Quasi-equational theories of relational lattices¹

Luigi Santocanale LIF, Aix-Marseille Université

SSAOS, Trojanovice, September 2016

https://hal.archives-ouvertes.fr/hal-01344299

¹Preprint available on HAL:

Real world computer science

Relational lattices

Quasiequational theories of relational lattices

The lattice of a frame

p-morphisms from lattice embeddings

Plan

Real world computer science

Relational lattices

Quasiequational theories of relational lattices

The lattice of a frame

p-morphisms from lattice embeddings

Databases, tables, sqls ...

🛯 • 📦 • ಶ 🛞 😭	https://	-		phpmy	/admin/i	index.p	hp?la	ang=en-iso-8 🗂 🝷 🔘 Go	G.			
	in horizon Sort by key:			(s) starting from mode and re			100	cells				ľ
phpMyAdmin	←T→	otype	fname	sequence .	type	capture	tsize	values	mandatory	unique	default	
	□	Misc Device	Name	C	oname	text	40		Y	Y		I
tabase:	□	Misc Device	Description	10	string	text	80		N	N		I
ostadm (20) 🗾	□	Misc	Serial Number	20	string	text	40		N	N		ľ
hostadm B applications a valiable_activity B available_data B available_metudata B available_metudata B available_coljects B available_coljects	□	Misc Device	Computer Room	22	string	radio	NULL	Pathfoot,Cottrell,Library.Library Ante-Room,NonCR	N	N		
	□ 2 ×	Misc Device	Rack	23	string	text	10	NULL	N	N		
	□	Misc Device	Rack Position	24	number	text	3	NULL	N	N		
	□	Miso	Height (U)	27	number	text	3	NULL	N	N		
dhcp_db dhcp_excluderange	□	Misc Device	Data Port	30	objectlist				N	N		
dhcp_iprange domains_db hostadm_activity	□	Misc	Power Supply	40	objectlist				N	N		
hostadm_data hostadm_metadata	Γ×		Notes	60	string	textbox	40*4		N	N		
hostadm_new_oids hostadm_objects hostadm_sidepanel hostadm_update_locks network paths	↑_ Che		30 row	With selected : (s) starting from	record #		-	cells				

Databases, tables, sqls . . .

		Server: mysql.sourceforge.net ► Database: phpmyadmin ► Table: lib	ros					
	🖀 Structure 🔚 Browse 💀 SQL 🔊 Search 📑 Insert 🖀 Export	%^{Оре}						
	phpMyAdmin							
		Run SQL query/queries on database phpmyadmin ⑦						
	A 🔤 🖾	SELECT * FROM `libros` WHERE 1						
	phpmyadmin (3)							
	E TEeee							
		Show this query here again						
		Or Location of the text file:						
		Location of the text file:						
		Browse (Max: 2,048KB)						
		Compression:						
		Autodetect ∩ None ∩ "gzipped" ∩ "bzipped"						
		To locart data from a text file into the table	4/23					

Operations on tables: the natural join

=

(,	Item	Description
Name	Surname	ltem		33	Book
Luigi	Santocanale	33	\bowtie		
Alan	Turing	21		33	Livre
/ \\dll	runng	21	J	21	Machine

Name	Surname	ltem	Description
Luigi	Santocanale	33	Book
Luigi	Santocanale	33	Livre
Alan	Turing	21	Machine

Operations on tables: the inner union

U

Name	Surname	ltem
Luigi	Santocanale	33
Alan	Turing	21

=

	Name	Surname	Sport
I	Diego	Maradona	Football
	Usain	Bolt	Athletics

Name	Surname
Luigi	Santocanale
Alan	Turing
Diego	Maradona
Usain	Bolt
	Luigi Alan Diego

Lattices from databases

Proposition. [Spight & Tropashko, 2006] The set of tables, whose columns are indexed by a subset of A and values are from a set D, is a lattice, with natural join as meet and inner union as join.

Plan

Real world computer science

Relational lattices

Quasiequational theories of relational lattices

The lattice of a frame

p-morphisms from lattice embeddings

The relational lattices R(D, A)

A a set of attributes, D a set of values.

An element of R(D, A): • a pair (X, T) with $X \subseteq A$ and $T \subseteq D^X$.

We have

$$(X_1, T_1) \leq (X_2, T_2)$$
 iff $X_2 \subseteq X_1$ and $T_1 ||_{X_2} \subseteq T_2$.

NB:

this is the Grothendieck construction of a contravariant functor.

Meet and join

$$(X_1, T_1) \land (X_2, T_2) := (X_1 \cup X_2, T)$$

where $T = \{ f \mid f_{\uparrow_{X_i}} \in T_i, i = 1, 2 \}$
 $= i_{X_1 \cup X_2}(T_1) \cap i_{X_1 \cup X_2}(T_2),$
 $(X_1, T_1) \lor (X_2, T_2) := (X_1 \cap X_2, T)$

$$(X_1, T_1) \lor (X_2, T_2) := (X_1 \cap X_2, T)$$

where $T = \{ f \mid \exists i \in \{1, 2\}, \exists g \in T_i \text{ s.t. } g_{\restriction X_1 \cap X_2} = f \}$
 $= T_1 \restriction_{X_1 \cap X_2} \cup T_2 \restriction_{X_1 \cap X_2} .$

Representation via closure operators

The Hamming/Priess_Crampe-Ribenboim ultrametric distance on D^A :

$$\delta(f,g) := \{ x \in A \mid f(x) \neq g(x) \}.$$

NB: this distance takes values in the join-semilattice $(P(A), \emptyset, \cup)$.

