Integral representation of states on quantum structures

S. Pulmannová

Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, 814 73

Bratislava

Integral representation of states on quantum structures

Introduction

Effect algebras (EAs) $(E; \oplus, 0, 1)$ (D.J. Foulis and M.K. Bennett, 1994) — abstract version of the system $\mathcal{E}(H)$ of all self-adjoint operators between zero and identity on a Hilbert space H – algebraic basis for (possibly) unsharp (fuzzy) quantum-mechanical measurements.

• Special subclasses: the class of orthoalgebras, orthomodular posets and orthomodular lattices, MV-algebras.

• Examples: (G, G^+) abelian po-group. $\Gamma(G, a) := \{g \in G : 0 \le g \le a\}, a \in G^+$ is interval effect algebra.

• $\mathcal{E}(H)$, MV-algebras, effect algebras with RDP are interval effect algebras (*Mundici 1986*, *Ravindran 1996*).

LS-theorem, MV

Loomis-Sikorski theorem for σ MV-algebras: $\forall \sigma$ MV-algebra M, \exists tribe \mathcal{T} of fuzzy sets on $\Omega \neq \emptyset$ and surjective σ MV-algebra morphism $h: \mathcal{T} \to M$ (Mundici 1999, Dvurečenskij 2000).

(1) $\forall f \in \mathcal{T}, f : \Omega \to [0, 1] \subseteq \mathbb{R}$ is Borel measurable w.r. $\mathcal{B}_0(\mathcal{T}) := \{A \subseteq \Omega : \chi_A \in \mathcal{T}\}$

(2) $\forall \sigma$ -additive state s on M,

$$s(a) = \int_{\Omega} f(\omega) ds \circ h(\omega), a \in M, h(f) = a.$$

(Butnariu, Klement 1993).

LS-theorem, EA with RDP

L-S theorem for monotone σ *-complete EAs with RDP:* $\forall E \exists$ effect tribe \mathcal{T}_e of functions $f : \Omega \rightarrow [0, 1]$ and a surjective effect algebra σ -morphism $h : \mathcal{T}_e \rightarrow E$. (*Buhagiar, Chetcuti, Dvurečenskij 2006*).

• If (1) holds for \mathcal{T}_e , then also (2) holds for E. (*Dvurečenskij 2011*)

We show that if (1) holds, then \mathcal{T}_e is a tribe and E represented by \mathcal{T}_e is a σ MV-algebra.

Other consequence of (1) is a kind of *spectral theorem* for σ MV-algebras and *smearing* theorems for states and observables.

effect algebras

An effect algebra (EA) is a partial algebra $(E; \oplus, 0, 1)$ where E is a nonempty set, \oplus is a partial binary operation and 0, 1 are constants, such that

(E1) $a \oplus b = b \oplus a$ (commutativity);

(E2) $(a \oplus b) \oplus c = a \oplus (b \oplus c)$ (associativity);

(E3) $\forall a \in E$ there is a unique $a' \in E$ with $a \oplus a' = 1$; (E4) if $a \oplus 1$ is defined, then a = 0.

a and *b* are *orthogonal* $(a \perp b)$ iff $a \oplus b$ is defined. $a \leq b$ iff $\exists c \in E: a \oplus c = b$; then $c =: b \ominus a$, $0 \leq a \leq 1$.

• E is monotone σ -complete iff every ascending sequence of elements in E has a supremum in E.

MV-(effect) algebras

E has *Riesz decomposition property* (RDP) iff whenever $a \le b \oplus c$, there are $b_1 \le b, c_1 \le c$ with $a = b_1 \oplus c_1$.

• Every effect algebra E with RDP is a unit interval G[0, u] in an abelian interpolation po-group (G, u) with strong unit u, where the partial operation \oplus is defined be the restriction of the group operation + to the unit interval (*Ravindran 1996*).

A lattice ordered effect algebra with RDP is an *MV-effect algebra*.

