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Ondřej Klíma and Libor Polák On varieties of automata 2/40



Algebraic Theory of Regular Languages
Varieties of Automata

Automata Enriched with an Algebraic Structure

Introduction – Eilenberg Correspondence
A Relationship between DFAs and Monoids
Generalizations of the Eilenberg Correspondence

Examples

Goal of the study: effective characterizations of certain
natural classes of regular languages.
Typical result: a language belongs to a given class iff its
syntactic monoid belongs to a certain class of monoids.
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Examples

Goal of the study: effective characterizations of certain
natural classes of regular languages.
Typical result: a language belongs to a given class iff its
syntactic monoid belongs to a certain class of monoids.

Theorem (Schützenberger – 1966)

A regular language L is star-free if and only if its syntactic

monoid is aperiodic.

Theorem (Simon — 1972)

A regular language L is piecewise testable if and only if the

syntactic monoid of L is J -trivial.

General framework – Eilenberg correspondence.
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Varieties of Languages

Definition

A variety of languages V associates to every finite alphabet A a
class V(A) of regular languages over A in such a way that

V(A) is closed under finite unions, finite intersections and
complements (in particular ∅,A∗ ∈ V(A)),

V(A) is closed under quotients, i.e.
L ∈ V(A), u, v ∈ A∗ implies
u−1Lv−1 = {w ∈ A∗ | uwv ∈ L } ∈ V(A),

V is closed under preimages in morphisms, i.e.
f : B∗ → A∗, L ∈ V(A) implies
f−1(L) = { v ∈ B∗ | f (v) ∈ L } ∈ V(B).
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A Formal Definition of a DFA

Definition

A deterministic finite automaton over the alphabet A is a
five-tuple A = (Q,A, ·, i ,F ), where

Q is a nonempty set of states,

· : Q × A → Q is a complete transition function,
which can be extended to a mapping
· : Q × A∗ → Q by q · λ = q, q · (ua) = (q · u) · a,

i ∈ Q is the initial state,

F ⊆ Q is the set of final states.

The automaton A accepts a word u ∈ A∗ iff i · u ∈ F . The

automaton A recognizes the language
LA = {u ∈ A∗ | i · u ∈ F}.
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Motivations for a Notion of a Variety of Automata

Why monoids instead of automata?
An equational description of pseudovarieties of monoids by
pseudoidentities.
Other algebraic constructions, e.g. products (semidirect,
wreath, Mal’cev).
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Why monoids instead of automata?
An equational description of pseudovarieties of monoids by
pseudoidentities.
Other algebraic constructions, e.g. products (semidirect,
wreath, Mal’cev).

Why are we still interested in automata characterizations?
Usually, a regular language is given by an automaton. And
computation of the syntactic monoid need not to be
effective (can be exponentially larger).
Sometimes a “graph condition” on automata can be easier
to test than an equational condition on monoids.
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Motivations for a Notion of a Variety of Automata

Why monoids instead of automata?
An equational description of pseudovarieties of monoids by
pseudoidentities.
Other algebraic constructions, e.g. products (semidirect,
wreath, Mal’cev).

Why are we still interested in automata characterizations?
Usually, a regular language is given by an automaton. And
computation of the syntactic monoid need not to be
effective (can be exponentially larger).
Sometimes a “graph condition” on automata can be easier
to test than an equational condition on monoids.

So, basically there are three worlds: classes of languages,
classes of (enriched) semiautomata (no initial and no final
states) and those of appropriate algebraic structures.
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Generalizations of the Eilenberg Correspondence

Since not all natural classes of regular languages are varieties,
one of the recent directions of the research in algebraic theory
of regular languages is devoted to generalizations of the
Eilenberg correspondence.
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Generalizations of the Eilenberg Correspondence

Since not all natural classes of regular languages are varieties,
one of the recent directions of the research in algebraic theory
of regular languages is devoted to generalizations of the
Eilenberg correspondence.

Pin (1995): Positive varieties of regular languages —
closure under complementation is not required.
Algebraic counterparts are pseudovarieties of finite
ordered monoids.
(Syntactic monoid is implicitly ordered.)
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Generalizations of the Eilenberg Correspondence

Since not all natural classes of regular languages are varieties,
one of the recent directions of the research in algebraic theory
of regular languages is devoted to generalizations of the
Eilenberg correspondence.

