Representing integral quantales and residuated lattices by tolerances

by Sándor Radeleczki, Math. Institute, Univ. of Miskolc (joint research with Kalle Kaarli, Tartu Univ.)

SSAOS 54, Trojanovice, Czech Republic, Sept. 3-9, 2016.

A B > A B >

1. Background and preliminaries

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

1. Background and preliminaries

Quantales are certain partially ordered algebraic structures that generalize locales (point free topologies) as well as various multplicative lattices of ideals from ring theory.

Residuated lattices were introduced by Dilworth and Ward and they are used in several branches of mathematics, including areas of ideal lattices of rings, lattice-ordered groups, multivalued logic and formal languages.

イロト 不得 とくほと くほとう ほ

1. Background and preliminaries

Quantales are certain partially ordered algebraic structures that generalize locales (point free topologies) as well as various multplicative lattices of ideals from ring theory.

Residuated lattices were introduced by Dilworth and Ward and they are used in several branches of mathematics, including areas of ideal lattices of rings, lattice-ordered groups, multivalued logic and formal languages.

In our lecture, we try to show that integral quantales and complete integral residuated lattices are strongly related with the **complete tolerances** of their underlying lattice.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�()

by Sándor Radeleczki, Math. Institute, Univ. of Miskolc (joint research with K Aggregation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�()

Definition 1.

by Sándor Radeleczki, Math. Institute, Univ. of Miskolc (joint research with K Aggregation

Definition 1.

A quantale is an algebraic structure $\mathbb{Q} = (L, \lor, \odot)$, such that (L, \leq) is a complete lattice (induced by the join operation \lor) and (L, \odot) is a semigroup satisfying

$$a \odot \left(\bigvee_{i \in I} b_i\right) = \bigvee_{i \in I} (a \odot b_i) \text{ and } \left(\bigvee_{i \in I} b_i\right) \odot a = \bigvee_{i \in I} (b_i \odot a)$$

イロト 不得 トイヨト イヨト 二日

for all $a \in L$ and $b_i \in L$, $i \in I$.

Definition 1.

A **quantale** is an algebraic structure $\mathbb{Q} = (L, \vee, \odot)$, such that (L, \leq) is a complete lattice (induced by the join operation \vee) and (L, \odot) is a semigroup satisfying

$$a \odot \left(\bigvee_{i \in I} b_i\right) = \bigvee_{i \in I} (a \odot b_i) \text{ and } \left(\bigvee_{i \in I} b_i\right) \odot a = \bigvee_{i \in I} (b_i \odot a).$$

for all $a \in L$ and $b_i \in L$, $i \in I$. \mathbb{Q} is called commutative, if \odot is commutative, and \mathbb{Q} is unital, whenever (L, \odot) is a monoid. A unital quantale in which the neutral element of \odot coincides to the greatest element 1 of the lattice *L* is called integral. Hence in any integral quantale

$$1 \odot x = x \odot 1 = x \tag{1.1}$$

イロト 不得 とくほと くほとう ほ

Definition 1.

A **quantale** is an algebraic structure $\mathbb{Q} = (L, \vee, \odot)$, such that (L, \leq) is a complete lattice (induced by the join operation \vee) and (L, \odot) is a semigroup satisfying

$$a \odot \left(\bigvee_{i \in I} b_i\right) = \bigvee_{i \in I} (a \odot b_i) \text{ and } \left(\bigvee_{i \in I} b_i\right) \odot a = \bigvee_{i \in I} (b_i \odot a)$$

for all $a \in L$ and $b_i \in L$, $i \in I$. \mathbb{Q} is called commutative, if \odot is commutative, and \mathbb{Q} is unital, whenever (L, \odot) is a monoid. A unital quantale in which the neutral element of \odot coincides to the greatest element 1 of the lattice *L* is called integral. Hence in any integral quantale

$$1 \odot x = x \odot 1 = x \tag{1.1}$$

A subset $K \subseteq L$ is called a subquantale of \mathbb{Q} if it is closed under arbitrary joins and \odot .

(a) Frames are commutative quantales in which \odot and the meet operation \wedge coincide.

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

(a) Frames are commutative quantales in which \odot and the meet operation \wedge coincide.

(b) The two-sided ideals of a ring $(R, +, \cdot)$ with unit form an integral quantale $(\mathcal{I}(R), \lor, \bullet)$, where $(\mathcal{I}(R), \lor, \cap)$ is the complete lattice of the ideals of R and \bullet is their usual multiplication, i.e. for any $I, J \in \mathcal{I}(R)$ we have $I \bullet J := \{\sum_{\text{fin}} i \cdot j \mid i \in I, j \in J\}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

(a) Frames are commutative quantales in which \odot and the meet operation \wedge coincide.

