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1. Background and preliminaries

Quantales are certain partially ordered algebraic structures that
generalize locales (point free topologies) as well as various multplicative
lattices of ideals from ring theory.
Residuated lattices were introduced by Dilworth and Ward and they are
used in several branches of mathematics, including areas of ideal lattices
of rings, lattice-ordered groups, multivalued logic and formal languages.

In our lecture, we try to show that integral quantales and complete
integral residuated lattices are strongly related with the complete
tolerances of their underlying lattice.
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General notions

Definition 1.

A quantale is an algebraic structure Q = (L,∨,�), such that (L,≤) is a
complete lattice (induced by the join operation ∨) and (L,�) is a
semigroup satisfying

a�
(∨

i∈I
bi

)
=
∨
i∈I

(a� bi ) and

(∨
i∈I

bi

)
� a =

∨
i∈I

(bi � a).

for all a ∈ L and bi ∈ L, i ∈ I . Q is called commutative, if � is
commutative, and Q is unital, whenever (L,�) is a monoid. A unital
quantale in which the neutral element of � coincides to the greatest
element 1 of the lattice L is called integral. Hence in any integral
quantale

1� x = x � 1 = x (1.1)

A subset K ⊆ L is called a subquantale of Q if it is closed under arbitrary
joins and �.
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Examples 1.

(a) Frames are commutative quantales in which � and the meet
operation ∧ coincide.

(b) The two-sided ideals of a ring (R,+, ·) with unit form an integral
quantale (I(R),∨, •), where (I(R),∨,∩) is the complete lattice of the
ideals of R and • is their usual multiplication, i.e. for any I , J ∈ I(R) we
have I • J := {

∑
fini · j | i ∈ I , j ∈ J}.

Definition 2.

A residuated lattice is an algebra L = (L,∨,∧,�, \, /, 1) of type
(2,2,2,2,2,0) such that

(i) (L,∨,∧) is a lattice,

(ii) (L,�) is a semigroup satisfying 1� x = x � 1 = x , for all x ∈ L.

(iii) L satisfies the adjointness properties, that is, for all x , y , z ∈ L

x � y ≤ z ⇔ y ≤ x\z ⇔ x ≤ z/y .

L is called commutative, if � is commutative. In this case x\y and y/x
being equal, they are denoted as x → y .

by Sándor Radeleczki, Math. Institute, Univ. of Miskolc (joint research with Kalle Kaarli, Tartu Univ.)Aggregation



Examples 1.

(a) Frames are commutative quantales in which � and the meet
operation ∧ coincide.
(b) The two-sided ideals of a ring (R,+, ·) with unit form an integral
quantale (I(R),∨, •), where (I(R),∨,∩) is the complete lattice of the
ideals of R and • is their usual multiplication, i.e. for any I , J ∈ I(R) we
have I • J := {

∑
fini · j | i ∈ I , j ∈ J}.

Definition 2.

A residuated lattice is an algebra L = (L,∨,∧,�, \, /, 1) of type
(2,2,2,2,2,0) such that

(i) (L,∨,∧) is a lattice,

(ii) (L,�) is a semigroup satisfying 1� x = x � 1 = x , for all x ∈ L.

(iii) L satisfies the adjointness properties, that is, for all x , y , z ∈ L

x � y ≤ z ⇔ y ≤ x\z ⇔ x ≤ z/y .

L is called commutative, if � is commutative. In this case x\y and y/x
being equal, they are denoted as x → y .

by Sándor Radeleczki, Math. Institute, Univ. of Miskolc (joint research with Kalle Kaarli, Tartu Univ.)Aggregation



Examples 1.

(a) Frames are commutative quantales in which � and the meet
operation ∧ coincide.
(b) The two-sided ideals of a ring (R,+, ·) with unit form an integral
quantale (I(R),∨, •), where (I(R),∨,∩) is the complete lattice of the
ideals of R and • is their usual multiplication, i.e. for any I , J ∈ I(R) we
have I • J := {

∑
fini · j | i ∈ I , j ∈ J}.

Definition 2.

A residuated lattice is an algebra L = (L,∨,∧,�, \, /, 1) of type
(2,2,2,2,2,0) such that

(i) (L,∨,∧) is a lattice,

(ii) (L,�) is a semigroup satisfying 1� x = x � 1 = x , for all x ∈ L.

(iii) L satisfies the adjointness properties, that is, for all x , y , z ∈ L

x � y ≤ z ⇔ y ≤ x\z ⇔ x ≤ z/y .

