}\left(\prod_{a_{i}^{\prime} \in E_{k} \backslash\left\{a_{i}\right\}} \frac{x_{i}-a_{i}^{\prime}}{a_{i}-a_{i}^{\prime}}\right)
$$

Monomial Clones

Example Let $f(x, y, z)$ be a function defined by

$$
f(x, x, y)=f(x, y, x)=f(y, x, x)=x
$$

and

$$
f(x, y, z)=0 \quad \text { if } \quad|\{x, y, z\}|=3
$$

Example Let $f(x, y, z)$ be a function defined by

$$
f(x, x, y)=f(x, y, x)=f(y, x, x)=x
$$

and

$$
f(x, y, z)=0 \quad \text { if } \quad|\{x, y, z\}|=3 .
$$

Then

$$
\begin{aligned}
f(x, y, z)= & \frac{(x-1)(x-2)}{(0-1)(0-2)} \cdot \frac{y(y-2)}{1 \cdot(1-2)} \cdot \frac{z(z-2)}{1 \cdot(1-2)}+\cdots \\
+ & 2 \cdot \frac{(x-1)(x-2)}{(0-1)(0-2)} \cdot \frac{y(y-1)}{2 \cdot(2-1)} \cdot \frac{z(z-1)}{2 \cdot(2-1)}+\cdots \\
& \quad(\text { sum of } 12 \text { products }) \\
= & 2 x^{2}(y+z)+2 y^{2}(z+x)+2 z^{2}(x+y)
\end{aligned}
$$

Monomials over K

An (n-variable) monomial over K is an n-variable polynomial consisting of one term, i.e.,

$$
a x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}
$$

for $a \in K$ and $i_{1}, \ldots, i_{n} \in \mathbb{N}$.

Monomials over K

An (n-variable) monomial over K is an n-variable polynomial consisting of one term, i.e.,

$$
a x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}
$$

for $a \in K$ and $i_{1}, \ldots, i_{n} \in \mathbb{N}$.

〈 In the rest of my talk, we shall take a more restrictive view of monomials. $\rangle\rangle$

Monomials over K

An (n-variable) monomial over K is an n-variable polynomial consisting of one term, i.e.,

$$
a x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}
$$

for $a \in K$ and $i_{1}, \ldots, i_{n} \in \mathbb{N}$.

〈< In the rest of my talk, we shall take a more restrictive view of monomials. $\rangle\rangle$

An (n-variable) monomial m over K is a monic monomial if the coefficient of m is 1 , i.e., if m is

$$
x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}
$$

for $i_{1}, \ldots, i_{n} \in \mathbb{N}$.

Introduction

In what follows, by a monomial we shall mean a monic monomial, that is,
$"$ monomial $=x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}{ }^{\prime}$

Introduction

In what follows, by a monomial we shall mean a monic monomial, that is,

$$
" \text { monomial }=x_{1}^{i_{1}} \cdots x_{n}^{i_{n}} "
$$

A monomial clone is defined as follows.

A monomial clone is defined as follows.

Definition

A clone C over K is a monomial clone if C is generated by some monomial m over K, i.e., $C=\langle m\rangle$.

Finite Field

We review fundamental properties of finite fields.
Proposition
(1) For any prime power k, there exists a finite field K whose cardinality is k. It is unique up to isomorphism, and is denoted by GF (k).
(2) Over GF (k), it holds that $x^{k}=x$ for every $x \in \operatorname{GF}(k)$.

Hence, we have:
Corollary
Any n-variable monomial m over $\operatorname{GF}(k)$ is expressed as

$$
m=x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}
$$

for some i_{1}, \ldots, i_{n} with $0<i_{1}, \ldots, i_{n}<k$.

Monomial
Clones

Introduction

Clone
Introducing a field
Finite Field
Monomial
Clones on E_{3}
Monomial Clones on
Monomial Clones on E_{3}

Monomials $x^{s} y^{t}$
Monomials x^{s}
Monomials $x^{5} y^{t}$
One is weak; Two is
strong
Two is strong
One is weak

Monomial
Clones

Introduction
Clone
Introducing a field
Finite Field
Monomial
Clones on E_{3}
Monomial Clones on E_{2}
Monomial Clones on

Monomials
Monomials x
Monomials $x^{5} y^{\prime}$
One is weak; Two is strong
Two is strong
One is weak

To determine all monomial clones on E_{3}

In this section we determine all monomial clones on E_{3}.

To determine all monomial clones on E_{3}

In this section we determine all monomial clones on E_{3}.
Before doing so, we describe monomial clones on E_{2}.

Monomial Clones on E_{2}

Considering the fact that $x^{2}=x$ holds on E_{2}, it is immediate to see that there exist only two monomial clones over E_{2}.

They are:
(1) $\left\langle x_{1}\right\rangle$
(2) $\left\langle x_{1} x_{2}\right\rangle$

Notice that
(1) $\left\langle x_{1}\right\rangle$ is the least clone \mathcal{J}_{2}, and
(2) $\left\langle x_{1} x_{2}\right\rangle$ is the set of all monomials on E_{2}.

Monomial Clones on E_{3}

Now we study monomial clones on E_{3}.
Since the equality $x^{3}=x$ holds on E_{3}, and $\mathrm{GF}(3)$ is commutative, monomials that need to be considered are

$$
x_{1} \cdots x_{s} x_{s+1}^{2} \cdots x_{s+t}^{2}
$$

for $s, t \geq 0$ and $s+t>0$.