(b) The two-sided ideals of a ring $(R, +, \cdot)$ with unit form an integral quantale $(\mathcal{I}(R), \lor, \bullet)$, where $(\mathcal{I}(R), \lor, \cap)$ is the complete lattice of the ideals of R and \bullet is their usual multiplication, i.e. for any $I, J \in \mathcal{I}(R)$ we have $I \bullet J := \{\sum_{\text{fin}} i \cdot j \mid i \in I, j \in J\}$.

Definition 2.

A residuated lattice is an algebra $\mathcal{L} = (L, \lor, \land, \odot, \backslash, /, 1)$ of type (2,2,2,2,2,0) such that

- (i) (L, \lor, \land) is a lattice,
- (ii) (L, \odot) is a semigroup satisfying $1 \odot x = x \odot 1 = x$, for all $x \in L$.
- (iii) \mathcal{L} satisfies the *adjointness* properties, that is, for all $x, y, z \in L$

$$x \odot y \le z \Leftrightarrow y \le x \backslash z \Leftrightarrow x \le z/y.$$

(a) Frames are commutative quantales in which \odot and the meet operation \wedge coincide.

(b) The two-sided ideals of a ring $(R, +, \cdot)$ with unit form an integral quantale $(\mathcal{I}(R), \lor, \bullet)$, where $(\mathcal{I}(R), \lor, \cap)$ is the complete lattice of the ideals of R and \bullet is their usual multiplication, i.e. for any $I, J \in \mathcal{I}(R)$ we have $I \bullet J := \{\sum_{\text{fin}} i \cdot j \mid i \in I, j \in J\}$.

Definition 2.

A residuated lattice is an algebra $\mathcal{L} = (L, \lor, \land, \odot, \backslash, /, 1)$ of type (2,2,2,2,2,0) such that

- (i) (L, \lor, \land) is a lattice,
- (ii) (L, \odot) is a semigroup satisfying $1 \odot x = x \odot 1 = x$, for all $x \in L$.
- (iii) \mathcal{L} satisfies the *adjointness* properties, that is, for all $x, y, z \in L$

$$x \odot y \le z \Leftrightarrow y \le x \backslash z \Leftrightarrow x \le z/y.$$

 \mathcal{L} is called commutative, if \odot is commutative. In this case $x \setminus y$ and y/x being equal, they are denoted as $x \to y$.

・ 同 ト ・ ヨ ト ・ ヨ ト

э.

Remark 1.

(i) Let $\mathcal{L} = (L, \lor, \land, \odot, \backslash, /, 1)$ be a complete integral residuated lattice. It is well-known that in this case (L, \lor, \odot) is an integral quantale.

法国际 化基本

Remark 1.

(i) Let L = (L, ∨, ∧, ⊙, ∖, /, 1) be a complete integral residuated lattice. It is well-known that in this case (L, ∨, ⊙) is an integral quantale.
(ii) Conversely, if Q = (L, ∨, ⊙) is an integral quantale, then we can define on L a residuated lattice L =(L, ∨, ∧, ⊙, ∖, /, 1) with

$$x \setminus z = \bigvee \{ u \mid x \odot u \le z \} \text{ and } z/x = \bigvee \{ v \mid v \odot x \le z \},$$
(1.2)

(人間) とうき くうき

Remark 1.

(i) Let $\mathcal{L} = (L, \lor, \land, \odot, \backslash, /, 1)$ be a complete integral residuated lattice. It is well-known that in this case (L, \lor, \odot) is an integral quantale. (ii) Conversely, if $\mathbb{Q} = (L, \lor, \odot)$ is an integral quantale, then we can define on L a residuated lattice $\mathcal{L} = (L, \lor, \land, \odot, \backslash, /, 1)$ with

$$x \setminus z = \bigvee \{ u \mid x \odot u \le z \} \text{ and } z/x = \bigvee \{ v \mid v \odot x \le z \},$$
(1.2)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

Example 2.

Consider the integral quantale $(\mathcal{I}(R), \lor, \bullet)$ from Example 1. This induces a complete integral residuated lattice $(\mathcal{I}(R), \cap, \lor, \bullet, \backslash, /, R)$, where the operations \backslash , / are defined as follows: $I \backslash J = \{r \in R \mid I \cdot r \subseteq J\}, J/I = \{r \in R \mid r \cdot I \subseteq J\}.$

Remark 1.

(i) Let $\mathcal{L} = (L, \lor, \land, \odot, \backslash, /, 1)$ be a complete integral residuated lattice. It is well-known that in this case (L, \lor, \odot) is an integral quantale. (ii) Conversely, if $\mathbb{Q} = (L, \lor, \odot)$ is an integral quantale, then we can define on L a residuated lattice $\mathcal{L} = (L, \lor, \land, \odot, \backslash, /, 1)$ with

$$x \setminus z = \bigvee \{ u \mid x \odot u \le z \} \text{ and } z/x = \bigvee \{ v \mid v \odot x \le z \},$$
(1.2)

Example 2.