Pin (1995): Positive varieties of regular languages —
closure under complementation is not required.
Algebraic counterparts are pseudovarieties of finite
ordered monoids.
(Syntactic monoid is implicitly ordered.)
Polák (1999): Conjunctive (and disjunctive) varieties.
Straubing (2002): C-varieties of languages.
Ésik, Larsen (2003): literal varieties of languages.
Gehrke, Grigorieff, Pin (2008): Lattices of regular
languages.
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The Construction of a Minimal DFA by Brzozowski

For a language L ⊆ A∗ and u ∈ A∗, we define a left
quotient u−1L = {w ∈ A∗ | uw ∈ L }.

Definition

The canonical deterministic automaton of L is
DL = (DL,A, ·,L,F ), where

DL = {u−1L | u ∈ A∗ },

q · a = a−1q, for each q ∈ DL, a ∈ A,

q ∈ F iff λ ∈ q.

Each state q = u−1L is formed by all words transforming
the state q into a final state.
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An Example of a Canonical Automaton

L

K

∅

b∗

a

b

L = a+b+

K = a−1L = a∗b+

b−1K = b∗
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Preimages in Morphisms, Varieties of Automata

Let f : B∗ → A∗ be a morphism, We say that (P,B, ◦) is an
f -subautomaton of (Q,A, ·) if P ⊆ Q and q ◦ b = q · f (b) for
every q ∈ P, b ∈ B.

Definition

A variety of semiautomata V associates to every finite alphabet
A a class V(A) of semiautomata (no initial nor final states) over
alphabet A in such a way that

V(A) 6= ∅ is closed under disjoint unions, finite direct
products and morphic images,

V is closed under f -subautomata.
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An Eilenberg Type Correspondence

For each variety of automata V we denote by α(V) the
variety of regular languages given by

(α(V))(A) = {L ⊆ A∗ | ∃A = (Q,A, ·, i ,F ) :

L = LA ∧ (Q,A, ·) ∈ V(A)} .

For each variety of regular languages L we denote by β(L)
the variety of automata generated by all DFAs DL, where
L ∈ L(A) for some alphabet A.
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varieties
of automata

varieties
of languages

α

β

Theorem (Ésik and Ito, Chaubard, Pin and Straubing)

The mappings α and β are mutually inverse isomorphisms

between the lattice of all varieties of automata and the lattice of

all varieties of regular languages.

A version for C-varieties is obvious: we consider
f -subautomata (etc.) just for f ∈ C.

Ésik and Ito were working with literal varieties (morphisms
map letters to letters, i.e f (B) ⊆ A) and used disjoint union.

Chaubard, Pin and Straubing called the automata
C-actions and used trivial automata.
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An Examples – Acyclic Automata

One of the conditions in Simon’s characterization of
piecewise testable languages is that a minimal DFA is
acyclic.
A content c(u) of a word u ∈ A∗ is the
set of all letters occurring in u.
We say that (Q,A, ·) is a acyclic if for each u ∈ A∗ and
q ∈ Q we have

q · u = q =⇒ (∀a ∈ c(u) : q · a = q) .

The class of all acyclic automata is a variety.
The corresponding variety of languages (well-known):
(disjoint) unions of the languages of the form

A∗
0a1A∗

1a2A∗
2 . . .A

∗
n−1anA∗

n, where ai 6∈ Ai−1 ⊆ A .
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An Example – Piecewise Testable Languages

In DLT’13 we gave an alternative condition for automata
recognizing piecewise testable languages.
We call an acyclic automaton (Q,A, ·) locally confluent, if
for each state q ∈ Q and every pair of letters a,b ∈ A,
there is a word w ∈ {a,b}∗ such that (q · a) ·w = (q · b) ·w .
A stronger condition: an acyclic automaton (Q,A, ·) is
confluent, if for each state q ∈ Q and every pair of words
u, v ,∈ {a,b}∗, there is a word w ∈ {a,b}∗ such that
(q · u) · w = (q · v) · w .
Each acyclic automaton is confluent iff it is locally
confluent.
The class of all acyclic confluent automata is a variety
which corresponds to the variety of piecewise testable
languages.
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An Example of a Piecewise Testable Language

L

K

∅

b∗

a

b

L = a+b+

K = a−1L = a∗b+

b−1K = b∗
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An Example of a Piecewise Testable Language

L

K

∅

b∗

a

b

L = a+b+

K = a−1L = a∗b+

b−1K = b∗

L = A∗aA∗bA∗ ∩ (A∗bA∗aA∗)c
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A Natural Ordering of the Canonical Automaton

For a language L ⊆ A∗, we have defined a the canonical
deterministic automaton: DL = (DL,A, ·,L,F ), where

DL = { u−1L | u ∈ A∗ },
q · a = a−1q, for each q ∈ DL, a ∈ A,
q ∈ F iff λ ∈ q.