$s \backslash t$	0	1	2	3
0		\boldsymbol{x}_{1}^{2}	$\boldsymbol{x}_{1}^{2} \boldsymbol{x}_{2}^{2}$	$x_{1}^{2} x_{2}^{2} x_{3}^{2}$
1	\boldsymbol{x}_{1}	$\boldsymbol{x}_{1} \boldsymbol{x}_{2}^{2}$	$x_{1} x_{2}^{2} x_{3}^{2}$	$x_{1} x_{2}^{2} x_{3}^{2} x_{4}^{2}$
2	$\boldsymbol{x}_{1} \boldsymbol{X}_{2}$	$x_{1} x_{2} x_{3}^{2}$	$x_{1} x_{2} x_{3}^{2} x_{4}^{2}$	$x_{1} x_{2} x_{3}^{2} x_{4}^{2} x_{5}^{2}$
3	$\boldsymbol{x}_{1} \boldsymbol{X}_{2} \boldsymbol{X}_{3}$	$x_{1} x_{2} x_{3} x_{4}^{2}$	$x_{1} x_{2} x_{3} x_{4}^{2} x_{5}^{2}$	$x_{1} x_{2} x_{3} x_{4}^{2} x_{5}^{2} x_{6}^{2}$
4	$x_{1} x_{2} x_{3} x_{4}$	$x_{1} x_{2} x_{3} x_{4} x_{5}^{2}$	$x_{1} x_{2} x_{3} x_{4} x_{5}^{2} x_{6}^{2}$	$x_{1} x_{2} x_{3} x_{4} x_{5}^{2} x_{6}^{2} x_{7}^{2}$
5	$x_{1} x_{2} x_{3} x_{4} x_{5}$	$x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}^{2}$	$x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}^{2} x_{7}^{2}$	$x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}^{2} x_{7}^{2} x_{8}^{2}$

Table: Monomials on E_{3} (for small s and t)

$$
x_{1} \cdots x_{s} x_{s+1}^{2} \cdots x_{s+t}^{2} \quad(s, t \geq 0, s+t>0)
$$

Monomial
Clones

Introduction Clone
Introducing a field Finite Field
Monomial
Clones on E_{3}
Monomial Clones on
Monomial Clones on E_{3}

Monomials $x^{s} y^{t}$
Monomials x^{5}
Monomials $x^{5} y^{4}$
One is weak; Two is strong
Two is strong
One is weak
$t=0$
Lemma
(i) $s \geq 2$: even $\Longrightarrow\left\langle x_{1} \cdots x_{s}\right\rangle=\left\langle x_{1} x_{2}\right\rangle$
(ii) $s \geq 3$: odd $\Longrightarrow\left\langle x_{1} \cdots x_{s}\right\rangle=\left\langle x_{1} x_{2} x_{3}\right\rangle$
$t=0$

Lemma

(i) $s \geq 2$: even $\Longrightarrow\left\langle x_{1} \cdots x_{s}\right\rangle=\left\langle x_{1} x_{2}\right\rangle$
(ii) $s \geq 3$: odd $\Longrightarrow\left\langle x_{1} \cdots x_{s}\right\rangle=\left\langle x_{1} x_{2} x_{3}\right\rangle$

Claim 1 (M-clones generated by a monomial with $t=0$)
(i) There are three monomial clones:

$$
\left\langle x_{1}\right\rangle,\left\langle x_{1} x_{2}\right\rangle \text { and }\left\langle x_{1} x_{2} x_{3}\right\rangle .
$$

(ii) $\left\langle x_{1}\right\rangle=$ the least clone \mathcal{J}_{3}
$\left\langle x_{1} x_{2}\right\rangle=$ the set of all monomials on E_{3}
(iii) $\left\langle x_{1}\right\rangle \subset\left\langle x_{1} x_{2} x_{3}\right\rangle \subset\left\langle x_{1} x_{2}\right\rangle$
(Note: \subset denotes the strict inclusion)

$$
t=0
$$

Lemma

(i) $s \geq 2$: even $\Longrightarrow\left\langle x_{1} \cdots x_{s}\right\rangle=\left\langle x_{1} x_{2}\right\rangle$
(ii) $s \geq 3$: odd $\Longrightarrow\left\langle x_{1} \cdots x_{s}\right\rangle=\left\langle x_{1} x_{2} x_{3}\right\rangle$

Claim 1 (M -clones generated by a monomial with $t=0$)
(i) There are three monomial clones:

$$
\left\langle x_{1}\right\rangle,\left\langle x_{1} x_{2}\right\rangle \text { and }\left\langle x_{1} x_{2} x_{3}\right\rangle \text {. }
$$

(ii) $\left\langle x_{1}\right\rangle=$ the least clone \mathcal{J}_{3}
$\left\langle x_{1} x_{2}\right\rangle=$ the set of all monomials on E_{3}
(iii) $\left\langle x_{1}\right\rangle \subset\left\langle x_{1} x_{2} x_{3}\right\rangle \subset\left\langle x_{1} x_{2}\right\rangle$
(Note: \subset denotes the strict inclusion)
Proof (i) From Lemma. (ii) Trivial. (iii) The first inclusion is clear. For the second inclusion, see the next page.

