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Databases, tables, sqls . . .
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Operations on tables: the natural join

Name Surname Item
Luigi Santocanale 33
Alan Turing 21

./

Item Description
33 Book
33 Livre
21 Machine

=

Name Surname Item Description
Luigi Santocanale 33 Book
Luigi Santocanale 33 Livre
Alan Turing 21 Machine
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Operations on tables: the inner union

Name Surname Item
Luigi Santocanale 33
Alan Turing 21

∪
Name Surname Sport
Diego Maradona Football
Usain Bolt Athletics

=

Name Surname
Luigi Santocanale
Alan Turing

Diego Maradona
Usain Bolt
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Lattices from databases

Proposition. [Spight & Tropashko, 2006] The set of tables, whose
columns are indexed by a subset of A and values are from a set D,
is a lattice, with natural join as meet and inner union as join.
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The relational lattices R(D,A)

A a set of attributes, D a set of values.

An element of R(D,A):

I a pair (X ,T ) with X ⊆ A and T ⊆ DX .

We have

(X1,T1) ≤ (X2,T2) iff X2 ⊆ X1 and T1��X2⊆ T2 .

NB :
this is the Grothendieck construction of a contravariant functor.
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Meet and join

(X1,T1) ∧ (X2,T2) := (X1 ∪ X2,T )

where T = { f | f�Xi ∈ Ti , i = 1, 2 }

= iX1∪X2(T1) ∩ iX1∪X2(T2) ,

(X1,T1) ∨ (X2,T2) := (X1 ∩ X2,T )

where T = { f | ∃i ∈ { 1, 2 },∃g ∈ Ti s.t. g �X1∩X2
= f }

= T1��X1∩X2 ∪T2��X1∩X2 .
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Representation via closure operators

The Hamming/Priess Crampe-Ribenboim ultrametric distance on DA:

δ(f , g) := { x ∈ A | f (x) 6= g(x) } .

NB: this distance takes values in the join-semilattice (P(A), ∅,∪).

A subset X of A + DA is closed if δ(f , g) ∪ { g } ⊆ X implies f ∈ X .

Proposition. [Litak, Mikulás and Hidders 2015] R(D,A) is isomorphic to
the lattice of closed subsets of A + DA.
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Undecidable quasiequational theories

Theorem (Litak, Mikulás and Hidders, 2015)

The set of quasiequations in the signature (∧,∨,H) that are valid
on relational lattices is undecidable.

We refine here this to:

Theorem
The set of quasiequations in the signature (∧,∨) that are valid on
relational lattices is undecidable.

We actually prove a stronger result:

Theorem
It is undecidable whether a finite subdirectly irreducible lattice
embeds into some R(D,A).
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Related undecidable problems

Theorem (Maddux)

The equational theory of 3-dimensional diagonal free cylindric
algebras is undecidable.

Theorem (Hirsch and Hodkinson)

It is not decidable whether a finite simple relation algebras embeds
into a concrete one (a powerset of a binary product).

Theorem (Hirsch, Hodkinson and Kurucz)

It is not decidable whether a finite mutimodal frame has a
surjective p-morphism from a universal product frame.

14/23



Plan

Real world computer science

Relational lattices

Quasiequational theories of relational lattices

The lattice of a frame

p-morphisms from lattice embeddings

15/23



The lattice of a frame

Let F = (X , {Ra | a ∈ A }) be a finite A-frame.

If α ⊆ A, then we say that Y ⊆ X is α-closed if

x0Ra1x1Ra2x2 . . .Ranxn ∈ Y and { a1, . . . , an } ⊆ α
implies x0 ∈ Y .

We say that Z ⊆ A + X is closed if Z ∩ X is Z ∩ A-closed.

Definition. The lattice L(F) is the lattice of closed subsets of
A + X .

We prove:

Theorem
A full rooted F has a surjective p-morphism from a universal
product frame iff L(F) embeds into a relational lattice.
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The easy part: embeddings from p-morphisms

L extends to a contravariant functor.

Moreover if X =
∏

a∈AD (= DA) and A is finite then
L(F) = R(D,A).

Corollary. If a finite multimodal frame F has a p-morphism from a
universal product frame, then L(F) embeds into some R(D,A).
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Lattice embeddings into the R(D,A)s

We study lattice embeddings of the form

i : L −→ R(D,A)

where L is a (subdirectly irreducible) finite atomistic lattice.

We can suppose that:

1. i preserves ⊥,>, so µ a i (use L subdirectly irreducible);

2. A ⊆ J(L) is the set of join-prime elements of L.

Then

v(f ) := { j ∈ A | j ≤ µ(f ) }

is a “module” on the space (DA, δ).
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Some theory of (generalized) ultrametric spaces over P(A)

The subspace induced

F0 = { f ∈ DA | ν(f ) = ∅ } = { f ∈ DA | ν(f ) ∈ J(L) \ A }

is the kernel of a module, therefore it is “pairwise-complete”.

Theorem
Injective objects (pairwise-complete and spherically complete) in
the category of GUM over P(A) are spaces of sections (dependent
product types, Hamming graphs, universal product frames, . . . )
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Completing the proof of the converse

Moral: when A is finite, up to isomorphism, pairwise-complete
complete subspace are universal product frames.

When L = L(F), the restriction of µ to F0 yields the desired
p-morphism.

For this, we also need the following Lemma, proved in our previous
work on axiomatisations of relational lattices.

Lemma
If L is a finite atomistic lattice in the variety generated by
relational lattices, then every non-trivial minimal (irredundant)
join-cover has exactly one element which is not join-prime.
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