Congruence FD-maximal algebras

Miroslav Ploščica
Slovak Academy of Sciences, Košice

September 4, 2016

Congruence lattices

Problem. For a given class \mathcal{K} of algebras describe $\operatorname{Con} \mathcal{K}=$ all lattices isomorphic to Con A for some $A \in \mathcal{K}$.

In this lecture we concentrate on

Problem.Let \mathcal{K} be a finitely generated $C D$ variety. Describe finite members of $\operatorname{Con} \mathcal{K}$.

Necessary condition

In the sequel: $\mathcal{V} \ldots$ a finitely generated CD variety; $\mathrm{SI}(\mathcal{V}) \ldots$ the family of subdirectly irreducible members; $\mathrm{M}(L) \ldots$ completely \wedge-irreducible elements of a lattice L.

Lemma

Let $L \in \operatorname{Con} \mathcal{V}$. Then for every $x \in \mathrm{M}(L)$, the lattice $\uparrow x$ is isomorphic to $\operatorname{Con} T$ for some $T \in \mathrm{SI}(\mathcal{V})$.

Congruence FD-maximal varieties

On the finite level (for finite L), the necessary condition is sometimes also sufficient. In such a case we say that \mathcal{V} is congruence $F D$-maximal. Formally, \mathcal{V} is congruence FD-maximal, if for every finite distributive lattice L the following two conditions are equivalent:
(i) $L \in \operatorname{Con} \mathcal{V}$;
(ii) for every $x \in \mathrm{M}(L)$, the lattice $\uparrow x$ is isomorphic to Con T for some $T \in \operatorname{SI}(\mathcal{V})$.
In other words, \mathcal{V} is congruence FD-maximal iff the class of all finite members of $\operatorname{Con} \mathcal{V}$ is as large as possible by the necessary condition.

Congruence FD-maximal algebras

Let A be a finite subdirectly irreducible algebra generating a CD variety. We say that A is congruence FD-maximal, if for every finite distributive lattice L the following two conditions are equivalent:
(i) $L \in \operatorname{Con~}_{s} \mathrm{H}(A)$;
(ii) for every $x \in \mathrm{M}(L)$, the lattice $\uparrow x$ is isomorphic to Con T for some $T \in \mathrm{H}(A)$.
In other words, A is congruence FD-maximal iff the class of all finite members of $\operatorname{Con} \mathrm{P}_{s} \mathrm{H}(A)$ is as large as possible by the necessary condition.

Connection

Theorem

If \mathcal{V} is congruence FD-maximal, then there is a family $\mathcal{M} \subseteq \operatorname{SI}(\mathcal{V})$ such that
(i) every $B \in \mathcal{M}$ is congruence FD-maximal;
(ii) for every $A \in \operatorname{SI}(\mathcal{V})$ there is $B \in \mathcal{M}$ with $\operatorname{Con} A \cong \operatorname{Con} B$;
(iii) if $A, B \in \mathcal{M}, \alpha \in \operatorname{Con} A, \beta \in \operatorname{Con} B$ with $\uparrow \alpha \cong \uparrow \beta$, then $A / \alpha \cong B / \beta$.

Proof: Ramsey type argument
Conjecture: The converse holds

Easy case

Theorem

Every finite algebra generating a CD variety, whose congruence lattice is a chain, is congruence FD-maximal.

The simplest of the difficult cases

Let A be a finite algebra generating CD variety such that $\operatorname{Con} A$ is

Compatible families

Let E be a subset of $B \times B$ for some set B. Let X be a set and let \mathcal{F} be a set of functions $X \rightarrow B$. We say that \mathcal{F} is
E-compatible if $\{(f(x), g(x)) \mid x \in X\}=E$ or $\{(g(x), f(x)) \mid x \in X\}=E$ for every $f, g \in \mathcal{F}, f \neq g$.

Lemma

Suppose that $E \subseteq B \times B$ contains a pair (a, b) with $a \neq b$. Then the following condition are equivalent.
(i) There exist arbitrarily large finite E-compatible sets of functions.
(ii) For every $(a, b) \in E$ there are $x, y, z \in B$ such that

$$
\begin{aligned}
& (x, x),(y, y),(z, z),(x, y) \\
& (x, z),(y, z),(x, a),(x, b),(a, y),(y, b),(a, z),(b, z) \in E .
\end{aligned}
$$

Characterization theorem

Let A be as above.

Theorem

A is congruence $F D$-maximal iff
(i) A / α and A / β are isomorphic to the same algebra B;
(ii) there are homomorphisms $h_{0}, h_{1}: A \rightarrow B$ with $\operatorname{Ker}\left(h_{0}\right)=\alpha$, $\operatorname{Ker}\left(h_{1}\right)=\beta$ such that the relation $E=\left\{\left(h_{0}(x), h_{1}(x)\right) \mid x \in A\right\} \subseteq B \times B$ admits arbitrarily large E-compatible sets of functions.