• MV-effect algebras are equivalent with MV-algebras.

• Every MV-algebra is a unit interval in an ℓ -group with a strong unit (*(Mundici 1986*).

effect tribe

An *effect tribe* is a system $\mathcal{T}_e \subseteq [0, 1]^X$, $X \neq \emptyset$ such that:

(i) $1 \in \mathcal{T}_{e}$, (ii) $1 - f \in \mathcal{T}_e$ whenever $f \in \mathcal{T}_e$, (iii) $f + g \in \mathcal{T}_e$ whenever $f, g \in \mathcal{T}_e$ and $f \leq 1 - g$, (iv) $(f_n)_n \subseteq \mathcal{T}_e$ and $f_n \nearrow f$ pointwise $\implies f \in \mathcal{T}_e$. \mathcal{T}_e is a monotone σ -complete EA with RDP. Replacing (iii) and (iv) by (iii') if $(f_n)_n$ is a sequence from \mathcal{T} , then $\min\{\sum_{i=1}^{\infty} f_n, 1\} \in \mathcal{T}$

we obtain a *tribe*. A tribe is a σ MV-algebra with the binary operation $f \boxplus g = \min\{f + g, 1\}$.

states, central elements

A state on an EA E is a mapping $s : E \to [0, 1]$ such that (i) s(1) = 1; (ii) $s(a \oplus b) = s(a) + s(b)$ whenever $a \oplus b$ exists.

A state s is σ -additive iff for every ascending sequence $a_n \nearrow a$ we have $s(a_n) \rightarrow s(a)$. • $z \in E$ is *central* iff every $a \in E$ uniquely decomposes into $a = a_1 \oplus a_2$ with $a_1 \leq z, a_2 \leq z'$. Central elements form a Boolean subalgebra of E. If E has RDP, then central elements coincide with sharp elements of E ($a \in E$ is sharp iff $a \wedge a' = 0$). • If $\mathcal{T}_e \subseteq [0,1]^X$ is an effect tribe, then sharp (central) elements are characteristic functions in \mathcal{T}_e , and $\mathcal{B}_0(\mathcal{T}_e) := \{A \subseteq X : \chi_A \in \mathcal{T}_e\}$ is a σ -algebra of sets.

integral representation

• Let \mathcal{T}_e be an effect tribe such that $\forall f \in \mathcal{T}_e$, f is Borel measurable w.r. $\mathcal{B}_0(\mathcal{T}_e)$, then for every σ -additive state s on \mathcal{T}_e ,

$$s(f) = \int_X f(x)\mu_s(dx), \ \mu_s(A) = s(\chi_A), A \in \mathcal{B}_0(\mathcal{T}).$$

• If E is monotone σ -complete EA with RDP with LS-representation $h : \mathcal{T}_e \to E$ such that \mathcal{T}_e has the property that every $f \in \mathcal{T}_e$ is $\mathcal{B}_0(\mathcal{T}_e)$ measurable, then for every σ -additive state s on E,

$$s(a) = \int_X f(x)\mu_s(h(dx)), \ f \in \mathcal{T}_e, h(f) = a.$$

(Dvurečenskij 2011).

Integral representation of states on quantum structures

general comparability

• Effect tribe \mathcal{T}_e with the property that $\forall f \in \mathcal{T}_e$, f is $\mathcal{B}_0(\mathcal{T}_e)$ -measurable, has GC, hence is a lattice (*SP*, *Vinceková 2015*).

E satisfies general comparability property (GC), iff $\forall x, y \in E \exists e \in E, e \text{ central: } x \land e \leq y \land e, x \land e' \geq y \land e'$ (Goodearl 1986).