L is called commutative, if � is commutative. In this case x\y and y/x
being equal, they are denoted as x → y .

by Sándor Radeleczki, Math. Institute, Univ. of Miskolc (joint research with Kalle Kaarli, Tartu Univ.)Aggregation



Examples 1.

(a) Frames are commutative quantales in which � and the meet
operation ∧ coincide.
(b) The two-sided ideals of a ring (R,+, ·) with unit form an integral
quantale (I(R),∨, •), where (I(R),∨,∩) is the complete lattice of the
ideals of R and • is their usual multiplication, i.e. for any I , J ∈ I(R) we
have I • J := {

∑
fini · j | i ∈ I , j ∈ J}.

Definition 2.

A residuated lattice is an algebra L = (L,∨,∧,�, \, /, 1) of type
(2,2,2,2,2,0) such that

(i) (L,∨,∧) is a lattice,

(ii) (L,�) is a semigroup satisfying 1� x = x � 1 = x , for all x ∈ L.

(iii) L satisfies the adjointness properties, that is, for all x , y , z ∈ L

x � y ≤ z ⇔ y ≤ x\z ⇔ x ≤ z/y .

L is called commutative, if � is commutative. In this case x\y and y/x
being equal, they are denoted as x → y .

by Sándor Radeleczki, Math. Institute, Univ. of Miskolc (joint research with Kalle Kaarli, Tartu Univ.)Aggregation



If 1 coincides to the greatest element of L, then L is called integral. If in
addition L is a complete lattice, then L is called a complete integral
residuated lattice.

Remark 1.

(i) Let L = (L,∨,∧,�, \, /, 1) be a complete integral residuated lattice.
It is well-known that in this case (L,∨,�) is an integral quantale.
(ii) Conversely, if Q = (L,∨,�) is an integral quantale, then we can
define on L a residuated lattice L =(L,∨,∧,�, \, /, 1) with

x\z =
∨
{u | x � u ≤ z} and z/x =

∨
{v | v � x ≤ z}, (1.2)

Example 2.

Consider the integral quantale (I(R),∨, •) from Example 1. This induces
a complete integral residuated lattice (I(R),∩,∨, •, \, /,R), where the
operations \, / are defined as follows:
I\J = {r ∈ R | I · r ⊆ J}, J/I = {r ∈ R | r · I ⊆ J}.

Indeed, we have I • J ⊆ K ⇔ J ⊆ I\K ⇔ I ⊆ K/J.
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An other example for an integral quantale and complete integral
residuated lattice induced by this quantale is defined by the mean of
complete tolerances of a complete lattice.

A complete tolerance of a complete lattice L is a reflexive, symmetric
relation T on L compatible with arbitrary suprema and infima, i.e. for
any system of pairs (xi , yi ) ∈ T , i ∈ I we have(∧

i∈I

ai ,
∧
i∈I

bi

)
∈ T and

(∨
i∈I

ai ,
∨
i∈I

bi

)
∈ T .

The set of complete tolerances of L is denoted by CTol(L). CTol(L) is a
complete lattice with respect to ⊆, with least element
4 = {(x , x) | x ∈ L} and greatest element O = L× L.

If S and T are two complete tolerances of L, then let S ◦ T stand for
their relational product. The symmetrized product of S and T is defined
as follows:

S ∗ T = {(x , y) ∈ L2 | (x ∧ y , x ∨ y) ∈ S ◦ T}. (1.3)
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In view of [K] S ∗T is also a complete tolerance of L and the operation ∗
is associative. Moreover, we have the following

Lemma 1.

For arbitrary complete tolerances S and Ti , i ∈ I of a complete lattice L,

(
⋂
{Ti | i ∈ I}) ∗ S =

⋂
{Ti ∗ S | i ∈ I}, and

S ∗ (
⋂
{Ti | i ∈ I}) =

⋂
{S ∗ Ti | i ∈ I}.

Now, let (CTol(L),∩,∨) stand for the dual of the lattice (CTol(L),∨,∩)
(hence its greatest element is 4.) Since T ∗ 4 = 4 ∗ T = T ,
(CTol(L), ∗) is a semigroup with unit element 4, whence we obtain:

Corollary 1.

(CTol(L),∩, ∗) is an integral quantale.

Clearly, for all S ,T ∈ CTol(L) we can define the operations:

S\T =
⋂
{Z ∈ CTol(L) | S∗Z ⊇ T} and S/T =

⋂
{Z ∈ CTol(L) | Z∗S ⊇ T}.
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{S ∗ Ti | i ∈ I}.

Now, let (CTol(L),∩,∨) stand for the dual of the lattice (CTol(L),∨,∩)
(hence its greatest element is 4.) Since T ∗ 4 = 4 ∗ T = T ,
(CTol(L), ∗) is a semigroup with unit element 4, whence we obtain:

Corollary 1.