Therefore states are ordered by inclusion, which means
that each minimal automaton is implicitly equipped with a
partial order.

The action by each letter a is an isotone mapping: for all
states p,q such that p ⊆ q we have
p · a = a−1p ⊆ a−1q = q · a.

The final states form an upward closed subset w.r.t. ⊆.
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An Example of an Ordered Automaton

L

K

∅

b∗

a

b

L = a+b+

K = a−1L = a∗b+

L ⊆ K

Ondřej Klíma and Libor Polák On varieties of automata 20/40



Algebraic Theory of Regular Languages
Varieties of Automata

Automata Enriched with an Algebraic Structure

Ordered Automata
Meet Automata
Lattice Automata

An Example of an Ordered Automaton

L

K

∅

b∗

L = a+b+

K = a−1L = a∗b+

L ⊆ K
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An Ordered Automaton

Definition
An ordered automaton over the alphabet A is a six-tuple
A = (Q,A, ·,≤, i ,F ), where

A = (Q,A, ·, i ,F ) is a usual DFA;

≤ is a partial order;

an action by every letter is an isotone mapping from the
partial ordered set (Q,≤) to itself;

F is an upward closed set, i.e. p ≤ q,p ∈ F =⇒ q ∈ F .
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Algebraic Constructions on Ordered Automata

Definition

A variety of ordered semiautomata V associates to every finite
alphabet A a class V(A) of ordered semiautomata over
alphabet A in such a way that

V(A) 6= ∅ is closed under disjoint union, finite direct
products and morphic images,

V is closed under f -subautomata.
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An Eilenberg Type Correspondence

Theorem (Pin)

There are mutually inverse isomorphisms between the lattice of

all varieties of ordered automata and the lattice of all positive

varieties of regular languages.
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The Level 1/2

Piecewise testable languages are Boolean combinations of
languages of the form

A∗a1A∗a2A∗ . . .A∗aℓA
∗, where a1, . . . ,aℓ ∈ A, ℓ ≥ 0 .

Piecewise testable languages form level 1 in
Straubing-Thérien hierarchy.

Level 1/2 is formed just by finite unions of intersections of
languages above.

The corresponding variety of ordered automata is the class
of all ordered automata where actions by letters are
increasing mappings. I.e. ordered automata satisfying:

∀q ∈ Q,a ∈ A : q · a ≥ q .
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An Example of an Ordered Automaton outside 1/2

L

K

∅

b∗

a

b

L = a+b+

K = a−1L = a∗b+

L 6⊆ L · b = ∅
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III.2 Meet Automata
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Intersections of Left Quotients

For a language L ⊆ A∗, we extend the canonical
semiautomaton (DL,A, ·), where states are subsets of A∗.

We can consider intersections of states:
UL = {

⋂
j∈I Kj | I finite set ,Kj ∈ DL}. If I = ∅ then we put⋂

j∈I Kj = A∗.

The finite set UL is equipped with the operation intersection
∩ and we can define (

⋂
j∈I Kj) · a =

⋂
j∈I(Kj · a).

We have the semiautomaton (UL,A, ·) with semilattice
operation ∩. Moreover, A∗ is the largest element in the
semilattice (UL,∩) and it is an absorbing state in (UL,A, ·).

Naturally, F = {K | λ ∈ K} is a main filter.
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An Example of a Meet Automaton

L

K

b+

∅

A∗

b∗

a

b

L = a+b+

K = a−1L = a∗b+

K ∩ b∗ = b+

A∗ =
⋂

∅
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Meet Automata

Definition

A structure (Q,A, ·,∧,⊤) is a meet semiautomaton if

(Q,A, ·) is a DFA,

(Q,∧) is a semilattice with the largest element ⊤,

actions by letters are endomorphisms of the semilattice
(Q,∧), i.e. ∀p,q ∈ Q,a ∈ A : (p ∧ q) · a = p · a ∧ q · a

⊤ is an absorbing state.