- If E has GC, then E is a lattice.
- $(x, y \in E, x \land y = x \land e \oplus y \land e').$
- $f, g \in \mathcal{T}_e, A := \{x \in X : f(x) \le g(x)\},$ then
- $\chi_A \in \mathcal{T}_e$ is central. Then $f \wedge \chi_A \leq g \wedge \chi_A$,
- $f \wedge \chi_{A^c} \ge g \wedge \chi_{A^c}.$
- Effect tribe which is a lattice, is a tribe.

theorem

• Let E be a monotone σ -complete EA with RDP and let (X, \mathcal{T}_e, h) be a LS-representation of E with property (1), i.e. such that every $f \in \mathcal{T}_e$ is $\mathcal{B}_0(\mathcal{T}_e)$ -measurable. Then E is a lattice, thus a σ MV-algebra (*SP*, *Vinceková 2015*).

spectral theorem

- M σ MV-algebra, (X, \mathcal{T}, h) its LS-representation.
- To every $a \in M$, there is a sharp observable

$$\Lambda_a: \mathcal{B}([0,1]) \to B_0(M).$$

The mapping $a \to \Lambda_a$ is one-to-one, and for every σ -additive state on M,

$$m(a) = \int_0^1 \lambda m(\Lambda_a(d\lambda)).$$

 $(f \in \mathcal{T}, h(f) = a, \Lambda_a(B) = h \circ f^{-1}(B), B \in \mathcal{B}([0, 1])).$ (SP 2005)

functional calculus

 $B_0(M)$ is a Boolean σ -algebra. If $\xi_i, i = 1, 2, \ldots, n$ are sharp real observables on M, there is a unique observable $\eta : \mathcal{B}(\mathbb{R}^n) \to B_0(M)$ such that $\xi_i(A) = \eta(\pi^{-1}(A), \pi : \mathbb{R}^n \to \mathbb{R}$ is the projection. η is the *joint observable* for $\xi_i, i = 1, 2, ..., n$. If $\phi : \mathbb{R}^n \to \mathbb{R}$ is any Borel function, the map $B \to \eta(\phi^{-1}(B)) (B \in \mathcal{B}(\mathbb{R}))$ is an observable with range in $B_0(M)$. The observable $\eta \circ \phi^{-1}$ is ϕ -function of $\xi_i, i = 1, 2, ..., n$. • For $a, b \in M$, $\Lambda_{a \boxplus b}$ is the ϕ -function of Λ_a, Λ_b where $\phi(t_1, t_2) = \min\{t_1 + t_2, 1\},\$ $\Lambda_{a \lor b} = \phi(\Lambda_a, \Lambda_b), \phi(t_1, t_2) = t_1 \lor t_2.$

smearings

• (X, \mathcal{T}, h) - LS-representation of M, (Y, \mathcal{F}) - measurable space. TFAE: (i) $\xi : \mathcal{F} \to M$ is an observable. (ii) $\exists \nu : X \times \mathcal{F} \rightarrow [0, 1]$: $\forall F \in \mathcal{F}, x \mapsto \nu(x, F) \in \mathcal{T}$: $(F_i)_i \subseteq \mathcal{F}, F_i \cap F_i = \emptyset, i \neq j \implies$ $h(\{x \in X : \sum_{i=1}^{\infty} \nu(x, F_i) \neq \nu(x, \bigcup_{i=1}^{\infty} F_i)\}) = 0.$

 $s(\xi(F)) = \int_X \nu(x, F) s \circ h(dx), s - \sigma$ -additive

• Every probability measure on the Boolean σ -algebra $B_0(M)$ of sharp elements of M uniquely extends to a σ -additive state on M (SP 2005).