Consider the integral quantale $(\mathcal{I}(R), \lor, \bullet)$ from Example 1. This induces a complete integral residuated lattice $(\mathcal{I}(R), \cap, \lor, \bullet, \backslash, /, R)$, where the operations \backslash , / are defined as follows: $I \setminus J = \{r \in R \mid I \cdot r \subseteq J\}, J/I = \{r \in R \mid r \cdot I \subseteq J\}.$

Indeed, we have $I \bullet J \subseteq K \Leftrightarrow J \subseteq I \setminus K \Leftrightarrow I \subseteq K/J$.

An other example for an integral quantale and complete integral residuated lattice induced by this quantale is defined by the mean of complete tolerances of a complete lattice.

・ 同 ト ・ ヨ ト ・ ヨ ト

-

An other example for an integral quantale and complete integral residuated lattice induced by this quantale is defined by the mean of complete tolerances of a complete lattice.

A complete tolerance of a complete lattice *L* is a reflexive, symmetric relation *T* on *L* compatible with arbitrary suprema and infima, i.e. for any system of pairs $(x_i, y_i) \in T$, $i \in I$ we have

$$\left(\bigwedge_{i\in I}a_i,\bigwedge_{i\in I}b_i\right)\in T \text{ and } \left(\bigvee_{i\in I}a_i,\bigvee_{i\in I}b_i\right)\in T.$$

・同 ・ ・ ヨ ・ ・ ヨ ・ …

An other example for an integral quantale and complete integral residuated lattice induced by this quantale is defined by the mean of complete tolerances of a complete lattice.

A **complete tolerance** of a complete lattice *L* is a reflexive, symmetric relation *T* on *L* compatible with arbitrary suprema and infima, i.e. for any system of pairs $(x_i, y_i) \in T$, $i \in I$ we have

$$\left(\bigwedge_{i\in I}a_i,\bigwedge_{i\in I}b_i\right)\in T \text{ and } \left(\bigvee_{i\in I}a_i,\bigvee_{i\in I}b_i\right)\in T.$$

The set of complete tolerances of *L* is denoted by CTol(L). CTol(L) is a complete lattice with respect to \subseteq , with least element $\triangle = \{(x, x) \mid x \in L\}$ and greatest element $\nabla = L \times L$.

If S and T are two complete tolerances of L, then let $S \circ T$ stand for their relational product. The symmetrized product of S and T is defined as follows:

$$S * T = \{(x, y) \in L^2 \mid (x \wedge y, x \vee y) \in S \circ T\}.$$

$$(1.3)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

≡ nar

Lemma 1.

For arbitrary complete tolerances S and T_i , $i \in I$ of a complete lattice L,

$$(\bigcap \{ T_i \mid i \in I \}) * S = \bigcap \{ T_i * S \mid i \in I \}, \text{ and} \\ S * (\bigcap \{ T_i \mid i \in I \}) = \bigcap \{ S * T_i \mid i \in I \}.$$

-

Lemma 1.

For arbitrary complete tolerances S and T_i , $i \in I$ of a complete lattice L,

$$(\bigcap \{ T_i \mid i \in I \}) * S = \bigcap \{ T_i * S \mid i \in I \}, \text{ and} \\ S * (\bigcap \{ T_i \mid i \in I \}) = \bigcap \{ S * T_i \mid i \in I \}.$$

Now, let $(CTol(L), \cap, \vee)$ stand for the dual of the lattice $(CTol(L), \vee, \cap)$ (hence its greatest element is \triangle .) Since $T * \triangle = \triangle * T = T$, (CTol(L), *) is a semigroup with unit element \triangle , whence we obtain:

Lemma 1.

For arbitrary complete tolerances S and T_i , $i \in I$ of a complete lattice L,

$$(\bigcap \{ T_i \mid i \in I \}) * S = \bigcap \{ T_i * S \mid i \in I \}, \text{ and} \\ S * (\bigcap \{ T_i \mid i \in I \}) = \bigcap \{ S * T_i \mid i \in I \}.$$

Now, let $(CTol(L), \cap, \vee)$ stand for the dual of the lattice $(CTol(L), \vee, \cap)$ (hence its greatest element is \triangle .) Since $T * \triangle = \triangle * T = T$, (CTol(L), *) is a semigroup with unit element \triangle , whence we obtain:

Corollary 1.

 $(CTol(L), \cap, *)$ is an integral quantale.

Lemma 1.

For arbitrary complete tolerances S and T_i , $i \in I$ of a complete lattice L,

$$(\bigcap \{ T_i \mid i \in I \}) * S = \bigcap \{ T_i * S \mid i \in I \}, \text{ and} \\ S * (\bigcap \{ T_i \mid i \in I \}) = \bigcap \{ S * T_i \mid i \in I \}.$$

Now, let $(CTol(L), \cap, \vee)$ stand for the dual of the lattice $(CTol(L), \vee, \cap)$ (hence its greatest element is \triangle .) Since $T * \triangle = \triangle * T = T$, (CTol(L), *) is a semigroup with unit element \triangle , whence we obtain:

Corollary 1.

