On varieties of automata

Ondřej Klíma and Libor Polák

Department of Mathematics and Statistics Masaryk University, Brno Czech Republic

SSAOS 2016

3

< ロ > < 同 > < 回 > < 回 > < □ > <

Introduction – Eilenberg Correspondence A Relationship between DFAs and Monoids Generalizations of the Eilenberg Correspondence

I. Algebraic Theory of Regular Languages

Ondřej Klíma and Libor Polák On varieties of automata

2/40

э

< □ > < 同 > < 回 > < 回 > < 回 >

Introduction – Eilenberg Correspondence A Relationship between DFAs and Monoids Generalizations of the Eilenberg Correspondence

< 17 ▶

Examples

- Goal of the study: effective characterizations of certain natural classes of regular languages.
- Typical result: a language belongs to a given class iff its syntactic monoid belongs to a certain class of monoids.

Introduction – Eilenberg Correspondence A Relationship between DFAs and Monoids Generalizations of the Eilenberg Correspondence

Examples

- Goal of the study: effective characterizations of certain natural classes of regular languages.
- Typical result: a language belongs to a given class iff its syntactic monoid belongs to a certain class of monoids.

Theorem (Schützenberger – 1966)

A regular language L is star-free if and only if its syntactic monoid is aperiodic.

Theorem (Simon — 1972)

A regular language L is piecewise testable if and only if the syntactic monoid of L is \mathcal{J} -trivial.

• General framework – Eilenberg correspondence.

Introduction – Eilenberg Correspondence A Relationship between DFAs and Monoids Generalizations of the Eilenberg Correspondence

Varieties of Languages

Definition

A variety of languages \mathcal{V} associates to every finite alphabet A a class $\mathcal{V}(A)$ of regular languages over A in such a way that

- 𝒱(𝔥) is closed under finite unions, finite intersections and complements (in particular ∅, 𝑍* ∈ 𝒱(𝑍)),
- $\mathcal{V}(A)$ is closed under quotients, i.e. $L \in \mathcal{V}(A), \ u, v \in A^*$ implies $u^{-1}Lv^{-1} = \{ w \in A^* \mid uwv \in L \} \in \mathcal{V}(A),$
- V is closed under preimages in morphisms, i.e.
 f: B^{*} → A^{*}, L ∈ V(A) implies

$$f^{-1}(L) = \{ v \in B^* \mid f(v) \in L \} \in \mathcal{V}(B).$$

◆ロト ◆聞 と ◆ 臣 と ◆ 臣 と

Introduction – Eilenberg Correspondence A Relationship between DFAs and Monoids Generalizations of the Eilenberg Correspondence

A Formal Definition of a DFA

Definition

A deterministic finite automaton over the alphabet *A* is a five-tuple $\mathcal{A} = (Q, A, \cdot, i, F)$, where

- Q is a nonempty set of states,
- $: Q \times A \rightarrow Q$ is a complete transition function, which can be extended to a mapping

$$\phi: \mathcal{Q} imes \mathcal{A}^* o \mathcal{Q}$$
 by $oldsymbol{q} \cdot \lambda = oldsymbol{q}, \; oldsymbol{q} \cdot (oldsymbol{u}oldsymbol{a}) = (oldsymbol{q} \cdot oldsymbol{u}) \cdot oldsymbol{a},$

- $i \in Q$ is the initial state,
- $F \subseteq Q$ is the set of final states.

The automaton \mathcal{A} accepts a word $u \in A^*$ iff $i \cdot u \in F$. The automaton \mathcal{A} recognizes the language $L_{\mathcal{A}} = \{u \in A^* \mid i \cdot u \in F\}.$

Introduction – Eilenberg Correspondence A Relationship between DFAs and Monoids Generalizations of the Eilenberg Correspondence

< 回 > < 回 > < 回 >

Motivations for a Notion of a Variety of Automata

- Why monoids instead of automata?
 - An equational description of pseudovarieties of monoids by pseudoidentities.
 - Other algebraic constructions, e.g. products (semidirect, wreath, Mal'cev).

Motivations for a Notion of a Variety of Automata

- Why monoids instead of automata?
 - An equational description of pseudovarieties of monoids by pseudoidentities.
 - Other algebraic constructions, e.g. products (semidirect, wreath, Mal'cev).

• Why are we still interested in automata characterizations?

- Usually, a regular language is given by an automaton. And computation of the syntactic monoid need not to be effective (can be exponentially larger).
- Sometimes a "graph condition" on automata can be easier to test than an equational condition on monoids.