Proof of " $\left\langle x_{1} x_{2} x_{3}\right\rangle \subset\left\langle x_{1} x_{2}\right\rangle$ ":

Clone

Introducing a field Finite Field

Monomial
Clones on E_{3}
Monomial Clones on

$$
\rho=\left\{\binom{1}{2},\binom{2}{2}\right\}
$$

Then

$$
x_{1} x_{2} x_{3} \in \operatorname{Pol} \rho \quad \text { but } \quad x_{1} x_{2} \notin \operatorname{Pol} \rho
$$

Hence,

$$
x_{1} x_{2} \notin\left\langle x_{1} x_{2} x_{3}\right\rangle
$$

and

$$
\left\langle x_{1} x_{2} x_{3}\right\rangle \neq\left\langle x_{1} x_{2}\right\rangle
$$

$s \backslash t$	0	1	2	3
0		\boldsymbol{x}_{1}^{2}	$\boldsymbol{x}_{1}^{2} \boldsymbol{x}_{2}^{2}$	$x_{1}^{2} x_{2}^{2} x_{3}^{2}$
1	\boldsymbol{x}_{1}	$\boldsymbol{x}_{1} \boldsymbol{x}_{2}^{2}$	$x_{1} x_{2}^{2} x_{3}^{2}$	$x_{1} x_{2}^{2} x_{3}^{2} x_{4}^{2}$
2	$\boldsymbol{x}_{1} \boldsymbol{x}_{2}$	$x_{1} x_{2} x_{3}^{2}$	$x_{1} x_{2} x_{3}^{2} x_{4}^{2}$	$x_{1} x_{2} x_{3}^{2} x_{4}^{2} x_{5}^{2}$
3	$\boldsymbol{x}_{1} \boldsymbol{X}_{2} \boldsymbol{x}_{3}$	$x_{1} x_{2} x_{3} x_{4}^{2}$	$x_{1} x_{2} x_{3} x_{4}^{2} x_{5}^{2}$	$x_{1} x_{2} x_{3} x_{4}^{2} x_{5}^{2} x_{6}^{2}$
4	-	$x_{1} x_{2} x_{3} x_{4} x_{5}^{2}$	$x_{1} x_{2} x_{3} x_{4} x_{5}^{2} x_{6}^{2}$	$x_{1} x_{2} x_{3} x_{4} x_{5}^{2} x_{6}^{2} x_{7}^{2}$
5	-	$x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}^{2}$	$x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}^{2} x_{7}^{2}$	$x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}^{2} x_{7}^{2} x_{8}^{2}$

Table : Monomials on E_{3}

Monomial
$t>0$

Lemma

For $t>0$ we have:
(i) $s=0$
$\Longrightarrow\left\langle x_{1}^{2} x_{2}^{2} \cdots x_{t+1}^{2}\right\rangle=\left\langle x_{1}^{2} x_{2}^{2}\right\rangle$
(ii) $s=1$
$\Longrightarrow\left\langle x_{1} x_{2}^{2} \cdots x_{t+1}^{2}\right\rangle=\left\langle x_{1} x_{2}^{2}\right\rangle$
(iii) $s \geq 2$: even $\Longrightarrow\left\langle x_{1} \cdots x_{s} x_{s+1}^{2} \cdots x_{s+t}^{2}\right\rangle=\left\langle x_{1} x_{2}\right\rangle$
(iv) $s \geq 3$: odd $\Longrightarrow\left\langle x_{1} \cdots x_{s} x_{s+1}^{2} \cdots x_{s+t}^{2}\right\rangle=\left\langle x_{1} x_{2} x_{3}\right\rangle$

Proof Easy from

$$
x \cdot x^{2}=x \quad \text { and } \quad x^{2} \cdot x^{2}=x^{2} .
$$

$t>0$

Lemma

For $t>0$ we have:
(i) $s=0$
$\Longrightarrow\left\langle x_{1}^{2} x_{2}^{2} \cdots x_{t+1}^{2}\right\rangle=\left\langle x_{1}^{2} x_{2}^{2}\right\rangle$
(ii) $s=1$
$\Longrightarrow\left\langle x_{1} x_{2}^{2} \cdots x_{t+1}^{2}\right\rangle=\left\langle x_{1} x_{2}^{2}\right\rangle$
(iii) $s \geq 2$: even $\Longrightarrow\left\langle x_{1} \cdots x_{s} x_{s+1}^{2} \cdots x_{s+t}^{2}\right\rangle=\left\langle x_{1} x_{2}\right\rangle$
(iv) $s \geq 3$: odd $\Longrightarrow\left\langle x_{1} \cdots x_{s} x_{s+1}^{2} \cdots x_{s+t}^{2}\right\rangle=\left\langle x_{1} x_{2} x_{3}\right\rangle$

Proof Easy from

$$
x \cdot x^{2}=x \quad \text { and } \quad x^{2} \cdot x^{2}=x^{2}
$$

Claim 2 (M-clones generated by a monomial with $t=1$)
(i) There are two such clones $\left\langle x_{1}^{2}\right\rangle$ and $\left\langle x_{1} x_{2}^{2}\right\rangle$.
(ii) $\left\langle x_{1}\right\rangle \subset\left\langle x_{1}^{2}\right\rangle \subset\left\langle x_{1} x_{2}\right\rangle$
(iii) $\left\langle x_{1}\right\rangle \subset\left\langle x_{1} x_{2}^{2}\right\rangle \subset\left\langle x_{1} x_{2} x_{3}\right\rangle$