 $(CTol(L), \cap, *)$ is an integral quantale.

Clearly, for all $S, T \in CTol(L)$ we can define the operations:

 $S \setminus T = \bigcap \{ Z \in \operatorname{CTol}(L) \mid S * Z \supseteq T \}$ and $S / T = \bigcap \{ Z \in \operatorname{CTol}(L) \mid Z * S \supseteq T \}$

Corollary 2.

 $(\mathsf{CTol}(L), \cap, \lor, *, \backslash, /, \bigtriangleup)$ is a complete integral residuated lattice.

Corollary 2.

 $(\mathsf{CTol}(L), \cap, \lor, *, \backslash, /, \bigtriangleup)$ is a complete integral residuated lattice.

We note that in [BK] it was also shown that on lattice $(CTol(L), \cap, \vee)$ can be defined a complete integral residuated lattice.

The corresponding integral quantale was $(CTol(L), \cap, \otimes)$, and the binary operation \otimes was defined as follows:

 $S \otimes T = (S \circ \geq \circ T) \cap (T \circ \leq \circ S).$

Corollary 2.

 $(\mathsf{CTol}(L), \cap, \lor, *, \backslash, /, \bigtriangleup)$ is a complete integral residuated lattice.

We note that in [BK] it was also shown that on lattice $(CTol(L), \cap, \vee)$ can be defined a complete integral residuated lattice.

The corresponding integral quantale was $(CTol(L), \cap, \otimes)$, and the binary operation \otimes was defined as follows:

$$S \otimes T = (S \circ \geq \circ T) \cap (T \circ \leq \circ S).$$

・ロン ・四 と ・ ヨ と ・ ヨ と … ヨ

Here we proved

Proposition 1.

If L is a complete lattice and S, $T \in CTol(L)$, then $S \otimes T = S * T$.

Corollary 2.

 $(\mathsf{CTol}(L), \cap, \lor, *, \backslash, /, \bigtriangleup)$ is a complete integral residuated lattice.

We note that in [BK] it was also shown that on lattice $(CTol(L), \cap, \vee)$ can be defined a complete integral residuated lattice.

The corresponding integral quantale was $(CTol(L), \cap, \otimes)$, and the binary operation \otimes was defined as follows:

$$S \otimes T = (S \circ \geq \circ T) \cap (T \circ \leq \circ S).$$

Here we proved

Proposition 1.

If L is a complete lattice and $S, T \in CTol(L)$, then $S \otimes T = S * T$.

Important notation. If $T \subseteq L^2$ is a complete tolerance of (L, \lor, \land) , then for any $a \in L$ we define:

$$a_{\mathcal{T}}:=igwedge \{z\in L\mid (a,z)\in \mathcal{T}\} ext{ and } a^{\mathcal{T}}:=igwedge \{z\in L\mid (a,z)\in \mathcal{T}\}.$$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

It is known that the map $\lambda: x \mapsto x_T, x \in L$ is a decreasing complete \vee -endomorphism, and $\mu: x \mapsto x^T, x \in L$ is an increasing complete \wedge -endomorphism of the lattice $L, \lambda(x) \leq x \leq \mu(x)$, for all $x \in L$, moreover, λ and μ form a *residuated (adjoint) pair*, i.e.

 $\lambda(x) \leq y \iff x \leq \mu(y)$. (*)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

It is known that the map $\lambda: x \mapsto x_T, x \in L$ is a decreasing complete \vee -endomorphism, and $\mu: x \mapsto x^T, x \in L$ is an increasing complete \wedge -endomorphism of the lattice $L, \lambda(x) \leq x \leq \mu(x)$, for all $x \in L$, moreover, λ and μ form a *residuated (adjoint) pair*, i.e.

 $\lambda(x) \leq y \iff x \leq \mu(y)$. (*)

Conversely, if $\lambda: L \to L$, $\mu: L \to L$ is an adjoint pair of maps such that $\lambda(x) \leq x$ (and equivalently, $x \leq \mu(x)$), for all $x \in L$, then

$$T_{\lambda} := \{ (x, y) \in L^2 \mid \lambda(x \lor y) \le x \land y \}$$

$$(2.1)$$

is a complete tolerance of the complete lattice L.

It is known that the map $\lambda: x \mapsto x_T, x \in L$ is a decreasing complete \vee -endomorphism, and $\mu: x \mapsto x^T, x \in L$ is an increasing complete \wedge -endomorphism of the lattice $L, \lambda(x) \leq x \leq \mu(x)$, for all $x \in L$, moreover, λ and μ form a *residuated (adjoint) pair*, i.e.

