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Special elements in a lattice

Ore (1935, 1942), Birkhoff (1940), Grätzer (1959, 1978), Grätzer
and Schmidt (1961), Hashimoto and Kinugawa (1963), Reilley
(1984)...

An element a of a lattice L is distributive if for every x , y ∈ L,

a ∨ (x ∧ y) = (a ∨ x) ∧ (a ∨ y).

Dually, a is codistributive if

a ∧ (x ∨ y) = (a ∧ x) ∨ (a ∧ y).

An element a of a lattice L is neutral if for all x , y ∈ L,

(a ∨ x) ∧ (a ∨ y) ∧ (x ∨ y) = (a ∧ x) ∨ (a ∧ y) ∨ (x ∧ y).

An element a ∈ L is cancellable, if
from x ∧ a = y ∧ a and x ∨ a = y ∨ a it follows that x = y .
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An element a is neutral if and only if it is distributive,
codistributive and cancellable.

Element a is standard if for all x , y ∈ L,

x ∧ (a ∨ y) = (x ∧ a) ∨ (x ∧ y).

An element satisfying the dual law

x ∨ (a ∧ y) = (x ∨ a) ∧ (x ∨ y),

is called costandard.
a is modular if for all x , y ∈ L,

from a 6 y it follows that a ∨ (x ∧ y) = (a ∨ x) ∧ y .

a is s-modular if for all x , y ∈ L,

from x 6 y it follows that x ∨ (a ∧ y) = (x ∨ a) ∧ y .
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Theorem

If a is an element of a lattice L, then the following conditions are
equivalent:
(1) a is a distributive element in L;
(2) the function na : x 7→ a ∨ x is a homomorphism from L onto
the principal filter ↑a;
(3) the relation θa on L, defined by

x θay if and only if a ∨ x = a ∨ y,

is a congruence.
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Theorem

Let a be an element from a lattice L. The following conditions are
equivalent:
(i) a is codistributive;
(ii) the mapping ma : L −→↓a defined by ma(x) = a ∧ x is a
lattice homomorphism;
(iii) binary relation θa defined by:

(x , y) ∈ θa if and only if a ∧ x = a ∧ y ,

is a congruence relation on L.
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Theorem

Let L be a lattice and a ∈ L. The following conditions are
equivalent:
(i) a is neutral;
(ii) a is distributive, codistributive and cancellable;
(iii) a is standard and costandard;
(iv) The mappings ma and na are homomorphisms and the
mapping x 7→ (x ∧ a, x ∨ a) is an embedding from L to ↓a× ↑a;
(v) For all x , y ∈ L, the sublattice generated by {x , y , a} is
distributive.
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The center of a bounded lattice L is the set of all elements from L
which are neutral and have complements.

Theorem

An element a belongs to the center of a bounded lattice L if and
only if

L ∼= ↓a × ↑a under x 7→ (x ∧ a, x ∨ a).

If a is a codistributive element and if the congruence block [x ]θa of
an x ∈ L has the top element, then we denote it by x .

Proposition

If a is in the center of a lattice L, then every block of the
congruence induced by ma (na) has the top (the bottom) element.
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Proposition

If a is a codistributive element of the lattice L, and the top
elements in the congruence blocks induced by ma exist, then the
following are equivalent:
(i) a is modular and cancellable;
(ii) for every x ∈↓a, the map y 7→ y ∨ a is an isomorphism from
the interval [x , x ] onto the interval [a, x ∨ a].
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Element a of a bounded lattice is exceptional if it is neutral and
the blocks of the congruence θa induced by ma have top elements
which form a sublattice Ma of L.

Proposition

A codistributive element a of a lattice L is exceptional if and only
if the following two statements are true:
(i) for every x ∈↓a, [x , x ] ∼= [a, x ∨ a] under y 7→ y ∨ a, and
(ii) the mapping x 7→ x ∨ a is a homomorphism from ↓a to ↑a.
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An element a of a lattice L is said to be infinitely distributive if
for each family {xi | i ∈ I} ⊆ L

a ∨ (
∧
i∈I

xi ) =
∧
i∈I

(a ∨ xi ).

An element satisfying the dual law is called infinitely
codistributive.

Proposition

The following conditions are equivalent for an element a ∈ L:
(i) a is infinitely distributive;
(ii) the mapping na : L −→↑a defined by na(x) = a ∨ x is a
complete homomorphism.
(iii) Binary relation σa defined by: (x , y) ∈ σa if and only if
a ∨ x = a ∨ y is a complete congruence on L.
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Proposition

An element a of L is infinitely distributive if and only if for every
b ∈↑a, the family {x ∈ L | a ∨ x > b} has the bottom element.

Proposition

An element a of L is infinitely distributive if and only if for every
b ∈↑a, the family {x ∈ L | a ∨ x = b} has the bottom element and
a is a modular element of L.