$s \backslash t$	0	1	2	3
0		\boldsymbol{x}_{1}^{2}	$\boldsymbol{x}_{1}^{2} \boldsymbol{x}_{2}^{2}$	$x_{1}^{2} x_{2}^{2} x_{3}^{2}$
1	\boldsymbol{x}_{1}	$\boldsymbol{x}_{1} \boldsymbol{X}_{2}^{2}$	$x_{1} x_{2}^{2} x_{3}^{2}$	$x_{1} x_{2}^{2} x_{3}^{2} x_{4}^{2}$
2	$\boldsymbol{x}_{1} \boldsymbol{X}_{2}$	-	$x_{1} x_{2} x_{3}^{2} x_{4}^{2}$	$x_{1} x_{2} x_{3}^{2} x_{4}^{2} x_{5}^{2}$
3	$\boldsymbol{x}_{1} \boldsymbol{X}_{2} \boldsymbol{X}_{3}$	-	$x_{1} x_{2} x_{3} x_{4}^{2} x_{5}^{2}$	$x_{1} x_{2} x_{3} x_{4}^{2} x_{5}^{2} x_{6}^{2}$
4	-	-	$x_{1} x_{2} x_{3} x_{4} x_{5}^{2} x_{6}^{2}$	$x_{1} x_{2} x_{3} x_{4} x_{5}^{2} x_{6}^{2} x_{7}^{2}$
5	-	-	$x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}^{2} x_{7}^{2}$	$x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}^{2} x_{7}^{2} x_{8}^{2}$

Table : Monomials on E_{3}
$t>0$
Lemma
For $t>0$ we have:
(i) $s=0$
$\Longrightarrow\left\langle x_{1}^{2} x_{2}^{2} \cdots x_{t+1}^{2}\right\rangle=\left\langle x_{1}^{2} x_{2}^{2}\right\rangle$
(ii) $s=1$
$\Longrightarrow\left\langle x_{1} x_{2}^{2} \cdots x_{t+1}^{2}\right\rangle=\left\langle x_{1} x_{2}^{2}\right\rangle$
(iii) $s \geq 2$: even $\Longrightarrow\left\langle x_{1} \cdots x_{s} x_{s+1}^{2} \cdots x_{s+t}^{2}\right\rangle=\left\langle x_{1} x_{2}\right\rangle$
(iv) $s \geq 3$: odd $\Longrightarrow\left\langle x_{1} \cdots x_{s} x_{s+1}^{2} \cdots x_{s+t}^{2}\right\rangle=\left\langle x_{1} x_{2} x_{3}\right\rangle$

Claim 3 (M-clones generated by a monomial with $t=2$)
(i) There is only one such clone $\left\langle x_{1}^{2} x_{2}^{2}\right\rangle$.
(ii) $\left\langle x_{1}^{2}\right\rangle \subset\left\langle x_{1}^{2} x_{2}^{2}\right\rangle \subset\left\langle x_{1} x_{2}\right\rangle$

Monomial
Clones

$s \backslash t$	0	1	2	3
0		\boldsymbol{x}_{1}^{2}	$\boldsymbol{x}_{1}^{2} \boldsymbol{x}_{2}^{2}$	-
1	\boldsymbol{x}_{1}	$\boldsymbol{x}_{1} \boldsymbol{X}_{2}^{2}$	-	-
2	$\boldsymbol{x}_{1} \boldsymbol{X}_{2}$	-	-	-
3	$\boldsymbol{x}_{1} \boldsymbol{X}_{2} \boldsymbol{x}_{3}$	-	-	-
4	-	-	-	-
5	-	-	-	-

Table : Monomials on E_{3}

Hence, monomial clones over E_{3} are the following:
(1) $\left\langle x_{1}\right\rangle$
(4) $\left\langle x_{1}^{2}\right\rangle$
(6) $\left\langle x_{1}^{2} x_{2}^{2}\right\rangle$
(2) $\left\langle x_{1} x_{2}\right\rangle$
(5) $\left\langle x_{1} x_{2}^{2}\right\rangle$
(3) $\left\langle x_{1} x_{2} x_{3}\right\rangle$

For example, we show:

$\left\langle x_{1}^{2} x_{2}^{2}\right\rangle$ and $\left\langle x_{1} x_{2} x_{3}\right\rangle$ are incomparable.

Proof

(a) $\left\langle x_{1}^{2} x_{2}^{2}\right\rangle \not \subset\left\langle x_{1} x_{2} x_{3}\right\rangle$

Let

$$
\rho=\left\{\binom{2}{2}\right\}
$$

Then

$$
x_{1} x_{2} x_{3} \in \operatorname{Pol} \rho \quad \text { but } \quad x_{1}^{2} x_{2}^{2} \notin \operatorname{Pol} \rho
$$

Hence,

$$
x_{1}^{2} x_{2}^{2} \notin\left\langle x_{1} x_{2} x_{3}\right\rangle
$$

and

$$
\left\langle x_{1}^{2} x_{2}^{2}\right\rangle \not \subset\left\langle x_{1} x_{2} x_{3}\right\rangle .
$$

(b) $\left\langle x_{1} x_{2} x_{3}\right\rangle \not \subset\left\langle x_{1}^{2} x_{2}^{2}\right\rangle$

Let

$$
\tau=\left\{\binom{1}{1},\binom{1}{2},\binom{2}{1}\right\}
$$

Then

$$
x_{1}^{2} x_{2}^{2} \in \operatorname{Pol} \tau \quad \text { but } \quad x_{1} x_{2} x_{3} \notin \operatorname{Pol} \tau
$$

Hence,

$$
x_{1} x_{2} x_{3} \notin\left\langle x_{1}^{2} x_{2}^{2}\right\rangle
$$

and

$$
\left\langle x_{1} x_{2} x_{3}\right\rangle \not \subset\left\langle x_{1}^{2} x_{2}^{2}\right\rangle
$$

From (a) and (b) we see that $\left\langle x_{1}^{2} x_{2}^{2}\right\rangle$ and $\left\langle x_{1} x_{2} x_{3}\right\rangle$ are incomparable.