 $\lambda(x) \leq y \iff x \leq \mu(y)$. (*)

Conversely, if $\lambda: L \to L$, $\mu: L \to L$ is an adjoint pair of maps such that $\lambda(x) \leq x$ (and equivalently, $x \leq \mu(x)$), for all $x \in L$, then

$$T_{\lambda} := \{ (x, y) \in L^2 \mid \lambda(x \lor y) \le x \land y \}$$

$$(2.1)$$

is a complete tolerance of the complete lattice L.

Denote by Cdend(L) the complete decreasing \lor -endomorphism of L. Cdend(L) can be ordered in a natural way; for any $\rho, \sigma \in Cdend(L)$,

$$\rho \le \sigma \iff \rho(x) \le \sigma(x), \text{ for all } x \in L.$$
(2.2)

 $(Cdend(L), \leq)$ is a complete lattice, and the mapping $\lambda \mapsto T_{\lambda}$ is a dual lattice isomorphism between $(Cdend(L), \leq)$ and $(CTol(L), \subseteq)$ (see [J1] or [K]). In other words,

$$\rho \le \sigma \Leftrightarrow T_{\sigma} \subseteq T_{\rho}, \tag{2.3}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

for all $\rho, \sigma \in \text{Cdend}(L)$. Moreover, λ is idempotent $(\lambda \circ \lambda = \lambda)$ iff T_{λ} is transitive, i.e. it is a *complete congruence* of L (cf. [J2]).

 $(Cdend(L), \leq)$ is a complete lattice, and the mapping $\lambda \mapsto T_{\lambda}$ is a dual lattice isomorphism between $(Cdend(L), \leq)$ and $(CTol(L), \subseteq)$ (see [J1] or [K]). In other words,

$$\rho \le \sigma \Leftrightarrow T_{\sigma} \subseteq T_{\rho}, \tag{2.3}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

for all $\rho, \sigma \in \text{Cdend}(L)$. Moreover, λ is idempotent $(\lambda \circ \lambda = \lambda)$ iff T_{λ} is transitive, i.e. it is a *complete congruence* of L (cf. [J2]).

Remark 2.

In view of [K], λ_{S*T} , the complete \lor -endomorphisms corresponding to S * T satisfies $\lambda_{S*T} = \lambda_s \circ \lambda_T$.

 $(Cdend(L), \leq)$ is a complete lattice, and the mapping $\lambda \mapsto T_{\lambda}$ is a dual lattice isomorphism between $(Cdend(L), \leq)$ and $(CTol(L), \subseteq)$ (see [J1] or [K]). In other words,

$$\rho \le \sigma \Leftrightarrow T_{\sigma} \subseteq T_{\rho}, \tag{2.3}$$

イロン 不同 とくほう イヨン

3

for all $\rho, \sigma \in \text{Cdend}(L)$. Moreover, λ is idempotent $(\lambda \circ \lambda = \lambda)$ iff T_{λ} is transitive, i.e. it is a *complete congruence* of L (cf. [J2]).

Remark 2.

In view of [K], λ_{S*T} , the complete \lor -endomorphisms corresponding to S * T satisfies $\lambda_{S*T} = \lambda_s \circ \lambda_T$.

Our starting observation

Let $\mathbb{Q} = (L, \lor, \odot)$ be an integral quantale and $\mathcal{L} = (L, \lor, \land, \odot, \backslash, /, 0, 1)$ the complete integral residuated lattice induced by \mathbb{Q} . Then for any $a \in L$ the map $\lambda_a(x) = a \odot x$, $x \in L$ is a complete \lor -endomorphism, and $\mu_a(x) = a \backslash x$, $x \in L$ is a complete \land -endomorphism, and they form a residuated pair, i.e:

$$\lambda_a(x) \leq y \Leftrightarrow a \odot x \leq y \Leftrightarrow x \leq a \setminus y \Leftrightarrow x \leq \mu_a(y).$$

Since $\lambda_a(x) = a \odot x \le x$, they determine a complete tolerance of the lattice *L* as follows:

$$T_a := \{ (x, y) \in L^2 \mid a \odot (x \lor y) \le x \land y \}.$$

$$(2.4)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

The maps λ_a , $a \in L$ are called the *left translations* of the monoid (L, \odot) . The *right translations* of (L, \odot) are the maps $\tau_a(x) = x \odot a$, $a \in L$. Since $\lambda_a(x) = a \odot x \le x$, they determine a complete tolerance of the lattice *L* as follows:

$$T_{\mathbf{a}} := \{ (x, y) \in L^2 \mid \mathbf{a} \odot (x \lor y) \le x \land y \}.$$

$$(2.4)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

The maps λ_a , $a \in L$ are called the *left translations* of the monoid (L, \odot) . The *right translations* of (L, \odot) are the maps $\tau_a(x) = x \odot a$, $a \in L$.

