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Identities of height 1 and height at most 1

Given a signature Σ, a term t over Σ is of height 1 if it contains exactly
one operation symbol from Σ.

E.g.

t(x0, x1, x2, x3) = f (x1, x0, x0, x2)

where f is a basic symbol. A projection is said to have height 0.

An identity is of height 1 (height at most 1, resp.) if both its sides are of
height 1 (height at most 1, resp.).

Example

f (xi1 , . . . , xin) ≈ g(xj1 , . . . , xim), or f (xi1 , . . . , xin) ≈ xj .

Identities of height at most 1 are usually called linear.
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Linear Mal’cev conditions

A linear Mal’cev condition is a Mal’cev condition which only includes
linear identities.

Examples

Mal’cev term, Pixley term, Day terms, Gumm terms, near unanimity, cube
term, Jónsson terms, etc.

Not examples

group terms, lattice terms, semilattice term.
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Retractions and reflections

Definition (Barto, Pinsker)

An algebra A is said to be a reflection of B defined by mappings
h1 : B → A and h2 : A→ B, if for every basic operation f we have

fA(a1, . . . , an) = afB(b(a1), . . . , b(an)).

It is a retraction if in addition h2h1 = 1B

Observation

If A is a retraction of B then A satisfies all the linear identities that B
does.

For a clone B, A is a retraction (reflection, resp.) of B if A is a retraction
(reflection, resp.) of the algebra (B, (f )f ∈B).
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Linear Birkhoff

The class of all retractions (reflections, resp.) of algebras from K is
denoted RK (RretK).

Theorem (Barto, Pinsker, O)

A class of algebras is definable by linear identities (identities of height 1,
resp.) if and only if it is closed under Rret and P (R and P, resp.).



Congruence regular, uniform, and singular varieties

An algebra A is said to be

I congruence regular if every two congruences of A that share
a congruence class are identical;

I congruence uniform if every two classes of a single congruence of A
are of the same size;

I congruence singular if every two congruences α and β, and every
element a ∈ A satisfy

|a/α| · |a/β| = |a/α ∧ β| · |a/α ∨ β|.

A variety is said to be congruence . . . , if all its algebras are.

A variety of groups is congruence regular, uniform and also singular.
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Mal’cev conditions

There are several Mal’cev conditions that characterize congruence
regular varieties (Csákány, Grätzer, Wille).

Congruence uniformity cannot be characterized by a Mal’cev condition
(Taylor), but it is characterized by some identities.

Congruence singularity . . .
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Characterization by linear identities

Theorem

Congruence regularity, congruence singularity, and congruence singularity
is not characterizable by linear identities. (Even for finitely generated
varities.)

Proof.

Goal: Construct V and W both finitely generated such that W satisfies all
linear identities that V does, V has the property, but W does not.

Take A the clone of the group Z2 × Z2. And V = HSP(A).

Define B as a retraction of A. . .
Look there →

And finally, let W = HSP(B).

(Except congruence singularity.)
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Meet of Mal’cev conditions

Mal’cev conditions are naturally ordered by syntactical consequence.

This
is actually a lattice ordering!

Meet of two Mal’cev conditions is the strongest Mal’cev condition that
which is weaker then both of the original ones.
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Meet of Mal’cev and Jónsson terms

There exists ternary terms q, d1, . . . , dn, and a binary term · such that

q(x , y , y) · w ≈ x · w , and q(y , y , x) · w ≈ x · w ,

w · d0(x , y , z) ≈ w · x , and w · dn(x , y , z) ≈ w · x ,
w · di (x , y , x) ≈ w · x for every i ,

w · di (x , x , y) ≈ w · di+1(x , x , y) for odd i ,

w · di (x , y , y) ≈ w · di+1(x , y , y) for even i ,

xy · zw ≈ xw

f (x0x1, y0y1, z0z1) ≈ f (x0, y0, z0) · f (x1, y1, z1) for f ∈ {q, d1, . . . , dn}.
w · q(x , y , z) ≈ w · x
f (x , y , z) · w ≈ x for f ∈ {d1, . . . , dn}.
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Meet of Mal’cev and Jónsson terms (cont.)

Observation

A clone satisfies this Mal’cev condition if and only if it is a product of
a clone with Mal’cev operation and a clone with Jónsson terms.

A product of clones A and B is the clone C with C = A× B, and
C[n] = {f × g : f ∈ A[n], g ∈ B[n]}.



Meet of Mal’cev and Jónsson terms is not linear

Theorem

The meet of Mal’cev and Jónsson terms is not charactarizable by linear
identities.

Proof.

Let A be the clone on {0, 1} generated by the minority operation, and B
be the clone on {0, 1} generated by the majority operation.

And define C as a retraction of A× B. . .
Look there →

C cannot be written non-trivially as a product, and it has neither Mal’cev,
nor Jónsson operations.
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