This meet semiautomaton recognizes a language L if there are
i , f ∈ Q such that L = {u ∈ A∗ | i · u ∧ f = f}.
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Varieties of Meet Automata

Definition

A variety of meet semiautomata V associates to every finite
alphabet A a class V(A) of meet semiautomata over alphabet A

in such a way that

V(A) 6= ∅ is closed under finite direct products and morphic
images,

V is closed under f -subautomata.
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An Eilenberg Type Correspondence

Theorem (Klíma, Polák)

There are mutually inverse isomorphisms between the lattice of

all varieties of meet semiautomata and the lattice of all

conjunctive varieties of regular languages.
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Varieties of Meet Automata – An Example

Example

For each alphabet A, a meet automata (Q,A, ·,∧,⊤) belongs to
S(A) if ∀q ∈ Q,a ∈ A : q · a = q · a ∧ q and

∀q ∈ Q,a,b ∈ A : q · ab = q · a ∧ q · b . (∗)

Then S is a variety of meet automata and the corresponding
conjunctive variety of languages S is given by
S(A) = {B∗ | B ⊆ A} ∪ {∅}.
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III.3 Lattice automata
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The Canonical Lattice Automaton of a Language

For a language L ⊆ A∗ we extend the canonical meet
semiautomaton (UL,A, ·,∧,A

∗) by unions of states:
WL = {

⋃
j∈I Mj | I finite set ,Mj ∈ UL}.

If I = ∅ then we put
⋃

j∈I Mj = ∅.
The finite set WL is equipped with the operations
intersection ∩ and union ∪ (due to distributive laws).
We can define (

⋃
j∈I Mj) · a =

⋃
j∈I(Mj · a).

We have the semiautomaton (WL,A, ·) and a distributive
lattice (WL,∩,∪). Moreover, A∗ is the largest element, ∅ is
the smallest element – both are absorbing states in
(WL,A, ·).
Naturally F = {M | λ ∈ M} is closed w.r.t. ∩, upward
closed, and M1 ∪ M2 ∈ F implies M1 ∈ F or M2 ∈ F .
I.e. F is an ultrafilter. In other words the intersection of all
elements in F (the minimum in F ) is join-irreducible.
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An Example of a Canonical Lattice Automaton

L

K

b+

∅

Kλ

A∗

b∗

a

b

L = a+b+

K = a−1L = a∗b+ = L ∪ b+

Kλ = K ∪ b∗ = K + λ
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A Lattice Automata – a Formal Definition

Definition (new)

A structure (i ,P,Q,A, ·,∧,∨,⊥,⊤) is a lattice semiautomaton if

i ∈ P ⊆ Q,

(Q,A, ·) is a DFA,

(Q,∧,∨) is a distributive lattice with the minimum element
⊥ and the largest element ⊤,

actions by letters are endomorphisms of the lattice
(Q,∧,∨),

⊤ and ⊥ are absorbing states,

P is the set of all states reachable from i ,

the lattice Q is generated by the set P.
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Languages Recognized by a Lattice Semiautomaton

A DL-semiautomaton (i ,P,Q,A, ·,∧,∨,⊥,⊤) recognizes a
language L if there are j ∈ P, f ∈ Q such that f is a
join-irreducible and L = {u ∈ A∗ | j · u ≥ f}.
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An Eilenberg Type Correspondence

Definition (new)

Let C be a “Straubing” class of morphisms. A weak C-variety of
languages V associates to every finite alphabet A a class V(A)
of regular languages over A in such a way that

V(A) is closed under quotients,

V is closed under preimages in morphisms from C.

Theorem (new)

There are mutually inverse isomorphisms between the lattice of

all C-varieties of lattice semiautomata and the lattice of all weak

C-varieties of regular languages.
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An Eilenberg Type Correspondence – An Example

Example

Let V be a class of languages such that
V(A) = {A∗aA∗ | a ∈ A} ∪ {A∗}.

V(A) is not closed under intersections nor unions, i.e. V is
not a conjunctive (nor disjunctive) variety of languages.

Let f : B∗ → A∗, a ∈ A, L = A∗aA∗, then f−1(L) = B∗DB∗

where D = {d ∈ B | f (d) contains a}.
Therefore we should consider only f ’s such that

∀b, c ∈ B : b 6= c =⇒ c(f (b)) ∩ c(f (c)) = ∅ .

V is a weak C-variety for such morphisms.
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An Example

One can show that the corresponding variety of
DL-semiautomata is given by

∀q ∈ Q,a,b ∈ A ∪ {λ} : q · ab = q · a ∨ q · b . (∗)

and

∀q ∈ Q,a,b ∈ A : a 6= b =⇒ q · a ∧ q · b = q . (∗∗)
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