Summary

(a1) $\left\langle x_{1}\right\rangle \subset\left\langle x_{1} x_{2}^{2}\right\rangle \subset\left\langle x_{1} x_{2} x_{3}\right\rangle \subset\left\langle x_{1} x_{2}\right\rangle$
(a2) $\left\langle x_{1}\right\rangle \subset\left\langle x_{1}^{2}\right\rangle \subset\left\langle x_{1}^{2} x_{2}^{2}\right\rangle \subset\left\langle x_{1} x_{2}\right\rangle$
(b1) $\left\langle x_{1}^{2}\right\rangle \not \subset\left\langle x_{1} x_{2}^{2}\right\rangle,\left\langle x_{1} x_{2}^{2}\right\rangle \not \subset\left\langle x_{1}^{2}\right\rangle$
(b2) $\left\langle x_{1}^{2}\right\rangle \not \subset\left\langle x_{1} x_{2} x_{3}\right\rangle,\left\langle x_{1} x_{2} x_{3}\right\rangle \not \subset\left\langle x_{1}^{2}\right\rangle$
(b3) $\left\langle x_{1}^{2} x_{2}^{2}\right\rangle \not \subset\left\langle x_{1} x_{2}^{2}\right\rangle,\left\langle x_{1} x_{2}^{2}\right\rangle \not \subset\left\langle x_{1}^{2} x_{2}^{2}\right\rangle$
(b4) $\left\langle x_{1}^{2} x_{2}^{2}\right\rangle \not \subset\left\langle x_{1} x_{2} x_{3}\right\rangle,\left\langle x_{1} x_{2} x_{3}\right\rangle \not \subset\left\langle x_{1}^{2} x_{2}^{2}\right\rangle$

Monomial
Clones

Introduction
Clone
Introducing a field Finite Field

Case: $k=3$

Note: $\left\langle x_{1} x_{2}\right\rangle=$ the set of all monomials on E_{3}

$$
\left\langle x_{1}\right\rangle=\mathcal{J}_{3}
$$

Monomial
Clones

Introduction

Clone
Introducing a field
Finite Field

Monomial

Clones on E_{3}
Monomial Clones on
Monomial Clones on
Monomials $x^{s} y^{t}$

III Monomials $x^{s} y^{t}$

In this section we investigate monomial clones on E_{k} which are generated by unary functions (1 -variable functions) and binary functions (2 -variable functions).
We put emphasis on monomials which generate minimal clones in the lattice \mathcal{L}_{k} of clones.

Let \mathcal{M}_{k} be the set of monomial clones on E_{k}.
Remark
For any $C \in \mathcal{M}_{k}$,
C is minimal in $\mathcal{M}_{k} \quad \Longrightarrow \quad C$ is minimal in \mathcal{L}_{k}
(i.e., C is a minimal clone)

Let \mathcal{M}_{k} be the set of monomial clones on E_{k}.

Remark

For any $C \in \mathcal{M}_{k}$,
C is minimal in $\mathcal{M}_{k} \quad \Longrightarrow \quad C$ is minimal in \mathcal{L}_{k}
(i.e., C is a minimal clone)

Hence, we want to find:
monomial clones which are minimal in \mathcal{M}_{k}.
(= a motivation for the later study of 2-variable monomials)

Monomials x^{s}

As for unary functions generating minimal clones, the next fact is well-known.

Fact: A unary function $f \in \mathcal{O}_{k}^{(1)}$ generates a minimal clone if and only if
(1) f is a permutation of prime order, or
(2) f is not a permutation and satisfies $f \circ f=f$.

Now, when is a unary monomial x^{s} a permutation?
A (trivial) answer is:
Lemma
For a prime-power $k>1$ and $0<s<k$, the following are equivalent.
(1) x^{s} is a permutation on E_{k}
(2) $s^{i} \equiv 1(\bmod k-1)$ for some $i>1$
(3) s and $k-1$ are co-prime, i.e., $(s, k-1)=1$.
(Remark: Due to Fermat-Euler Theorem)

Example: Unary minimal monomials for $k=3,5,7,11,13$
(1) $k=3:\left\langle x^{2}\right\rangle$ is minimal.
(2) $k=5:\left\langle x^{s}\right\rangle$ is minimal for $s=3,4$.

$$
\left\langle x^{4}\right\rangle \subset\left\langle x^{2}\right\rangle
$$

(3) $k=7:\left\langle x^{s}\right\rangle$ is minimal for $s=3,4,5,6$.

$$
\left\langle x^{4}\right\rangle \subset\left\langle x^{2}\right\rangle
$$

(4) $k=11:\left\langle x^{s}\right\rangle$ is minimal for $s=5,6,9$.

$$
\begin{aligned}
& \left\langle x^{6}\right\rangle \subset\left\langle x^{4}\right\rangle \subset\left\langle x^{2}\right\rangle=\left\langle x^{8}\right\rangle \\
& \left\langle x^{9}\right\rangle \subset\left\langle x^{3}\right\rangle=\left\langle x^{7}\right\rangle
\end{aligned}
$$

(5) $k=13:\left\langle x^{s}\right\rangle$ is minimal for $s=4,5,6,7,9,11$

$$
\begin{aligned}
& \left\langle x^{4}\right\rangle \subset\left\langle x^{8}\right\rangle \subset\left\langle x^{2}\right\rangle ;\left\langle x^{4}\right\rangle \subset\left\langle x^{10}\right\rangle \\
& \left\langle x^{9}\right\rangle \subset\left\langle x^{3}\right\rangle
\end{aligned}
$$

Monomials $x^{s} y^{t}$

Now, we consider 2-variable monomials $x^{s} y^{t}$ and clones generated by them. (For convenience we use x and y, instead of x_{1} and x_{2}, for the variable symbols.)