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Motivations for a Notion of a Variety of Automata

- Why monoids instead of automata?
 - An equational description of pseudovarieties of monoids by pseudoidentities.
 - Other algebraic constructions, e.g. products (semidirect, wreath, Mal'cev).

• Why are we still interested in automata characterizations?

- Usually, a regular language is given by an automaton. And computation of the syntactic monoid need not to be effective (can be exponentially larger).
- Sometimes a "graph condition" on automata can be easier to test than an equational condition on monoids.

So, basically there are three worlds: classes of languages, classes of (enriched) semiautomata (no initial and no final states) and those of appropriate algebraic structures.

Introduction – Eilenberg Correspondence A Relationship between DFAs and Monoids Generalizations of the Eilenberg Correspondence

Generalizations of the Eilenberg Correspondence

Since not all natural classes of regular languages are varieties, one of the recent directions of the research in algebraic theory of regular languages is devoted to generalizations of the Eilenberg correspondence.

< □ > < 同 > < 回 > < 回 > < 回 >

Generalizations of the Eilenberg Correspondence

Since not all natural classes of regular languages are varieties, one of the recent directions of the research in algebraic theory of regular languages is devoted to generalizations of the Eilenberg correspondence.

 Pin (1995): Positive varieties of regular languages closure under complementation is not required. Algebraic counterparts are pseudovarieties of finite ordered monoids.

(Syntactic monoid is implicitly ordered.)

< □ > < 同 > < 回 > < 回 > < 回 >

Generalizations of the Eilenberg Correspondence

Since not all natural classes of regular languages are varieties, one of the recent directions of the research in algebraic theory of regular languages is devoted to generalizations of the Eilenberg correspondence.

 Pin (1995): Positive varieties of regular languages closure under complementation is not required. Algebraic counterparts are pseudovarieties of finite ordered monoids.

(Syntactic monoid is implicitly ordered.)

- Polák (1999): Conjunctive (and disjunctive) varieties.
- Straubing (2002): C-varieties of languages.
- Ésik, Larsen (2003): literal varieties of languages.
- Gehrke, Grigorieff, Pin (2008): Lattices of regular languages.

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

3

II. Varieties of Automata

ヘロト 人間 とくほ とくほ とう

The Construction of a Minimal DFA by Brzozowski

For a language L ⊆ A* and u ∈ A*, we define a left quotient u⁻¹L = { w ∈ A* | uw ∈ L }.

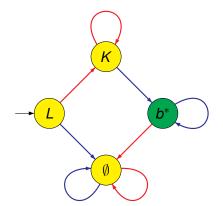
Definition

The canonical deterministic automaton of L is

- $\mathcal{D}_L = (D_L, A, \cdot, L, F)$, where
 - $D_L = \{ u^{-1}L \mid u \in A^* \},$
 - $q \cdot a = a^{-1}q$, for each $q \in D_L$, $a \in A$,
 - $q \in F$ iff $\lambda \in q$.
 - Each state $q = u^{-1}L$ is formed by all words transforming the state q into a final state.

A Minimal DFA The Eilenberg Correspondence for Varieties of Automata

An Example of a Canonical Automaton



$$L = a^+b^+$$
$$K = a^{-1}L = a^*b^+$$
$$b^{-1}K = b^*$$

・ コ マ チ (雪 マ チ (雪 マ ー)

10/40

э

Preimages in Morphisms, Varieties of Automata

Let f : B* → A* be a morphism, We say that (P, B, ∘) is an f-subautomaton of (Q, A, ·) if P ⊆ Q and q ∘ b = q · f(b) for every q ∈ P, b ∈ B.

Definition

A variety of semiautomata \mathbb{V} associates to every finite alphabet A a class $\mathbb{V}(A)$ of semiautomata (no initial nor final states) over alphabet A in such a way that

- V(A) ≠ Ø is closed under disjoint unions, finite direct products and morphic images,
- V is closed under *f*-subautomata.

・ロト ・聞 ト ・ヨ ト ・ ヨ ト

A Minimal DFA The Eilenberg Correspondence for Varieties of Automata

An Eilenberg Type Correspondence

 For each variety of automata V we denote by α(V) the variety of regular languages given by

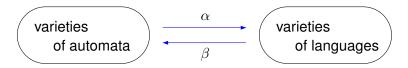
$$(\alpha(\mathbb{V}))(A) = \{L \subseteq A^* \mid \exists A = (Q, A, \cdot, i, F) :$$

$$L = L_A \wedge (Q, A, \cdot) \in \mathbb{V}(A)$$
.