Representation via closure operators

The Hamming/Priess_Crampe-Ribenboim ultrametric distance on D^A :

$$\delta(f,g) := \{ x \in A \mid f(x) \neq g(x) \}.$$

NB: this distance takes values in the join-semilattice $(P(A), \emptyset, \cup)$.

A subset X of $A + D^A$ is *closed* if $\delta(f, g) \cup \{g\} \subseteq X$ implies $f \in X$.

Representation via closure operators

The Hamming/Priess_Crampe-Ribenboim ultrametric distance on D^A :

$$\delta(f,g) := \{ x \in A \mid f(x) \neq g(x) \}.$$

NB: this distance takes values in the join-semilattice $(P(A), \emptyset, \cup)$.

A subset X of $A + D^A$ is *closed* if $\delta(f, g) \cup \{g\} \subseteq X$ implies $f \in X$.

Proposition. [Litak, Mikulás and Hidders 2015] R(D, A) is isomorphic to the lattice of closed subsets of $A + D^A$.

Real world computer science

Relational lattices

Quasiequational theories of relational lattices

The lattice of a frame

p-morphisms from lattice embeddings

< □ ト < □ ト < ■ ト < ■ ト < ■ ト = の Q () 12/23

Undecidable quasiequational theories

Theorem (Litak, Mikulás and Hidders, 2015)

The set of quasiequations in the signature (\land, \lor, H) that are valid on relational lattices is undecidable.

We refine here this to:

Theorem

The set of quasiequations in the signature (\land, \lor) that are valid on relational lattices is undecidable.

We actually prove a stronger result:

Theorem

It is undecidable whether a finite subdirectly irreducible lattice embeds into some R(D, A).

Related undecidable problems

Theorem (Maddux)

The equational theory of 3-dimensional diagonal free cylindric algebras is undecidable.

Theorem (Hirsch and Hodkinson)

It is not decidable whether a finite simple relation algebras embeds into a concrete one (a powerset of a binary product).

Theorem (Hirsch, Hodkinson and Kurucz)

It is not decidable whether a finite mutimodal frame has a surjective p-morphism from a universal product frame.

Real world computer science

Relational lattices

Quasiequational theories of relational lattices

The lattice of a frame

p-morphisms from lattice embeddings

The lattice of a frame

Let $\mathcal{F} = (X, \{ R_a \mid a \in A \})$ be a finite A-frame.

If $\alpha \subseteq A$, then we say that $Y \subseteq X$ is α -closed if

$$x_0 R_{a_1} x_1 R_{a_2} x_2 \dots R_{a_n} x_n \in Y \text{ and } \{a_1, \dots, a_n\} \subseteq \alpha$$

implies $x_0 \in Y$.

We say that $Z \subseteq A + X$ is closed if $Z \cap X$ is $Z \cap A$ -closed.

The lattice of a frame

Let $\mathcal{F} = (X, \{ R_a \mid a \in A \})$ be a finite A-frame.

If $\alpha \subseteq A$, then we say that $Y \subseteq X$ is α -closed if

$$x_0 R_{a_1} x_1 R_{a_2} x_2 \dots R_{a_n} x_n \in Y \text{ and } \{a_1, \dots, a_n\} \subseteq \alpha$$

implies $x_0 \in Y$.

We say that $Z \subseteq A + X$ is closed if $Z \cap X$ is $Z \cap A$ -closed.

Definition. The lattice $L(\mathcal{F})$ is the lattice of closed subsets of A + X.

The lattice of a frame

Let $\mathcal{F} = (X, \{ R_a \mid a \in A \})$ be a finite A-frame.

If $\alpha \subseteq A$, then we say that $Y \subseteq X$ is α -closed if

$$x_0 R_{a_1} x_1 R_{a_2} x_2 \dots R_{a_n} x_n \in Y$$
 and $\{a_1, \dots, a_n\} \subseteq \alpha$
implies $x_0 \in Y$.

We say that $Z \subseteq A + X$ is closed if $Z \cap X$ is $Z \cap A$ -closed.

Definition. The lattice $L(\mathcal{F})$ is the lattice of closed subsets of A + X.

We prove:

Theorem

A full rooted \mathcal{F} has a surjective *p*-morphism from a universal product frame iff $L(\mathcal{F})$ embeds into a relational lattice.

The easy part: embeddings from *p*-morphisms

L extends to a contravariant functor.

Moreover if $X = \prod_{a \in A} D$ (= D^A) and A is finite then $L(\mathcal{F}) = R(D, A)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○

17/23

The easy part: embeddings from *p*-morphisms

L extends to a contravariant functor.