More precisely, we consider

$$
x^{s} y^{t} \quad \text { for } \quad 0<s, t<k
$$

with the additional condition

$$
s+t=k
$$

Note 1: If m is a monomial which generates a non-unary minimal clone then
(1) m must be a 2 -variable monomial $x^{s} y^{t}$ and,
(2) since $\left\langle x^{s} y^{t}\right\rangle$ does not contain any non-trivial unary functions, the condition $s+t=k$ must be satisfied.

Note 1: If m is a monomial which generates a non-unary minimal clone then
(1) m must be a 2-variable monomial $x^{s} y^{t}$ and,
(2) since $\left\langle x^{s} y^{t}\right\rangle$ does not contain any non-trivial unary functions, the condition $s+t=k$ must be satisfied.

Note 2: For $u, v \in \mathbb{N}$ with $0<u, v<k$,

$$
x^{u} y^{v} \in\left\langle x^{s} y^{t}\right\rangle \quad \Longrightarrow \quad u+v=k
$$

i.e., this condition on the exponents is preserved by composition.

Note 1: If m is a monomial which generates a non-unary minimal clone then
(1) m must be a 2-variable monomial $x^{s} y^{t}$ and,
(2) since $\left\langle x^{s} y^{t}\right\rangle$ does not contain any non-trivial unary functions, the condition $s+t=k$ must be satisfied.

Note 2: For $u, v \in \mathbb{N}$ with $0<u, v<k$,

$$
x^{u} y^{v} \in\left\langle x^{s} y^{t}\right\rangle \quad \Longrightarrow \quad u+v=k
$$

i.e., this condition on the exponents is preserved by composition.

Monomial
Clones

Introduction

Clone

Introducing a field Finite Field

$k=5$

$k=7$

$k=11$

Monomial
Clones

Introduction

Clone
Introducing a field Finite Field
Monomial Clones on E_{3} Monomial Clones on E_{2}
Monomial Clones on E_{3}

Monomials $x^{s} y^{t}$ Monomials x^{5} Monomials $x^{s} y^{t}$ One is weak; Two is strong
Two is strong
One is weak

Case: $k=13$

$$
k=13
$$

Monomial
Clones

Introduction

Clone

Introducing a field
Finite Field
Monomial
Clones on E_{3}
Monomial Clones on
E_{2}
Monomial Clones on E_{3}

Monomials $x^{s} y^{t}$

Monomials $x^{5} y^{t}$ One is weak; Two is strong
Two is strong
One is weak

Now, what observation do you get from these results ?

Introduction

Clone
Introducing a field
Finite Field
Monomial
Clones on E_{3}
Monomial Clones on

Now, what observation do you get from these results ?
My observation is:
One is weak, and two is strong !

Monomial Clones

Introduction

Clone

Introducing a field Finite Field

Monomial Clones on E_{3} Monomial Clones on

Monomial Clones on E_{3}

Monomials $x^{s} y^{t}$

Lemma

Let k be a prime power. For clones on $\operatorname{GF}(k)$ we have the following.
(1) $\left\langle x y^{k-1}\right\rangle \subseteq\left\langle x^{2} y^{k-2}\right\rangle$
(2) $\left\langle x^{4} y^{k-4}\right\rangle \subseteq\left\langle x^{3} y^{k-3}\right\rangle$

Lemma

Let k be a prime power. For clones on $\operatorname{GF}(k)$ we have the following.
(1) $\left\langle x y^{k-1}\right\rangle \subseteq\left\langle x^{2} y^{k-2}\right\rangle$
(2) $\left\langle x^{4} y^{k-4}\right\rangle \subseteq\left\langle x^{3} y^{k-3}\right\rangle$

Proof (i) Since

$$
\begin{aligned}
(k-2)^{2} & =((k-1)-1)^{2} \\
& =(k-1)^{2}-2(k-1)+1 \equiv 1(\bmod k-1)
\end{aligned}
$$

we have $\quad x^{2}\left(x^{2} y^{k-2}\right)^{k-2}=x^{k-1} y$.

Lemma

Let k be a prime power. For clones on $\operatorname{GF}(k)$ we have the following.
(1) $\left\langle x y^{k-1}\right\rangle \subseteq\left\langle x^{2} y^{k-2}\right\rangle$
(2) $\left\langle x^{4} y^{k-4}\right\rangle \subseteq\left\langle x^{3} y^{k-3}\right\rangle$

Proof (i) Since

$$
\begin{aligned}
(k-2)^{2} & =((k-1)-1)^{2} \\
& =(k-1)^{2}-2(k-1)+1 \equiv 1(\bmod k-1)
\end{aligned}
$$

we have $\quad x^{2}\left(x^{2} y^{k-2}\right)^{k-2}=x^{k-1} y$.
(ii) Similarly,

$$
\begin{aligned}
(k-3)^{2} & =((k-1)-2)^{2} \\
& =(k-1)^{2}-4(k-1)+4 \equiv 4(\bmod k-1)
\end{aligned}
$$

implies $\quad x^{3}\left(x^{3} y^{k-3}\right)^{k-3}=x^{k-4} y^{4}$.