For each variety of regular languages *L* we denote by β(*L*) the variety of automata generated by all DFAs *D*_L, where *L* ∈ *L*(*A*) for some alphabet *A*.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A Minimal DFA The Eilenberg Correspondence for Varieties of Automata



Theorem (Ésik and Ito, Chaubard, Pin and Straubing)

The mappings α and β are mutually inverse isomorphisms between the lattice of all varieties of automata and the lattice of all varieties of regular languages.

- A version for C-varieties is obvious: we consider f-subautomata (etc.) just for f ∈ C.
- Ésik and Ito were working with literal varieties (morphisms map letters to letters, i.e *f*(*B*) ⊆ *A*) and used disjoint union.
- Chaubard, Pin and Straubing called the automata *C*-actions and used trivial automata.

An Examples – Acyclic Automata

- One of the conditions in Simon's characterization of piecewise testable languages is that a minimal DFA is acyclic.
- A content c(u) of a word u ∈ A* is the set of all letters occurring in u.
- We say that (Q, A, ·) is a acyclic if for each u ∈ A* and q ∈ Q we have

$$q \cdot u = q \implies (\forall a \in c(u) : q \cdot a = q).$$

- The class of all acyclic automata is a variety.
- The corresponding variety of languages (well-known): (disjoint) unions of the languages of the form

$$A_0^*a_1A_1^*a_2A_2^*\ldots A_{n-1}^*a_nA_n^*, \quad ext{where} \quad a_i
ot\in A_{i-1} \subseteq A$$

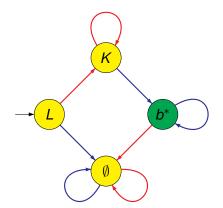
・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

An Example – Piecewise Testable Languages

- In DLT'13 we gave an alternative condition for automata recognizing piecewise testable languages.
- We call an acyclic automaton (Q, A, ·) locally confluent, if for each state q ∈ Q and every pair of letters a, b ∈ A, there is a word w ∈ {a, b}* such that (q · a) · w = (q · b) · w.
- A stronger condition: an acyclic automaton (Q, A, ·) is confluent, if for each state q ∈ Q and every pair of words u, v, ∈ {a, b}*, there is a word w ∈ {a, b}* such that (q · u) · w = (q · v) · w.
- Each acyclic automaton is confluent iff it is locally confluent.
- The class of all acyclic confluent automata is a variety which corresponds to the variety of piecewise testable languages.

A Minimal DFA The Eilenberg Correspondence for Varieties of Automata

An Example of a Piecewise Testable Language



$$L = a^+b^+$$
$$K = a^{-1}L = a^*b^+$$
$$b^{-1}K = b^*$$

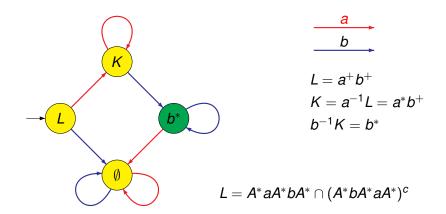
A Minimal DFA The Eilenberg Correspondence for Varieties of Automata

< ロ > < 同 > < 回 > < 回 > < □ > <

16/40

э

An Example of a Piecewise Testable Language



Ordered Automata Meet Automata ∟attice Automata

III. Automata Enriched with an Algebraic Structure

Ondřej Klíma and Libor Polák On varieties of automata

17/40

э

< ロ > < 同 > < 回 > < 回 > .

Ordered Automata Meet Automata Lattice Automata

III.1 Ordered Automata

Ondřej Klíma and Libor Polák On varieties of automata

18/40

æ –

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

A Natural Ordering of the Canonical Automaton

- For a language L ⊆ A*, we have defined a the canonical deterministic automaton: D_L = (D_L, A, ·, L, F), where
 - $D_L = \{ u^{-1}L \mid u \in A^* \},$
 - $q \cdot a = a^{-1}q$, for each $q \in D_L$, $a \in A$,

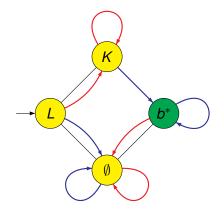
•
$$q \in F$$
 iff $\lambda \in q$.