3. The main construction

Denote by Σ the set of right translations of (L, \odot) , i.e. $\Sigma = \{\tau_a \mid a \in L\}$, and consider the algebra $\mathcal{A} = (L; \lor, \land, \Sigma, 0, 1)$. Let $CT(\mathcal{A})$ stand for the set of all complete tolerances of \mathcal{A} , i.e. the set of those elements of CTol(L) which are preserved by each $\tau_a \in \Sigma$.

Since $\lambda_a(x) = a \odot x \le x$, they determine a complete tolerance of the lattice *L* as follows:

$$T_a := \{ (x, y) \in L^2 \mid a \odot (x \lor y) \le x \land y \}.$$

$$(2.4)$$

・ロン ・回 と ・ ヨン ・ ヨン - ヨー

The maps λ_a , $a \in L$ are called the *left translations* of the monoid (L, \odot) . The *right translations* of (L, \odot) are the maps $\tau_a(x) = x \odot a$, $a \in L$.

3. The main construction

Denote by Σ the set of right translations of (L, \odot) , i.e. $\Sigma = \{\tau_a \mid a \in L\}$, and consider the algebra $\mathcal{A} = (L; \lor, \land, \Sigma, 0, 1)$. Let $CT(\mathcal{A})$ stand for the set of all complete tolerances of \mathcal{A} , i.e. the set of those elements of CTol(L) which are preserved by each $\tau_a \in \Sigma$.

It is easy to see that $(CT(\mathcal{A}), \subseteq)$ is a complete \cap -subsemilattice of $(CTol(\mathcal{L}), \subseteq)$, hence $(CT(\mathcal{A}), \subseteq)$ is a complete lattice. Since $CT(\mathcal{A})$ is not a complete sublattice of $CTol(\mathcal{L})$ in general, the join in $(CT(\mathcal{A}), \subseteq)$ will be denoted by \sqcup .

Lemma 2.

Let $\mathbb{Q} = (L, \lor, \odot)$ be an integral quantale defined on the lattice (L, \lor, \land) . Then $(CT(\mathcal{A}), \cap, *)$ is an integral subquantale of $(CTol(L), \cap, *)$, and $(CT(\mathcal{A}), \cap, \sqcup, *, \backslash, /, \bigtriangledown, \land)$ is a complete integral residuated lattice, where for every $S, T \in CT(\mathcal{A})$ the operations \backslash and / are defined as

$$S \setminus T = \bigcap \{ Z \in CT(\mathcal{A}) \mid S * Z \supseteq T \}$$
 and (3.1.a)

$$S/T = \bigcap \{ Z \in \mathsf{CT}(\mathcal{A}) \mid Z * S \supseteq T \}$$
(3.1.b)

・吊り イラト イラト

Lemma 2.

Let $\mathbb{Q} = (L, \lor, \odot)$ be an integral quantale defined on the lattice (L, \lor, \land) . Then $(CT(\mathcal{A}), \cap, *)$ is an integral subquantale of $(CTol(L), \cap, *)$, and $(CT(\mathcal{A}), \cap, \sqcup, *, \backslash, /, \bigtriangledown, \land)$ is a complete integral residuated lattice, where for every $S, T \in CT(\mathcal{A})$ the operations \backslash and / are defined as

$$S \setminus T = \bigcap \{ Z \in CT(\mathcal{A}) \mid S * Z \supseteq T \}$$
 and (3.1.a)

$$S/T = \bigcap \{ Z \in \mathsf{CT}(\mathcal{A}) \mid Z * S \supseteq T \}$$
(3.1.b)

イロト 不得 とくほと くほとう ほ

For any $a, b \in L$ the least tolerance $T \in CT(A)$ containing (a, b) is denoted by $T_A(a, b)$ and is called the *principal complete tolerance of* A*corresponding to* (a, b).

Lemma 2.

Let $\mathbb{Q} = (L, \lor, \odot)$ be an integral quantale defined on the lattice (L, \lor, \land) . Then $(CT(\mathcal{A}), \cap, *)$ is an integral subquantale of $(CTol(L), \cap, *)$, and $(CT(\mathcal{A}), \cap, \sqcup, *, \backslash, /, \bigtriangledown, \land)$ is a complete integral residuated lattice, where for every $S, T \in CT(\mathcal{A})$ the operations \backslash and / are defined as

$$S \setminus T = \bigcap \{ Z \in CT(\mathcal{A}) \mid S * Z \supseteq T \}$$
 and (3.1.a)

$$S/T = \bigcap \{ Z \in \mathsf{CT}(\mathcal{A}) \mid Z * S \supseteq T \}$$
(3.1.b)

イロン 不同 とくほう イヨン

3

For any $a, b \in L$ the least tolerance $T \in CT(A)$ containing (a, b) is denoted by $T_A(a, b)$ and is called the *principal complete tolerance of* A *corresponding to* (a, b).

Proposition 2.