Two is strong

Introduction

Clone

Introducing a field Finite Field

Monomial
Clones on E_{3}
Monomial Clones on
Monomial Clones on E_{3}

Monomials $x^{s} y^{t}$
Monomials x^{5}
Monomials $x^{s} y^{t}$
One is weak; Two is strong
Two is strong
One is weak

Proposition

For any prime power $k>1$ and any $0<s<k$, it holds

$$
\left\langle x^{s} y^{k-s}\right\rangle \subseteq\left\langle x^{2} y^{k-2}\right\rangle .
$$

on $\operatorname{GF}(k)$.

Two is strong

Proposition

For any prime power $k>1$ and any $0<s<k$, it holds

$$
\left\langle x^{s} y^{k-s}\right\rangle \subseteq\left\langle x^{2} y^{k-2}\right\rangle
$$

on $\operatorname{GF}(k)$.
Proof Proof by induction.
Basis: $y^{2}\left(y^{2} x^{k-2}\right)^{k-2}=x^{(k-2)^{2}} y^{2 k-2}=x y^{k-1}$
Inductive Step:

$$
\begin{aligned}
& \left(x^{s} y^{k-s}\right)^{2} x^{k-2}=x^{2 s+k-2} y^{2 k-2 s}=x^{2 s-1} y^{k-2 s+1} \\
& \left(x^{s} y^{k-s}\right)^{2} y^{k-2}=x^{2 s} y^{3 k-2 s-2}=x^{2 s} y^{k-2 s}
\end{aligned}
$$

Monomial Clones

One is weak

Lemma
$\left\langle x y^{k-1}\right\rangle$ is minimal in \mathcal{M}_{k}.
Proof For any monomial m in $\left\langle x y^{k-1}\right\rangle \backslash \mathcal{J}_{k}$, it is easy to verify that $x y^{k-1} \in\langle m\rangle$.

Monomial
Clones

Introduction

Clone

Introducing a field Finite Field

Monomial
Clones on E_{3}
Monomial Clones on E_{2}
Monomial Clones on E_{3}

Monomials $x^{s} y^{t}$

Monomial
Clones

Introduction

Clone

Introducing a field Finite Field

Monomial
Clones on E_{3}
Monomial Clones on E_{2}
Monomial Clones on E_{3}

Monomials $x^{s} y^{t}$
Monomials x s
Monomials $x{ }^{5} y$
One is weak; Two is strong
Two is strong One is weak

Question: Is $\left\langle x y^{k-1}\right\rangle$ uniquely minimal in \mathcal{M}_{k} ?
Conjecture: YES,

Question: Is $\left\langle x y^{k-1}\right\rangle$ uniquely minimal in \mathcal{M}_{k} ?
Conjecture: YES, that is:

For any prime power $k>1$ and any $0<s<k$, it holds that

$$
\left\langle x y^{k-1}\right\rangle \subseteq\left\langle x^{s} y^{k-s}\right\rangle
$$

in other words,

$$
\underline{\underline{x y^{k-1}} \in\left\langle x^{s} y^{k-s}\right\rangle}
$$

Partial results concerning the conjecture

Lemma
Let $k=2 m+1$. Then

$$
x y^{k-1} \in\left\langle x^{m} y^{k-m}\right\rangle
$$

Proof Note that $k-1=2 m$.

$$
\begin{aligned}
\left(x^{m} y^{m+1}\right)^{m}\left(y^{m} x^{m+1}\right)^{m+1} & =x^{m^{2}+(m+1)^{2}} y^{2 m(m+1)} \\
& =x y^{2 m}=x y^{k-1}
\end{aligned}
$$

Lemma

For $k>2$ and $1<a<k$, if there exists $e>1$ satisfying

$$
\text { (i) } a^{e} \equiv 1(\bmod k-1)
$$

or
(ii) $a^{e} \equiv a(\bmod k-1)$
then

$$
x y^{k-1} \in\left\langle x^{a} y^{k-a}\right\rangle .
$$

Or
(ii) $a^{e} \equiv a(\bmod k-1)$
then

$$
x y^{k-1} \in\left\langle x^{a} y^{k-a}\right\rangle
$$

Proof (i) By repeating substitution of $x^{a} y^{k-a}$ into $x e$ times, we obtain:

$$
\begin{aligned}
& \left(\left(\cdots\left(\left(x^{a} y^{k-a}\right)^{a} y^{k-a}\right)^{a} \cdots\right)^{a} y^{k-a}\right)^{a} y^{k-a} \\
= & x^{a^{e}} y^{*} \\
= & x y^{k-1}
\end{aligned}
$$

(ii) Similarly, we have:

$$
\begin{aligned}
& \left(\left(\cdots\left(\left(x^{a} y^{k-a}\right)^{a} y^{k-a}\right)^{a} \cdots\right)^{a} y^{k-a}\right)^{a} x^{k-a} \\
= & x^{a^{e}+(k-a)} y^{*} \\
= & x^{a+(k-a)} y^{*}=x^{k} y^{k-1}=x y^{k-1}
\end{aligned}
$$

Monomial

In most cases, the following property holds for $1<a<k$.