(CTol(L),∩, ∗) is an integral quantale.

Clearly, for all S ,T ∈ CTol(L) we can define the operations:

S\T =
⋂
{Z ∈ CTol(L) | S∗Z ⊇ T} and S/T =

⋂
{Z ∈ CTol(L) | Z∗S ⊇ T}.
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Therefore, in view of Remark 1, we obtain:

Corollary 2.

(CTol(L),∩,∨, ∗, \, /,4) is a complete integral residuated lattice.

We note that in [BK] it was also shown that on lattice (CTol(L),∩,∨)
can be defined a complete integral residuated lattice.
The corresponding integral quantale was (CTol(L),∩,⊗), and the binary
operation ⊗ was defined as follows:

S ⊗ T = (S◦ ≥ ◦T ) ∩ (T◦ ≤ ◦S).

Here we proved

Proposition 1.

If L is a complete lattice and S ,T ∈ CTol(L), then S ⊗ T = S ∗ T .

Important notation. If T ⊆ L2 is a complete tolerance of (L,∨,∧), then
for any a ∈ L we define:

aT :=
∧
{z ∈ L | (a, z) ∈ T} and aT :=

∨
{z ∈ L | (a, z) ∈ T}.
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2. Complete tolerances and residuated pairs of maps

It is known that the map λ : x 7→ xT , x ∈ L is a decreasing complete
∨-endomorphism, and µ : x 7→ xT , x ∈ L is an increasing complete
∧-endomorphism of the lattice L, λ(x) ≤ x ≤ µ(x), for all x ∈ L,
moreover, λ and µ form a residuated (adjoint) pair, i.e.

λ(x) ≤ y ⇐⇒ x ≤ µ(y) . (∗)

Conversely, if λ : L→ L, µ : L→ L is an adjoint pair of maps such that
λ(x) ≤ x (and equivalently, x ≤ µ(x)), for all x ∈ L, then

Tλ := {(x , y) ∈ L2 | λ(x ∨ y) ≤ x ∧ y} (2.1)

is a complete tolerance of the complete lattice L.

Denote by Cdend(L) the complete decreasing ∨-endomorphism of L.
Cdend(L) can be ordered in a natural way; for any ρ, σ ∈ Cdend(L),

ρ ≤ σ ⇔ ρ(x) ≤ σ(x), for all x ∈ L. (2.2)
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(Cdend(L), ≤) is a complete lattice, and the mapping λ 7→ Tλ is a dual
lattice isomorphism between (Cdend(L),≤) and (CTol(L),⊆) (see [J1] or
[K]). In other words,

ρ ≤ σ ⇔ Tσ ⊆ Tρ, (2.3)

for all ρ, σ ∈ Cdend(L). Moreover, λ is idempotent (λ ◦ λ = λ) iff Tλ is
transitive, i.e. it is a complete congruence of L (cf. [J2]).

Remark 2.

In view of [K], λS∗T , the complete ∨-endomorphisms corresponding to
S ∗ T satisfies λS∗T = λs ◦ λT .

Our starting observation

Let Q = (L,∨,�) be an integral quantale and L = (L,∨,∧,�, \, /, 0, 1)
the complete integral residuated lattice induced by Q. Then for any
a ∈ L the map λa(x) = a� x , x ∈ L is a complete ∨-endomorphism, and
µa(x) = a\x , x ∈ L is a complete ∧-endomorphism, and they form a
residuated pair, i.e:

λa(x) ≤ y ⇔ a� x ≤ y ⇔ x ≤ a\y ⇔ x ≤ µa(y).
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Since λa(x) = a� x ≤ x , they determine a complete tolerance of the
lattice L as follows:

Ta := {(x , y) ∈ L2 | a� (x ∨ y) ≤ x ∧ y}. (2.4)

The maps λa, a ∈ L are called the left translations of the monoid (L, �).
The right translations of (L, �) are the maps τa(x) = x � a, a ∈ L.

3. The main construction

Denote by Σ the set of right translations of (L, �), i.e. Σ = {τa | a ∈ L},
and consider the algebra A = (L;∨,∧,Σ, 0, 1). Let CT(A) stand for the
set of all complete tolerances of A, i.e. the set of those elements of
CTol(L) which are preserved by each τa ∈ Σ.

It is easy to see that (CT(A),⊆) is a complete ∩-subsemilattice of
(CTol(L),⊆), hence (CT(A),⊆) is a complete lattice. Since CT(A) is
not a complete sublattice of CTol(L) in general, the join in (CT(A),⊆)
will be denoted by t.
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Lemma 2.