Positive example

For $A=N_{5}$ we have $B=\{0,1\}, E=\{(0,0),(0,1),(1,0),(1,1)\}$ so almost every family of functions is E-compatible and A is congruence FD-maximal.

N_{5}

Negative example 1

The lattice N_{5} with the distinguished element (nullary operation) b is not congruence FD-maximal, because the quotients N_{5} / α and N_{5} / β are not isomorphic.

Negative example2

Consider the following lattice A with two additional unary operations.

$$
\begin{aligned}
& f(00)=00, f(0 a)=0 b, f(0 b)=f(01)=01 \\
& f(a b)=f(a 1)=b 1, f(b 1)=f(11)=11 \\
& g(11)=11, g(b 1)=a 1, g(a 1)=g(01)=01 \\
& g(a b)=g(0 b)=0 a, g(0 a)=g(00)=00
\end{aligned}
$$

Negative example 2

We have $B=\{0,1, a, b\}$,
$E=\{(0,0),(0, a),(0, b),(a, b),(0,1),(a, 1),(b, 1),(1,1)\}$ (the labels on the elements of A), and the pair (a, b) violates the condition. Thus, A is not congruence FD-maximal.

Generalization

Let $\operatorname{Con} A$ be the n-dimensional cube with a new zero added. Let $\alpha_{1}, \ldots, \alpha_{n}$ be the coatoms of $\operatorname{Con} A$
The concept of a compatible family has to be generalized.
Let E be a subset of B^{n} for some set B. For a permutation π on $\{1, \ldots, n\}$ denote

$$
E^{\pi}=\left\{\left(a_{\pi(1)}, \ldots, a_{\pi(n)}\right) \mid\left(a_{1}, \ldots, a_{n}\right) \in E\right\}
$$

Let X be a set and let \mathcal{F} be a set of functions $X \rightarrow B$. We say that \mathcal{F} is E-compatible if for every mutually distinct $f_{1}, \ldots, f_{n} \in \mathcal{F}$ there exists π such that $\left\{\left(f_{1}(x), \ldots, f_{n}(x)\right) \mid x \in X\right\}=E^{\pi}$.

Compatible families generalized

Lemma

Suppose that $E \subseteq B^{n}$ contains a non-diagonal n-tuple. Then the following condition are equivalent.
(i) There exist arbitrarily large finite E-compatible sets of functions.
(ii) There exist a permutation π such that for every $\left(a_{2}, a_{4}, \ldots, a_{2 n}\right) \in E^{\pi}$ there are $a_{1}, a_{3}, \ldots, a_{2 n+1} \in B$ such that $\left(a_{i_{1}}, \ldots, a_{i_{n}}\right) \in E^{\pi}$ whenever $i_{1} \leq \cdots \leq i_{n}$ and every every even k appears at most once among i_{1}, \ldots, i_{n}.

Characterization theorem

Let A be as above.

Theorem

A is congruence FD-maximal iff
(i) all quotients A / α_{i} are isomorphic to the same algebra B;
(ii) there are homomorphisms $h_{i}: A \rightarrow B$ with $\operatorname{Ker}\left(h_{i}\right)=\alpha_{i}$, ($i=1, \ldots, n$) such that the relation $E=\left\{\left(h_{1}(x), \ldots, h_{n}(x)\right) \mid x \in A\right\} \subseteq B^{n}$ admits arbitrarily large E-compatible sets of functions.

General case

Again, quotients with isomorphic congruence lattices must themselves be isomorphic. Actually, we can prove more.

Theorem

Let A be congruence FD-maximal, $\alpha, \beta \in \operatorname{Con} A$ with $\uparrow \alpha \cong \uparrow \beta$. Then there is an isomorphism $\varphi: \uparrow \alpha \rightarrow \uparrow \beta$ and isomorphisms $f_{\gamma}: A / \gamma \rightarrow A / \varphi(\gamma)$ for all $\gamma \in \uparrow \alpha$ that commute with the natural projections, that is

$$
\begin{array}{cc}
A / \gamma \xrightarrow{f_{\gamma}} A / \varphi(\gamma) \\
\pi_{\gamma \delta} \downarrow & \\
& \downarrow^{\pi_{\varphi(\gamma) \varphi(\delta)}} \\
A / \delta \xrightarrow{f_{\delta}} A / \varphi(\delta)
\end{array}
$$

whenever $\gamma \leq \delta$.

What remains to do?

Problem. Characterize heterogeneous relations that admit arbitrarily large systems of compatible functions.