$$
(\exists e>1) a^{e} \equiv a(\bmod k-1)
$$

Example $(k=11) \quad$ Table of $a^{e}(\bmod 10)$

$a \backslash e$	1	2	3	4	5	\cdots
2	$\mathbf{2}$	4	8	6	2	\cdots
9	9	1	9	\cdots		
3	$\mathbf{3}$	9	7	1	3	\cdots
8	8	4	2	6	8	\cdots
4	4	6	4	\cdots		
7	7	9	3	1	$\mathbf{7}$	\cdots
5	$\mathbf{5}$	$\mathbf{5}$	\cdots			
6	$\mathbf{6}$	$\mathbf{6}$	\cdots			

Monomial
Clones

Introduction
Clone
Introducing a field Finite Field

Counter-example $(k=37) \quad$ Table of $a^{e}(\bmod 36)$

$a \backslash \boldsymbol{e}$	1	2	3	4	5	6	7	8
2	2	4	8	16	32	28	20	4
35	35	1	35		\cdots			
3	3	9	27	9		\cdots		
34	34	4	28	16	4	\cdots		
4	4	16	28	4		\cdots		
33	33	9	10	9		\cdots		

Counter-example $(k=37) \quad$ Table of $a^{e}(\bmod 36)$

$a \backslash e$	1	2	3	4	5	6	7	8
2	2	4	8	16	32	28	20	4
35	35	1	35		\cdots			
3	3	9	27	9		\cdots		
34	34	4	28	16	4	\cdots		
4	4	16	28	4		\cdots		
33	33	9	10	9		\cdots		

However, even in this case, $x y^{36} \in\left\langle x^{3} y^{34}\right\rangle$ holds because

$$
3^{2}+34^{3} \equiv 9+28 \equiv 1 \quad(\bmod 36)
$$

and

$$
\left(x^{3} y^{34}\right)^{3}\left(y^{3}\left(y^{3} x^{34}\right)^{34}\right)^{34}=x y^{36}
$$

Lemma

Let $k>2$ be a prime and a be a positive integer. If a and $k-1$ are coprime, i.e., $\operatorname{GCD}(a, k-1)=1$ then

$$
x y^{k-1} \in\left\langle x^{a} y^{k-a}\right\rangle
$$

Proof If there exists $e>0$ such that $a^{e} \equiv 1(\bmod k-1)$ then the result follows from (i) of the preceding Lemma. Otherwise, there exist d, e such that $1<d<e$ satisfying $a^{d} \equiv a^{e}(\bmod k-1)$. Then we have

$$
a^{d}\left(a^{e-d}-1\right) \equiv 0 \quad(\bmod k-1)
$$

Since $\operatorname{GCD}(a, k-1)=1$, it follows that

$$
a^{e-d} \equiv 1 \quad(\bmod k-1)
$$

which implies

$$
x^{a^{e-d}} y^{k-a^{e-d}}=x y^{k-1}
$$

and the conclusion follows.

Monomial
Clones

Introduction

Clone
Introducing a field
Finite Field
Monomial
Clones on E_{3}
Monomial Clones on E_{2}
Monomial Clones on E_{3}

Monomials $x^{s} y^{t}$
Monomials x
Monomials $x{ }^{5} y$
One is weak; Two is strong
Two is strong One is weak

One more property, which may be of interest:

Introduction

Lemma
Let k be an odd prime power and suppose that

$$
k=2 m+1 \quad\left(\Leftrightarrow m=\frac{k-1}{2}\right)
$$

for $m \geq 3$. Then, for every $s \in\{2, \ldots, m-1\}$, we have

$$
x^{s} y^{k-s} \notin\left\langle x^{m} y^{k-m}\right\rangle
$$

on $\operatorname{GF}(k)$.

Proof Note that $k-1=2 m$. We can show below that all of $m^{2},(m+1)^{2}$ and $m(m+1)$ are equivalent to one of $0,1, m$ and $m+1 \bmod k-1$. Here the equivalence (\equiv) is taken for $\bmod k-1$.

$$
\begin{aligned}
& m^{2}= \begin{cases}m(m-1)+m \equiv m & \text { if } m: \text { odd } \\
m \cdot m \equiv 0 & \text { if } m: \text { even }\end{cases} \\
& (m+1)^{2}=m^{2}+2 m+1 \equiv m^{2}+1 \\
& \equiv \begin{cases}m+1 & \text { if } m: \text { odd } \\
1 & \text { if } m: \text { even }\end{cases} \\
& m(m+1) \equiv \begin{cases}0 & \text { if } m: \text { odd } \\
m^{2}+m=m & \text { if } m: \text { even }\end{cases}
\end{aligned}
$$

Hence, among $x^{s} y^{k-s}$ for $s \in\{1, \ldots, m\}$, the terms that can be produced from $x^{m} y^{k-m}$ by composition are only $x y^{k-1}$ and $x^{m} y^{k-m}$.

Introduction
Clone
Introducing a fietd Finite Field
Monomial Clones on E_{3} Monomial Clones on E_{2}
Monomial Clones on E_{3}

Monomials $x^{s} y^{t}$
Monomials x^{5}
Monomials $x^{5} y^{4}$
One is weak; Two is strong
Two is strong One is weak

Introduction
Clone
Introducing a field Finite Field
Monomial Clones on E_{3} Monomial Clones on E_{2}
Monomial Clones on E_{3}

Monomials $x^{s} y^{t}$
Monomials x^{5}
Monomials $x^{5} y^{t}$
One is weak; Two is
strong
Two is strong
One is weak

Introduction

Clone
Introducing a field
Finite Field
Monomial
Clones on E_{3}
Monomial Clones on E_{2}
Monomial Clones on

Thank you

for your attention!

