Congruence FD-maximal algebras

Miroslav Ploščica

Slovak Academy of Sciences, Košice

September 4, 2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > = □

Problem. For a given class \mathcal{K} of algebras describe Con \mathcal{K} =all lattices isomorphic to Con A for some $A \in \mathcal{K}$.

In this lecture we concentrate on

Problem.Let \mathcal{K} be a finitely generated CD variety. Describe finite members of Con \mathcal{K} .

In the sequel: \mathcal{V} ... a finitely generated CD variety; SI(\mathcal{V})... the family of subdirectly irreducible members; M(L)... completely \wedge -irreducible elements of a lattice L.

Lemma

Let $L \in \text{Con } \mathcal{V}$. Then for every $x \in M(L)$, the lattice $\uparrow x$ is isomorphic to Con T for some $T \in \text{SI}(\mathcal{V})$.

・ロト ・ 同ト ・ ヨト ・ ヨト - -

On the finite level (for finite L), the necessary condition is sometimes also sufficient. In such a case we say that \mathcal{V} is *congruence FD-maximal*. Formally, \mathcal{V} is congruence FD-maximal, if for every *finite distributive* lattice L the following two conditions are equivalent:

(i) $L \in \operatorname{Con} \mathcal{V};$

(ii) for every $x \in M(L)$, the lattice $\uparrow x$ is isomorphic to $\operatorname{Con} T$ for some $T \in \operatorname{SI}(\mathcal{V})$.

In other words, ${\cal V}$ is congruence FD-maximal iff the class of all finite members of ${\rm Con}\,{\cal V}$ is as large as possible by the necessary condition.

• □ ▶ • □ ▶ • □ ▶ • □ ▶ • □ ▶

Let A be a finite subdirectly irreducible algebra generating a CD variety. We say that A is *congruence FD-maximal*, if for every finite distributive lattice L the following two conditions are equivalent:

(i)
$$L \in \operatorname{Con} \mathbf{P}_s \mathbf{H}(A)$$
;

(ii) for every $x \in M(L)$, the lattice $\uparrow x$ is isomorphic to $\operatorname{Con} T$ for some $T \in H(A)$.

In other words, A is congruence FD-maximal iff the class of all finite members of ${\rm Con}\,{\rm P}_s\,{\rm H}(A)$ is as large as possible by the necessary condition.

Theorem

If ${\cal V}$ is congruence FD-maximal, then there is a family ${\cal M}\subseteq {\rm SI}({\cal V})$ such that

(i) every
$$B \in \mathcal{M}$$
 is congruence FD-maximal;

(ii) for every $A \in SI(\mathcal{V})$ there is $B \in \mathcal{M}$ with $Con A \cong Con B$;

(iii) if $A, B \in \mathcal{M}$, $\alpha \in \operatorname{Con} A$, $\beta \in \operatorname{Con} B$ with $\uparrow \alpha \cong \uparrow \beta$, then $A/\alpha \cong B/\beta$.

Proof: Ramsey type argument Conjecture: The converse holds

Theorem

Every finite algebra generating a CD variety, whose congruence lattice is a chain, is congruence FD-maximal.

Miroslav Ploščica Congruence FD-maximal algebras

イロト イポト イヨト イヨト

э

The simplest of the difficult cases

Let A be a finite algebra generating CD variety such that $\operatorname{Con} A$ is

▶ < ∃ ▶</p>

Let E be a subset of $B \times B$ for some set B. Let X be a set and let \mathcal{F} be a set of functions $X \to B$. We say that \mathcal{F} is E-compatible if $\{(f(x), g(x)) \mid x \in X\} = E$ or $\{(g(x), f(x)) \mid x \in X\} = E$ for every $f, g \in \mathcal{F}, f \neq g$.

Lemma

Suppose that $E \subseteq B \times B$ contains a pair (a, b) with $a \neq b$. Then the following condition are equivalent.

(i) There exist arbitrarily large finite *E*-compatible sets of functions.

(ii) For every $(a,b) \in E$ there are $x, y, z \in B$ such that $(x,x), (y,y), (z,z), (x,y), (x,z), (y,z), (x,a), (x,b), (a,y), (y,b), (a,z), (b,z) \in E.$

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let A be as above.

