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The problem

Terminological convention

A closure space with closed singletons whose lattice of
segmentations is distributive will be called distributive.

The problem is simple stated.

Problem

Characterize all distributive spaces.
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The explanation

What does it mean?

A closures space with closed singletons (CS-space) is a set
(the base set) together with a system of subsets (closed sets)
which

1 is closed under all intersections
2 contains all singletons

A segmentation of a given CS-space is a partition of the base
set into the closed sets.
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Important facts

Canonical segmentation

Given a CS-space (A, C), each closed set X induces a segmentation
λ(X ) whose only possible nontrivial class is X . Clearly λ{x} = ∆
for each x ∈ A.

Proposition

The set of all segmentations S(C) of a given CS-space (A, C) on a
set A forms a complete lattice which is a sub-∧-semilattice of the
lattice Part(A) of all partitions on A.
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The motivation

Why do we ask that?

Inner structure on a CS-space

Given a CS-space (A, C), a there is a canonical generalized
ultrametric ω on A with values in S(C) compatible with C in such
a way that closed sets coincide with closed balls w.r.t. ω

Application of distributive lattice valued GUM

Given generalized ultrametric space A with values in a complete
lattice L, then there is multiplicative structure on A. If L is
distributive lattice, then there exists an adjoint operation of a
scalar division which enables an algorithm for finding a
segmentation based upon connection of initial pairs of elements.
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Tree spaces

Example

Let (V ,E ) be a tree and let C be a set of all connected subsets.
Then (V , C) is a CS-space, which is, moreover, distributive.

A simple reason is that segmentations of the tree are in one-to-one
correspondence with the subsets of E . Thus S(C) ∼= P(E ).
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Centralized spaces

The essence of the above property is in the non-presence of cycles
in the graph. The following weaker property is satisfied by all
distributive spaces.

Definition

We say a CS-space (A, C) is centralized if for each x , y , z ∈ A

cl{x , y} ∩ cl{x , y} ∩ cl{y , z} 6= ∅.

An element in the above intersection is called central for the set
{x , y , z}.

One can easily observe that each tree space is centralized.
Moreover we can prove:

Theorem

Each distributive space is centralized.
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Centralized nondistributive space

Example

Let A be a square {a, b, c , d} whose closed proper subsets are
singletons and edges {a, b}, {a, c}, {b, d}, {c , d}. It is a CS-space
and among any three elements there exists one between the other
two. Thus the space is centralized but it is not distributive. The
lattice S(C) contains the sublattice isomorphic to N3:

∇

pppppppppppp

3333333333333333

λ{a, b} ∨ λ{c , d}

λ{a, b}

NNNNNNNNNNNN
λ{a, c}

xxxxxxxxx

∆
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Segmentational cycles

Definition

A (segmentational) cycle S in a CS-space (A, C) is sequence
of pairs (xi , αi )

k
i=0 where xi ∈ A and αi ∈ S(C) for each

i ∈ {1, . . . , k}, (x0, α0) = (xk , αk) and it satisfies
(xi , xi+1) ∈ αi for each i ∈ {1, . . . , k}.

For k = 3 we have a triangle, for k = 4 square, etc.

Two cycles (xi , αi )
k
i=1, (yi , βi )

l
i=1 are compatible, if k = l and

for every i ∈ {1, . . . , k}

αi = βi , (xi , yi ) ∈ αi−1 ∧ αi .

A cycle is linked if xi ∈ cl{xi−1, xi+1} for each i ∈ {1, . . . , k}.



Motivation Centralized spaces Connective spaces Distributivity

Segmentational cycles

Definition

A (segmentational) cycle S in a CS-space (A, C) is sequence
of pairs (xi , αi )

k
i=0 where xi ∈ A and αi ∈ S(C) for each

i ∈ {1, . . . , k}, (x0, α0) = (xk , αk) and it satisfies
(xi , xi+1) ∈ αi for each i ∈ {1, . . . , k}.
For k = 3 we have a triangle, for k = 4 square, etc.

Two cycles (xi , αi )
k
i=1, (yi , βi )

l
i=1 are compatible, if k = l and

for every i ∈ {1, . . . , k}

αi = βi , (xi , yi ) ∈ αi−1 ∧ αi .

A cycle is linked if xi ∈ cl{xi−1, xi+1} for each i ∈ {1, . . . , k}.



Motivation Centralized spaces Connective spaces Distributivity

Segmentational cycles

Definition

A (segmentational) cycle S in a CS-space (A, C) is sequence
of pairs (xi , αi )

k
i=0 where xi ∈ A and αi ∈ S(C) for each

i ∈ {1, . . . , k}, (x0, α0) = (xk , αk) and it satisfies
(xi , xi+1) ∈ αi for each i ∈ {1, . . . , k}.
For k = 3 we have a triangle, for k = 4 square, etc.

Two cycles (xi , αi )
k
i=1, (yi , βi )

l
i=1 are compatible, if k = l and

for every i ∈ {1, . . . , k}

αi = βi , (xi , yi ) ∈ αi−1 ∧ αi .