Let Q = (L,∨,�) be an integral quantale defined on the lattice (L,∨,∧).
Then (CT(A),∩, ∗) is an integral subquantale of (CTol(L),∩, ∗), and
(CT(A),∩,t, ∗, \, /,5,4) is a complete integral residuated lattice,
where for every S ,T ∈ CT(A) the operations \ and / are defined as

S\T =
⋂
{Z ∈ CT(A) | S ∗ Z ⊇ T} and (3.1.a)

S/T =
⋂
{Z ∈ CT(A) | Z ∗ S ⊇ T} (3.1.b)

For any a, b ∈ L the least tolerance T ∈ CT(A) containing (a, b) is
denoted by TA(a, b) and is called the principal complete tolerance of A
corresponding to (a, b).

Proposition 2.

Let Q = (L,∨,�) be an integral quantale. Then for any a ∈ L we have

Ta = TA(a, 1).
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Now, let CPT(A) = {Ta | a ∈ L}, and consider the ordered set
(CPT(A),⊇). Clearly, CPT(A) is a subset of CT(A), and
4 = T1 ∈ CPT(A) and O = T0 = TA(0, 1) ∈ CPT(A). Moreover, we
have the following

Lemma 3.

Let Q = (L,∨,�) be an integral quantale. Then
(i)(CPT(A),∩, ∗) is an integral subquantale of (CT(A),∩, ∗) and of
(CTol(L),∩, ∗).
(ii) (CPT(A),∩,t, ∗, \, /,5,4) is a complete integral residuated lattice,
where for every S ,T ∈ CT(A), \ and / are defined as

Ta\Tb =
⋂
{Tz ∈ CPT(A) | Ta ∗ Tz ⊇ Tb}, (3.2.a)

Ta/Tb =
⋂
{Tz ∈ CPT(A) | Tz ∗ Ta ⊇ Tb}. (3.2.b)

Our next results were proved by using the properties of the quantale
CPT(A).
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4. Main Results

Theorem 1.

(i) Any integral quantale (L,∨,�) is isomorphic to (CPT(A),∩, ∗), and
any complete integral residuated lattice L = (L,∨,∧,�, \, /, 0, 1) is
isomorphic to (CPT(A),∩,t, ∗, \, /,5,4). In particular, we have
Ta\b. = Ta\Tb and Ta/b = Ta/Tb.

(ii) If (L,∨,∧,�,→, 0, 1) is commutative, then Φ: L→ CPT(A),
Φ(a) = Ta, for all a ∈ L is an embedding of the dual of
(L,∨,∧,�,→, 0, 1) into (CT(A),∩,t, ∗, \, /,5,4).

Theorem 2.

Let L be a complete lattice. Then there exists an operation � on L such
that (L,∨,�) is an integral quantale if and only if there exists an
subquantale (K,∩, ∗) of (CTol(L),∩, ∗) with 4 ∈ K such that (L,≤) is
dually isomorphic to (K,⊆).
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Corollary 3.

Let L be a complete lattice. L admits an integral residuated lattice
structure if and only if there exists a subquantale (K,∩, ∗) of
(CTol(L),∩, ∗) with 4 ∈ K, such that (L,≤) is dually isomorphic to
(K,⊆).

Properties of the underlying lattice

As an application of Theorem 1, we can deduce some properties of the
underlying lattice of finite integral quantales and finite integral residuated
lattices.

Definitions 3.

(a) A lattice L with 0 is called pseudocomplemented if for each x ∈ L
there exists an x∗ ∈ L such that for any y ∈ L, y ∧ x = 0⇔ y ≤ x∗.
(b) A bounded lattice L is called 0-modular, (1-modular) if L has no
pentagon sublattice N5 that contains 0 (1, respectively).
(c) A pair a, b ∈ L is called a distributive pair if
c ∧ (a ∨ b) = (c ∧ a) ∨ (c ∧ b) holds for any c ∈ L. The dual notion is a
dually distributive pair.
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Theorem 3.

Let Q = (L,∨,�) be a finite integral quantale. Then (L,∨,∧) is a dually
pseudocomplemented and 1-modular lattice, and any pair of elements
a, b ∈ L with a ∨ b = 1 is a dually distributive pair in L.

Corollary 4.

The underlying lattice of any finite integral residuated lattice
L = (L,∨,∧,�, \, /, 0, 1) is dually pseudocomplemented and 1-modular,
and any a, b ∈ L with a ∨ b = 1 is a dually distributive pair in it.
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