Theorem

A is congruence FD-maximal iff

(i) A/α and A/β are isomorphic to the same algebra B;

(ii) there are homomorphisms $h_0, h_1 : A \to B$ with $\operatorname{Ker}(h_0) = \alpha$, $\operatorname{Ker}(h_1) = \beta$ such that the relation $E = \{(h_0(x), h_1(x)) \mid x \in A\} \subseteq B \times B$ admits arbitrarily large *E*-compatible sets of functions.

・ロト ・ 一日 ・ ・ 日 ・

Positive example

For $A = N_5$ we have $B = \{0, 1\}$, $E = \{(0, 0), (0, 1), (1, 0), (1, 1)\}$ so almost every family of functions is *E*-compatible and *A* is congruence FD-maximal.

・ 同 ト ・ ヨ ト ・ ヨ ト

The lattice N_5 with the distinguished element (nullary operation) b is not congruence FD-maximal, because the quotients N_5/α and N_5/β are not isomorphic.

イロト イポト イヨト イヨト

э

Negative example2

Consider the following lattice A with two additional unary operations.

< ∃ >

< //>

We have $B = \{0, 1, a, b\}$, $E = \{(0, 0), (0, a), (0, b), (a, b), (0, 1), (a, 1), (b, 1), (1, 1)\}$ (the labels on the elements of A), and the pair (a, b) violates the condition. Thus, A is not congruence FD-maximal.

Let $\operatorname{Con} A$ be the *n*-dimensional cube with a new zero added. Let $\alpha_1, \ldots, \alpha_n$ be the coatoms of $\operatorname{Con} A$ The concept of a compatible family has to be generalized. Let E be a subset of B^n for some set B. For a permutation π on $\{1, \ldots, n\}$ denote

$$E^{\pi} = \{ (a_{\pi(1)}, \dots, a_{\pi(n)}) \mid (a_1, \dots, a_n) \in E \}.$$

Let X be a set and let \mathcal{F} be a set of functions $X \to B$. We say that \mathcal{F} is *E-compatible* if for every mutually distinct $f_1, \ldots, f_n \in \mathcal{F}$ there exists π such that $\{(f_1(x), \ldots, f_n(x)) \mid x \in X\} = E^{\pi}$.

Lemma

Suppose that $E \subseteq B^n$ contains a non-diagonal *n*-tuple. Then the following condition are equivalent.

- (i) There exist arbitrarily large finite *E*-compatible sets of functions.
- (ii) There exist a permutation π such that for every $(a_2, a_4, \ldots, a_{2n}) \in E^{\pi}$ there are $a_1, a_3, \ldots, a_{2n+1} \in B$ such that $(a_{i_1}, \ldots, a_{i_n}) \in E^{\pi}$ whenever $i_1 \leq \cdots \leq i_n$ and every every even k appears at most once among i_1, \ldots, i_n .

Let A be as above.

Theorem

A is congruence FD-maximal iff

(i) all quotients A/α_i are isomorphic to the same algebra B;

(ii) there are homomorphisms $h_i : A \to B$ with $\operatorname{Ker}(h_i) = \alpha_i$, $(i = 1, \dots, n)$ such that the relation $E = \{(h_1(x), \dots, h_n(x)) \mid x \in A\} \subseteq B^n$ admits arbitrarily large E-compatible sets of functions.

・ロト ・ 同ト ・ ヨト ・ ヨト - -

Again, quotients with isomorphic congruence lattices must themselves be isomorphic. Actually, we can prove more.

Theorem

Let A be congruence FD-maximal, $\alpha, \beta \in \text{Con } A$ with $\uparrow \alpha \cong \uparrow \beta$. Then there is an isomorphism $\varphi : \uparrow \alpha \to \uparrow \beta$ and isomorphisms $f_{\gamma} : A/\gamma \to A/\varphi(\gamma)$ for all $\gamma \in \uparrow \alpha$ that commute with the natural projections, that is

$$\begin{array}{ccc} A/\gamma & \xrightarrow{f_{\gamma}} & A/\varphi(\gamma) \\ \pi_{\gamma\delta} & & & \downarrow^{\pi_{\varphi(\gamma)\varphi(\delta)}} \\ A/\delta & \xrightarrow{f_{\delta}} & A/\varphi(\delta) \end{array}$$

whenever $\gamma \leq \delta$.

Problem. Characterize heterogeneous relations that admit arbitrarily large systems of compatible functions.

・ 同 ト ・ ヨ ト ・ ヨ ト