Let $\mathbb{Q} = (L, \lor, \odot)$ be an integral quantale. Then for any $a \in L$ we have

$$T_a=T_{\mathcal{A}}(a,1).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

Lemma 3.

Let $\mathbb{Q} = (L, \lor, \odot)$ be an integral quantale. Then

Lemma 3.

Let $\mathbb{Q} = (L, \lor, \odot)$ be an integral quantale. Then (i)(CPT(\mathcal{A}), \cap ,*) is an integral subquantale of (CT(\mathcal{A}), \cap ,*) and of (CTol(L), \cap ,*). (ii) (CPT(\mathcal{A}), \cap , \sqcup ,*, \setminus , $/, \bigtriangledown$, \bigtriangleup) is a complete integral residuated lattice, where for every $S, T \in CT(\mathcal{A}), \setminus$ and / are defined as

$$T_{a} \setminus T_{b} = \bigcap \{ T_{z} \in \operatorname{CPT}(\mathcal{A}) \mid T_{a} * T_{z} \supseteq T_{b} \}, \qquad (3.2.a)$$

$$T_a/T_b = \bigcap \{T_z \in \operatorname{CPT}(\mathcal{A}) \mid T_z * T_a \supseteq T_b\}.$$
 (3.2.b)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

Lemma 3.

Let $\mathbb{Q} = (L, \lor, \odot)$ be an integral quantale. Then (i)(CPT(\mathcal{A}), $\cap, *$) is an integral subquantale of (CT(\mathcal{A}), $\cap, *$) and of (CTol(L), $\cap, *$). (ii) (CPT(\mathcal{A}), $\cap, \sqcup, *, \backslash, /, \bigtriangledown, \bigtriangleup)$ is a complete integral residuated lattice, where for every $S, T \in CT(\mathcal{A}), \backslash$ and / are defined as $T_a \backslash T_b = \bigcap \{ T_z \in CPT(\mathcal{A}) \mid T_a * T_z \supseteq T_b \},$ (3.2.a)

$$T_a/T_b = \bigcap \{T_z \in \operatorname{CPT}(\mathcal{A}) \mid T_z * T_a \supseteq T_b\}.$$
 (3.2.b)

Our next results were proved by using the properties of the quantale CPT(A).

4. Main Results

Theorem 1.

(i) Any integral quantale (L, \lor, \odot) is isomorphic to $(CPT(\mathcal{A}), \cap, *)$, and any complete integral residuated lattice $\mathcal{L} = (L, \lor, \land, \odot, \backslash, /, 0, 1)$ is isomorphic to $(CPT(\mathcal{A}), \cap, \sqcup, *, \backslash, /, \bigtriangledown, \bigtriangleup)$. In particular, we have $T_{a \setminus b} = T_a \setminus T_b$ and $T_{a/b} = T_a / T_b$.

・ロト ・同ト ・ヨト ・ヨト - ヨ

4. Main Results

Theorem 1.

(i) Any integral quantale (L, ∨, ⊙) is isomorphic to (CPT(A), ∩, *), and any complete integral residuated lattice L = (L, ∨, ∧, ⊙, ∖, /, 0, 1) is isomorphic to (CPT(A), ∩, ⊔, *, ∖, /, ▽, △). In particular, we have T_{a\b.} = T_a\T_b and T_{a/b} = T_a/T_b.
(ii) If (L, ∨, ∧, ⊙, →, 0, 1) is commutative, then Φ: L → CPT(A), Φ(a) = T_a, for all a ∈ L is an embedding of the dual of (L, ∨, ∧, ⊙, →, 0, 1) into (CT(A), ∩, ⊔, *, ∖, /, ▽, △).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

4. Main Results

Theorem 1.

(i) Any integral quantale (L, ∨, ⊙) is isomorphic to (CPT(A), ∩, *), and any complete integral residuated lattice L = (L, ∨, ∧, ⊙, ∖, /, 0, 1) is isomorphic to (CPT(A), ∩, ⊔, *, ∖, /, ▽, △). In particular, we have T_{a\b.} = T_a\T_b and T_{a/b} = T_a/T_b.
(ii) If (L, ∨, ∧, ⊙, →, 0, 1) is commutative, then Φ: L → CPT(A), Φ(a) = T_a, for all a ∈ L is an embedding of the dual of (L, ∨, ∧, ⊙, →, 0, 1) into (CT(A), ∩, ⊔, *, ∖, /, ▽, △).

Theorem 2.

Let L be a complete lattice. Then there exists an operation \odot on L such that (L, \lor, \odot) is an integral quantale if and only if there exists an subquantale $(\mathcal{K}, \cap, *)$ of $(\operatorname{CTol}(L), \cap, *)$ with $\triangle \in \mathcal{K}$ such that (L, \leq) is dually isomorphic to (\mathcal{K}, \subseteq) .

Corollary 3.