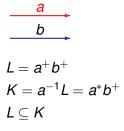
- Therefore states are ordered by inclusion, which means that each minimal automaton is implicitly equipped with a partial order.
- The action by each letter *a* is an isotone mapping: for all states *p*, *q* such that *p* ⊆ *q* we have *p* · *a* = *a*⁻¹*p* ⊆ *a*⁻¹*q* = *q* · *a*.
- The final states form an upward closed subset w.r.t. \subseteq .

< ロ > < 同 > < 回 > < 回 > < □ > <

Ordered Automata Meet Automata Lattice Automata

An Example of an Ordered Automaton





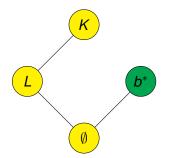
・ コ マ チ (雪 マ チ (雪 マ ー)

20/40

э

Ordered Automata Meet Automata Lattice Automata

An Example of an Ordered Automaton



$L = a^+ b^+$ $K = a^{-1}L = a^*b^+$ $L \subseteq K$

Ondřej Klíma and Libor Polák On varieties of automata

20/40

3

(日)

Ordered Automata Meet Automata Lattice Automata

An Ordered Automaton

Definition

An ordered automaton over the alphabet *A* is a six-tuple $\mathcal{A} = (Q, A, \cdot, \leq, i, F)$, where

- $\mathcal{A} = (Q, A, \cdot, i, F)$ is a usual DFA;
- \leq is a partial order;
- an action by every letter is an isotone mapping from the partial ordered set (Q, ≤) to itself;
- *F* is an upward closed set, i.e. $p \leq q, p \in F \implies q \in F$.

э

ヘロト 人間 ト イヨト イヨト

Ordered Automata Meet Automata Lattice Automata

Algebraic Constructions on Ordered Automata

Definition

A variety of ordered semiautomata \mathbb{V} associates to every finite alphabet A a class $\mathbb{V}(A)$ of ordered semiautomata over alphabet A in such a way that

- V(A) ≠ Ø is closed under disjoint union, finite direct products and morphic images,
- V is closed under *f*-subautomata.

< □ > < 同 > < 回 > < 回 > < 回 >

22/40

Ordered Automata Meet Automata Lattice Automata

An Eilenberg Type Correspondence

Theorem (Pin)

There are mutually inverse isomorphisms between the lattice of all varieties of ordered automata and the lattice of all positive varieties of regular languages.

・ロト ・聞 ト ・ヨ ト ・ ヨ ト

23/40

Ordered Automata Meet Automata Lattice Automata

The Level 1/2

 Piecewise testable languages are Boolean combinations of languages of the form

 $A^*a_1A^*a_2A^*\ldots A^*a_\ell A^*, ext{ where } a_1,\ldots,a_\ell\in A,\ \ell\geq 0$.

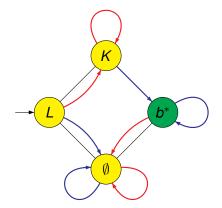
- Piecewise testable languages form level 1 in Straubing-Thérien hierarchy.
- Level 1/2 is formed just by finite unions of intersections of languages above.
- The corresponding variety of ordered automata is the class of all ordered automata where actions by letters are increasing mappings. I.e. ordered automata satisfying:

$$\forall q \in Q, a \in A : q \cdot a \geq q$$
.

(日)

Ordered Automata Meet Automata Lattice Automata

An Example of an Ordered Automaton outside 1/2



$$L = a^{+}b^{+}$$
$$K = a^{-1}L = a^{*}b^{+}$$
$$L \not\subseteq L \cdot b = \emptyset$$

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

25/40

э

Ordered Automata Meet Automata Lattice Automata

III.2 Meet Automata

Ondřej Klíma and Libor Polák On varieties of automata

26/40

æ –

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト

Ordered Automata Meet Automata Lattice Automata

Intersections of Left Quotients

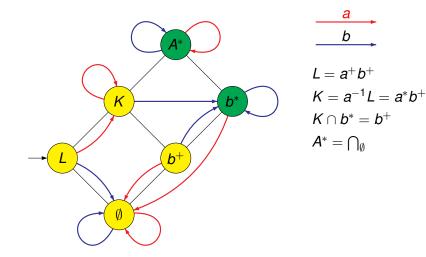
- For a language L ⊆ A*, we extend the canonical semiautomaton (D_L, A, ·), where states are subsets of A*.
- We can consider intersections of states: $U_L = \{\bigcap_{j \in I} K_j \mid I \text{ finite set }, K_j \in D_L\}.$ If $I = \emptyset$ then we put $\bigcap_{j \in I} K_j = A^*.$
- The finite set U_L is equipped with the operation intersection \cap and we can define $(\bigcap_{j \in I} K_j) \cdot a = \bigcap_{j \in I} (K_j \cdot a)$.
- We have the semiautomaton (U_L, A, ·) with semilattice operation ∩. Moreover, A* is the largest element in the semilattice (U_L, ∩) and it is an absorbing state in (U_L, A, ·).
- Naturally, $F = \{K \mid \lambda \in K\}$ is a main filter.