References

- [1] Buhagiar, D., Chetcuti, E., Dvurečenskij, A., Loomis-Sikorski representation of monotone σ complete effect algebras, Fuzzy Sets Syst. **157** (2006), 683–690.
- [2] Butnariu, D. Klement, P., Triangular Norm Based Measures and Games with Fuzzy Coalitions, Kluwer, Dordrecht 1993.
- [3] Dvurečenskij, A., Representations of states on effect tribes and effect algebras by integrals, Rep. Math. Phys. **67** (2011), 210–224.
- [4] Dvurečenskij, A., Smearing of observables and spectral measures on quantum structures, Found. Phys. **43** (2013), 210–224.
- [5] Dvurečenskij, A., Loomis-Sikorski theorem for σ -complete MV-algebras and ℓ -groups, J. Austral. Math. Soc. Ser A **68** (2000), 261–277.
- [6] Foulis, D.J., Bennett, M.K., Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994) 1331–1352.
- [7] Goodearl, K.R., Partially ordered Abelin Groups with Interpolation. Math. Surveys and Monographs, vol. 20, AMS Providence 1986.
- [8] Klement, E.P., Characterization of finite fuzzy measures using Markov kernels, J. Math. Anal. Appl. 75 (1980), 330–339.
- [9] Mundici, D. Tensor product and the Loomis-Sikorski theorem for MV-algebras, Adv. Appl. Math. 22 (1999), 227–248.
- [10] Pulmannová, S., Vinceková, E., Remarks on effect tribes, Kybernetika 51 (2015), 739–746.
- [11] Pulmannová, S., A spectral theorem for σ -MV-algebras, Kybernetika **41** (2005), 361–374.
- [12] Ravindran, K., On a Structure Theory of Effect Algebras, PHD. Thesis, Kansas State Univ. Manhattan 1996.

proof

Proof. Put X = S(E), $a \leftrightarrow \hat{a} : S(E) \rightarrow [0,1]$, $\hat{a}(s) = s(a)$, continuous function. Define for $f : X \rightarrow [0,1] : f \sim \hat{b}, b \in E$ iff $N(f - \hat{b}) \cap ExtS(E)$ is meager. \mathcal{T}_e is the tribe generated by $\{\hat{a} : a \in E\}$, then for all $f \in \mathcal{T}_e$, $\exists ! b \in E : \hat{b} \sim f$. Define h(f) = b iff $f \sim \hat{b}$, then $h : \mathcal{T}_e \rightarrow E$ is surjective σ -effect algebra morphism.

1. Put $B_0(E)$ - sharp (central) elements in E, $\forall a \in E, e \in B_0(E) : a = a \land e \oplus a \land e'$. Then $a = h(\hat{a}) = h(\widehat{a \land e}) + h(\widehat{a \land e'})$. Using that for $e \in B_0(E)$, $\hat{e}(s) = s(e) \in \{0, 1\} \forall s \in ExtS(E)$, we show that $h(\widehat{a \land e}) = h(\hat{a}) \land h(\hat{e})$.

2. *E* has GC: $a, b \in E$, $f_a, f_b \in \mathcal{T}_e$, $h(f_a) = a, h(f_b) = b$. \mathcal{T}_e has GC $\implies \exists A \in \mathcal{B}_0(\mathcal{T}_e)$ such that

 $f \wedge \chi_A < f_I \wedge \chi$ $f \wedge \chi_{AC} > f_I > \chi_{AC}$

observables

An *observable* on a σ MV-(effect) algebra M is a σ -morphism $\xi : \mathcal{F} \to M$, where (Y, \mathcal{F}) is a measurable space, that is:

(i)
$$\xi(Y) = 1;$$

(ii) $\xi(A \cup B) = \xi(A) \oplus \xi(B)$ whenever $A, B \in \mathcal{F}, A \cap B = \emptyset$,

(iii) $A, A_n \in \mathcal{F}, A_n \nearrow A$ implies $\xi(A_n) \nearrow \xi(A)$.

 ξ is *sharp* if its range is contained in the set $B_0(M)$ of sharp elements in M.

 ξ is *real* if $(Y, \mathcal{F}) \equiv (\mathbb{R}, \mathcal{B}(\mathbb{R}))$; the *expectation* of ξ in a state m is $m(\xi) = \int_{\mathbb{R}} \lambda m \circ \xi(d\lambda)$.