Let L be a complete lattice. L admits an integral residuated lattice structure if and only if there exists a subquantale $(\mathcal{K}, \cap, *)$ of $(CTol(L), \cap, *)$ with $\triangle \in \mathcal{K}$, such that (L, \leq) is dually isomorphic to (\mathcal{K}, \subseteq) .

- (同) (目) (目) (目)

Corollary 3.

Let L be a complete lattice. L admits an integral residuated lattice structure if and only if there exists a subquantale $(\mathcal{K}, \cap, *)$ of $(CTol(L), \cap, *)$ with $\triangle \in \mathcal{K}$, such that (L, \leq) is dually isomorphic to (\mathcal{K}, \subseteq) .

Properties of the underlying lattice

As an application of Theorem 1, we can deduce some properties of the underlying lattice of finite integral quantales and finite integral residuated lattices.

- (同) (目) (目) (目)

Corollary 3.

Let L be a complete lattice. L admits an integral residuated lattice structure if and only if there exists a subquantale $(\mathcal{K}, \cap, *)$ of $(CTol(L), \cap, *)$ with $\triangle \in \mathcal{K}$, such that (L, \leq) is dually isomorphic to (\mathcal{K}, \subseteq) .

Properties of the underlying lattice

As an application of Theorem 1, we can deduce some properties of the underlying lattice of finite integral quantales and finite integral residuated lattices.

Definitions 3.

(a) A lattice *L* with 0 is called pseudocomplemented if for each $x \in L$ there exists an $x^* \in L$ such that for any $y \in L$, $y \land x = 0 \Leftrightarrow y \leq x^*$. (b) A bounded lattice *L* is called 0-modular, (1-modular) if *L* has no pentagon sublattice N_5 that contains 0 (1, respectively). (c) A pair $a, b \in L$ is called a distributive pair if $c \land (a \lor b) = (c \land a) \lor (c \land b)$ holds for any $c \in L$. The dual notion is a dually distributive pair.

イロン 不得と イヨン イヨン

Theorem 3.

Let $\mathbb{Q} = (L, \lor, \odot)$ be a finite integral quantale. Then (L, \lor, \land) is a dually pseudocomplemented and 1-modular lattice, and any pair of elements $a, b \in L$ with $a \lor b = 1$ is a dually distributive pair in L.

・ロト ・ 同ト ・ ヨト ・ ヨト - -

Theorem 3.

Let $\mathbb{Q} = (L, \lor, \odot)$ be a finite integral quantale. Then (L, \lor, \land) is a dually pseudocomplemented and 1-modular lattice, and any pair of elements $a, b \in L$ with $a \lor b = 1$ is a dually distributive pair in L.

Corollary 4.

The underlying lattice of any finite integral residuated lattice $\mathcal{L} = (L, \lor, \land, \odot, \backslash, /, 0, 1)$ is dually pseudocomplemented and 1-modular, and any $a, b \in L$ with $a \lor b = 1$ is a dually distributive pair in it.

イロト 不得 トイヨト イヨト 二日

- R. Bělohlávek, Fuzzy relational systems, Foundations and principles, Kluwer, New-York, 2002.
- E. Bartl, and M. Krupka, *Residuated lattices of block relations: size reduction of concept lattices*, to appear in the International Journal of General Systems.
- Blyth, T. S., Janowitz, M. F.: Residuation Theory, Pergamon (1972).
- I. Chajda and S. Radeleczki, 0-conditions and tolerance schemes, Acta Mathematica Univ. Comeniane, Vol. LXXII, 2 (2003), 177-184.
- G. Czédli, E. K. Horváth and S. Radeleczki, On tolerance lattices of algebras in congruence modular varieties, Acta Math. Hungarica, 100 (1-2) (2003), 9-17.
- R. P. Dilworth and M. Ward, Residuated lattices, Trans. Amer. Math. Soc. **45** (1939), 335-354.

・同 ・ ・ ヨ ・ ・ ヨ ・ …

- N. Galatos, P. Jipsen, T. Kowalski, and H. Ono, Residuated Lattices: An Algebraic Glimpse at Substructural Logics, (Vol. 151). Elsevier, 2007.
- M. F. Janowitz, *Decreasing Baer semigroups*, Glasgow Mathematical Journal, **10**/1 (1969), 46-51.
- Janowitz, M. F.: Tolerances and congruences on lattices, Czechoslovak Math. J. **36**, 108–115 (1986).
- K. Kaarli and A. Pixley, Polynimial completenes in algebraic systems, CRC Press, Boca Raton, 2000.
- C.J. Mulvey, *Quantales*, in Hazewinkel, Michiel: Encyclopedia of Mathematics, Springer, 2001.
- R. Pöschel and S. Radeleczki, *Related structures with involution*, Acta Math. Hungar., **123** (1-2) (2009), 169-185.

- 人間 ト くき ト くき ト … き

Thank You for your kind attention !

A 10

э

Thank You for your kind attention !

A 10

э