A cycle is linked if xi ∈ cl{xi−1, xi+1} for each i ∈ {1, . . . , k}.



Motivation Centralized spaces Connective spaces Distributivity

Segmentational cycles

Definition

A (segmentational) cycle S in a CS-space (A, C) is sequence
of pairs (xi , αi )

k
i=0 where xi ∈ A and αi ∈ S(C) for each

i ∈ {1, . . . , k}, (x0, α0) = (xk , αk) and it satisfies
(xi , xi+1) ∈ αi for each i ∈ {1, . . . , k}.
For k = 3 we have a triangle, for k = 4 square, etc.

Two cycles (xi , αi )
k
i=1, (yi , βi )

l
i=1 are compatible, if k = l and

for every i ∈ {1, . . . , k}

αi = βi , (xi , yi ) ∈ αi−1 ∧ αi .

A cycle is linked if xi ∈ cl{xi−1, xi+1} for each i ∈ {1, . . . , k}.



Motivation Centralized spaces Connective spaces Distributivity

Central elements

Lemma

Let u ∈ A be central for the elements of a triangle
(x , γ), (y , β), (z , α). Then we have 3 more cycles:

x

α

����������������

γ

????????????????

y
β

z

 x

α

�����������������

γ

>>>>>>>>>>>>>>>>>

α∧γ

u

α∧β
ppppppppppppp

β∧γ NNNNNNNNNNNNN

y
β

z.
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Compatible linked cycles

Lemma

For each cycle in a finite centralized CS-space there exists a
compatible linked cycle.

Sketch of the proof: Given a cycle (xi , αi )
k
i=0 we extend the sequence for

i ∈ N0 such that xi+k+1 be a central element for the triple

(xi+k , xi+1, xi+2) for each i . It will follow that

cl{xi , xi+1} ⊇ cl{xi+k , xi+k+1}. Due to finiteness we end up with the

same sets which enables to choose central elements such that xi+k = xi
for i larger than some bound. This will produce a cycle which is linked,

due to the centrality of each of its elements.
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Connectivity

A connection on a set is a system of subset (which are called
connected) which satisfies that the system is closed under unions
of systems with nonempty intersection.

Connective space

A CS-space is called connective, if the closed sets form a
connection.

As a direct consequence of connectivity: for each three elements
x , y , z

cl{x , z} ⊆ cl{x , y} ∪ cl{y , z}

The notion of connection was introduced by J. Serra who observed
that the space is connective iff the suprema in S(C) correspond to
those in Part(A).
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Consequences of connectivity

Given α, β ∈ S(C), (x , y) ∈ α ∨ β ⇔ y is an endpoint of a
sequence of elements yi such that, y0 = x , y = ym and
(y2k , y2k+1) ∈ α and (y2k+1, y2k+2) ∈ β, k ∈ {0, . . . ,m}. We may
use a graph interpretation of the space with two kinds of edges
(α, β), then (x , y) ∈ α ∨ β iff there exists a path from x to y
containing only two kinds of edges: α and β; such a path will be
called (α, β)-path.

Lemma

Let (A, C) be an centralized connective CS-space. Then each
element of a linked cycle belongs to the closure of a pair of two
other neighboring elements in the cycle.
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Distributivity

Recall a relative complement to an element b of a lattice L in an
interval [m, n] ⊆ L is an element a ∈ [m, n] such that a ∧ b = m
and a ∨ b = n. It is well known that the distributivity is equivalent
to the uniqueness of the relative complements to every b in every
interval.

Theorem

Every finite connective centralized CS-space is distributive.

Chain of implications

We have obtained:

finite connective centralized ⇒ distributive ⇒ centralized

with no arrow reversible (see bellow).
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Sketch of the proof of the theorem

We assume an existence of two α, γ are two relative complements
of β in the lattice of segmentations on a space (A, C). We show
that each pair (x , y) ∈ α belongs to γ, which then implies, by
symmetry, α = γ. Since α ≤ β ∨ γ, due to the connectivity there
exists a (β, γ)-path from x to y . Then one shows that

If the path has the length 1, then immediately (x , y) ∈ γ.

If the shortest path has the length l > 1, then it can be
shortened using the previous lemma, thus we get a
contradiction.
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Reversed direction

Example

Let A = {a, b, c , d , e} and C contains, beside A and the singletons,
the sets {a, d}, {b, d}, {c , d}, {a, b, d}, {a, c , d}, {b, c, d}. Then
(A, C) is not connective since {a, b, c , d} = {a, b, d} ∪ {a, c, d} is
not closed but it is a union of two intersecting sets. However, the
lattice S(C) is distributive since the Hasse diagram is:

∇

OOOOOOOOOOOOO

ooooooooooooo

λ({a, b, d})

OOOOOOOOOOO
λ({a, c , d})

ooooooooooo

OOOOOOOOOOO
λ({b, c , d})

ooooooooooo

λ({a, d})

OOOOOOOOOOOOO
λ({b, d}) λ({c , d})

ooooooooooooo

∆
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Thank you for your attention
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