・ロト ・ 聞 ト ・ 臣 ト ・ 臣 ト

27/40

Ordered Automata Meet Automata Lattice Automata

An Example of a Meet Automaton

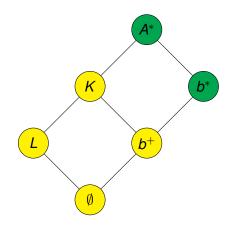


◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

3

Ordered Automata Meet Automata Lattice Automata

An Example of a Meet Automaton



$$egin{array}{ll} L=a^+b^+\ K=a^{-1}L=a^*b^+\ K\cap b^*=b^+\ A^*=igcap_{\emptyset} \end{array}$$

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

æ.

Ordered Automata Meet Automata Lattice Automata

Meet Automata

Definition

A structure $(Q, A, \cdot, \wedge, \top)$ is a meet semiautomaton if

- (Q, A, \cdot) is a DFA,
- (Q, \wedge) is a semilattice with the largest element \top ,
- actions by letters are endomorphisms of the semilattice (Q, ∧), i.e. ∀p, q ∈ Q, a ∈ A : (p ∧ q) ⋅ a = p ⋅ a ∧ q ⋅ a
- \bullet \top is an absorbing state.

This meet semiautomaton recognizes a language *L* if there are $i, f \in Q$ such that $L = \{u \in A^* \mid i \cdot u \land f = f\}.$

< ロ > < 同 > < 回 > < 回 > < □ > <

Ordered Automata Meet Automata Lattice Automata

Varieties of Meet Automata

Definition

A variety of meet semiautomata \mathbb{V} associates to every finite alphabet *A* a class $\mathbb{V}(A)$ of meet semiautomata over alphabet *A* in such a way that

- V(A) ≠ Ø is closed under finite direct products and morphic images,
- V is closed under *f*-subautomata.

< □ > < 同 > < 回 > < 回 > < 回 >

Ordered Automata Meet Automata Lattice Automata

An Eilenberg Type Correspondence

Theorem (Klíma, Polák)

There are mutually inverse isomorphisms between the lattice of all varieties of meet semiautomata and the lattice of all conjunctive varieties of regular languages.

ヘロン 人間と 人間と 人間と

Ordered Automata Meet Automata Lattice Automata

Varieties of Meet Automata – An Example

Example

For each alphabet *A*, a meet automata $(Q, A, \cdot, \wedge, \top)$ belongs to $\mathbb{S}(A)$ if $\forall q \in Q, a \in A : q \cdot a = q \cdot a \wedge q$ and

$$\forall q \in Q, a, b \in A : q \cdot ab = q \cdot a \wedge q \cdot b. \quad (*)$$

Then S is a variety of meet automata and the corresponding conjunctive variety of languages S is given by $S(A) = \{B^* \mid B \subseteq A\} \cup \{\emptyset\}.$

< ロ > < 同 > < 回 > < 回 > .

Ordered Automata Meet Automata Lattice Automata

III.3 Lattice automata

33/40

æ

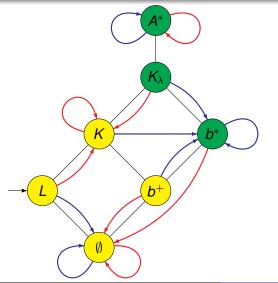
▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

The Canonical Lattice Automaton of a Language

- For a language L ⊆ A* we extend the canonical meet semiautomaton (U_L, A, ·, ∧, A*) by unions of states:
 W_L = {⋃_{j∈I} M_j | I finite set, M_j ∈ U_L}.
 If I = Ø then we put ⋃_{j∈I} M_j = Ø.
- The finite set W_L is equipped with the operations intersection ∩ and union ∪ (due to distributive laws). We can define (⋃_{j∈I} M_j) · a = ⋃_{j∈I}(M_j · a).
- We have the semiautomaton (W_L, A, ·) and a distributive lattice (W_L, ∩, ∪). Moreover, A* is the largest element, Ø is the smallest element both are absorbing states in (W_L, A, ·).
- Naturally F = {M | λ ∈ M} is closed w.r.t. ∩, upward closed, and M₁ ∪ M₂ ∈ F implies M₁ ∈ F or M₂ ∈ F.
 I.e. F is an ultrafilter. In other words the intersection of all elements in F (the minimum in F) is join-irreducible.