Moreover if
$$X = \prod_{a \in A} D$$
 (= D^A) and A is finite then $L(\mathcal{F}) = R(D, A)$.

Corollary. If a finite multimodal frame \mathcal{F} has a *p*-morphism from a universal product frame, then $L(\mathcal{F})$ embeds into some R(D, A).

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二圖 → 約

Real world computer science

Relational lattices

Quasiequational theories of relational lattices

The lattice of a frame

p-morphisms from lattice embeddings

Lattice embeddings into the R(D, A)s

We study lattice embeddings of the form

 $i: L \longrightarrow \mathsf{R}(D, A)$

where L is a (subdirectly irreducible) finite atomistic lattice.

Lattice embeddings into the R(D, A)s

We study lattice embeddings of the form

 $i: L \longrightarrow \mathsf{R}(D, A)$

where L is a (subdirectly irreducible) finite atomistic lattice.

We can suppose that:

- 1. *i* preserves \bot , \top , so $\mu \dashv i$ (use *L* subdirectly irreducible);
- 2. $A \subseteq J(L)$ is the set of join-prime elements of *L*.

Lattice embeddings into the R(D, A)s

We study lattice embeddings of the form

 $i: L \to \mathsf{R}(D, A)$

where L is a (subdirectly irreducible) finite atomistic lattice.

We can suppose that:

- 1. *i* preserves \bot , \top , so $\mu \dashv i$ (use *L* subdirectly irreducible);
- 2. $A \subseteq J(L)$ is the set of join-prime elements of *L*.

Then

$$v(f) := \{j \in A \mid j \leq \mu(f)\}$$

is a "module" on the space (D^A, δ) .

Some theory of (generalized) ultrametric spaces over P(A)

The subspace induced

$$F_0 = \{ f \in D^A \mid \nu(f) = \emptyset \} = \{ f \in D^A \mid \nu(f) \in J(L) \setminus A \}$$

is the kernel of a module, therefore it is "pairwise-complete".

Some theory of (generalized) ultrametric spaces over P(A)

The subspace induced

$$F_0 = \{ f \in D^A \mid \nu(f) = \emptyset \} = \{ f \in D^A \mid \nu(f) \in J(L) \setminus A \}$$

is the kernel of a module, therefore it is "pairwise-complete".

Theorem

Injective objects (pairwise-complete and spherically complete) in the category of GUM over P(A) are spaces of sections (dependent product types, Hamming graphs, universal product frames, ...)

Completing the proof of the converse

Moral: when A is finite, up to isomorphism, pairwise-complete complete subspace are universal product frames.

Completing the proof of the converse

Moral: when A is finite, up to isomorphism, pairwise-complete complete subspace are universal product frames.

When $L = L(\mathcal{F})$, the restriction of μ to F_0 yields the desired *p*-morphism.

Completing the proof of the converse

Moral: when A is finite, up to isomorphism, pairwise-complete complete subspace are universal product frames.

When $L = L(\mathcal{F})$, the restriction of μ to F_0 yields the desired *p*-morphism.

For this, we also need the following Lemma, proved in our previous work on axiomatisations of relational lattices.

Lemma

If L is a finite atomistic lattice in the variety generated by relational lattices, then every non-trivial minimal (irredundant) join-cover has exactly one element which is not join-prime.

(Some) references I

Ackerman, N. (2013).

Completeness in generalized ultrametric spaces. p-Adic Numbers Ultrametric Anal. Appl., 5(2):89–105.

Codd, E. F. (1970).

A relational model of data for large shared data banks. *Commun. ACM*, 13(6):377–387.

Hirsch, R. and Hodkinson, I. (2001).

Representability is not decidable for finite relation algebras. *Trans. Amer. Math. Soc.*, 353:1403–1425.

Hirsch, R., Hodkinson, I., and Kurucz, A. (2002). On modal logics between $K \times K \times K$ and $S5 \times S5 \times S5$. The Journal of Symbolic Logic, 67:221–234.

Litak, T., Mikulájs, S., and Hidders, J. (2016).

Relational lattices: From databases to universal algebra. Journal of Logical and Algebraic Methods in Programming, 85(4):540 – 573.

Maddux, R. (1980).

The equational theory of CA_3 is undecidable. The Journal of Symbolic Logic, 45(2):311-316.

Priess-Crampe, S. and Ribemboim, P. (1995).

Equivalence relations and spherically complete ultrametric spaces. *C. R. Acad. Sci. Paris*, 320(1):1187–1192.

(Some) references II

Santocanale, L. (2016a).

Relational lattices via duality.

In Hasuo, I., editor, Coalgebraic Methods in Computer Science, CMCS 2016, volume 9608 of Lecture Notes in Computer Science, pages 195–215. Springer.

★白▶ ★課▶ ★注▶ ★注▶ 一注

23/23

Santocanale, L. (2016b).

The quasiequational theory of relational lattices, in the pure lattice signature. working paper or preprint.

Spight, M. and Tropashko, V. (2006).

First steps in relational lattice. *CoRR*, abs/cs/0603044.