Ordered Automata Meet Automata Lattice Automata

An Example of a Canonical Lattice Automaton



a b $L = a^{+}b^{+}$ $K = a^{-1}L = a^{*}b^{+} = L \cup b^{+}$ $K_{\lambda} = K \cup b^{*} = K + \lambda$

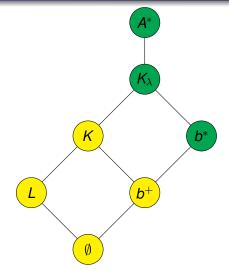
▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

35/40

э

Ordered Automata Meet Automata Lattice Automata

An Example of a Canonical Lattice Automaton



$$L = a^+ b^+$$

$$K = a^{-1}L = a^* b^+ = L \cup b^+$$

$$K_{\lambda} = K \cup b^* = K + \lambda$$

・ロト ・ 四ト ・ ヨト ・ ヨト

3

Ordered Automata Meet Automata Lattice Automata

A Lattice Automata – a Formal Definition

Definition (new)

A structure $(i, P, Q, A, \cdot, \wedge, \vee, \bot, \top)$ is a lattice semiautomaton if

- $i \in P \subseteq Q$,
- (Q, A, \cdot) is a DFA,
- (Q, ∧, ∨) is a distributive lattice with the minimum element
 ⊥ and the largest element ⊤,
- actions by letters are endomorphisms of the lattice (Q, ∧, ∨),
- $\bullet \ \top \ \text{and} \ \bot \ \text{are absorbing states},$
- P is the set of all states reachable from i,
- the lattice *Q* is generated by the set *P*.

< □ > < 同 > < 回 > < 回 > < 回 >

Ordered Automata Meet Automata Lattice Automata

Languages Recognized by a Lattice Semiautomaton

A *DL*-semiautomaton (*i*, *P*, *Q*, *A*, ·, ∧, ∨, ⊥, ⊤) recognizes a language *L* if there are *j* ∈ *P*, *f* ∈ *Q* such that *f* is a join-irreducible and *L* = {*u* ∈ *A*^{*} | *j* · *u* ≥ *f*}.

< ロ > < 同 > < 回 > < 回 > < □ > <

Ordered Automata Meet Automata Lattice Automata

An Eilenberg Type Correspondence

Definition (new)

Let C be a "Straubing" class of morphisms. A weak C-variety of languages V associates to every finite alphabet A a class V(A) of regular languages over A in such a way that

- $\mathcal{V}(A)$ is closed under quotients,
- \mathcal{V} is closed under preimages in morphisms from \mathcal{C} .

Theorem (new)

There are mutually inverse isomorphisms between the lattice of all C-varieties of lattice semiautomata and the lattice of all weak C-varieties of regular languages.

< □ > < 同 > < 回 > < 回 > < 回 >

Ordered Automata Meet Automata Lattice Automata

An Eilenberg Type Correspondence – An Example

Example

Let \mathcal{V} be a class of languages such that $\mathcal{V}(A) = \{A^* a A^* \mid a \in A\} \cup \{A^*\}.$

- V(A) is not closed under intersections nor unions, i.e. V is not a conjunctive (nor disjunctive) variety of languages.
- Let $f : B^* \to A^*$, $a \in A$, $L = A^*aA^*$, then $f^{-1}(L) = B^*DB^*$ where $D = \{d \in B \mid f(d) \text{ contains } a\}$. Therefore we should consider only *f*'s such that

$$\forall b, c \in B : b \neq c \implies c(f(b)) \cap c(f(c)) = \emptyset.$$

• \mathcal{V} is a weak \mathcal{C} -variety for such morphisms.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

An Example

Ordered Automata Meet Automata Lattice Automata

One can show that the corresponding variety of DL-semiautomata is given by

$$\forall q \in Q, a, b \in A \cup \{\lambda\} : q \cdot ab = q \cdot a \lor q \cdot b. \quad (*)$$

and

$$\forall q \in Q, a, b \in A : a \neq b \implies q \cdot a \land q \cdot b = q. \quad (**)$$

・ コ マ チ (雪 マ チ (雪 マ ー)

40/40

э