Theorem

The following statements are equivalent for an element a of L:
(i) a is cancellable and ↓a ∼= ↑a, under x 7→ x ∨ a;
(ii) a is an exceptional infinitely distributive element, and the set
of all bottom elements {x | x ∈ L} is equal to the set Ma of all top
elements.
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Theorem

If a is a neutral element of the lattice L, then an arbitrary lattice
identity is satisfied on L if and only if this identity holds on ↓a and
on ↑a.
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Theorem

(i) (L. Libkin 1995) In an atomistic algebraic lattice an element is
neutral if and only if it is distributive and codistributive.
(ii) (S. Radeleczki 2000) Every costandard element in an atomistic
lattice is neutral.
(iii) (B. Šešelja, A. Tepavčević 2008) A codistributive element s in
an atomistic algebraic lattice L has a complement s ′ which is
distributive. In addition,
(a) The kernels of the homomorphisms x 7→ x ∧ s from L to ↓s and
x 7→ x ∨ s ′ from L to ↑s ′ coincide,
(b) ↑s ′ ∼= ↓s , under x 7→ x ∧ s.
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An element d of a lattice L is called a join-semidistributive if

d ∨ x = d ∨ y ⇒ d ∨ (x ∧ y) = d ∨ x

holds for all x and y in L.
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Weak equivalences on a set

In 1946, O. Bor
◦
uvka, inspired by a paper of O. Ore, introduced

equivalences in a set, as symmetric and transitive relations on a
set.
These are in a bijection with partitions in a set.
Detailed description of the lattice of partitions in a set was done by
H. Draškovičová in 1970.

For an (s)(t) relation ρ on a nonempty set A we use the name
weak equivalence on A. Each weak equivalence (except the
empty relation, which is also a weak equivalence on A) is an
(ordinary) equivalence relation on a subset Aρ of A:

Aρ = {x ∈ A | xρx}.
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Proposition (Draškovičová, 1970)

The collection Ew(A) of all weak equivalences on A is an algebraic
lattice under inclusion. This lattice is upper-continuous and
semimodular.

u
e e e
e e e
e

e
e
e e
e e e∆

The lattice of weak equivalences of a three-element set
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Weak congruence relations

F. Šik, together with his Ph.D. student T.D. Mai (1974), was first
to investigate compatible (s)(t) relations on algebras, mainly on
Ω-groups.
They called these relations congruences in algebras, and
investigated lattices of such relations associated to group-like
algebras.

In 1988. B. Šešelja and G. Vojvodić introduced the notion weak
congruence on an algebra, and described some basic properties of
the corresponding lattice.
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Definition

A weak congruence on an algebra A is a symmetric and
transitive subuniverse of A2.
Equivalently, it is a symmetric, transitive and compatible relation θ
on an algebra A, hence fulfilling the weak reflexivity:

For every nullary operation c in the language of A, cθc .

By the definition, if A has no fundamental nullary operations, then
the empty set is also a weak congruence on this algebra.

Clearly, every congruence on a subalgebra of A is a weak
congruence on A, and vice versa, every nonempty weak
congruence θ on A is a congruence on a subalgebra Bθ of A,
where Bθ := {x ∈ A | x θ x}.
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B. Šešelja Special elements – Weak congruences – Ω-algebras



Definition

A weak congruence on an algebra A is a symmetric and
transitive subuniverse of A2.
Equivalently, it is a symmetric, transitive and compatible relation θ
on an algebra A, hence fulfilling the weak reflexivity:

For every nullary operation c in the language of A, cθc .

By the definition, if A has no fundamental nullary operations, then
the empty set is also a weak congruence on this algebra.

Clearly, every congruence on a subalgebra of A is a weak
congruence on A, and vice versa, every nonempty weak
congruence θ on A is a congruence on a subalgebra Bθ of A,
where Bθ := {x ∈ A | x θ x}.
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The weak congruences on A form an algebraic lattice under
inclusion, denoted by Conw(A).

The congruence lattice Con(A) of A is a principal filter in
Conw(A), generated by the diagonal relation ∆ of A.

The congruence lattice of any subalgebra of A is an interval
sublattice of Conw(A).

The subalgebra lattice Sub(A) is isomorphic to the principal ideal
generated by ∆, by sending each weak congruence θ contained in
∆ to its domain.

Therefore, both the subalgebra lattice and the congruence lattice
of an algebra may be recovered and investigated within a single
algebraic lattice.
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Congruence Intersection Property, CIP

If ρ is a congruence on a subalgebra of A, then let

ρA :=
⋂

(θ ∈ ConA | ρ ⊆ θ).

In the lattice of weak congruences, ρA = ρ ∨∆.
A is said to have the congruence intersection property (CIP) if
for any ρ ∈ConB, θ ∈Con C, B, C ∈SubA,

(ρ ∩ θ)A = ρA ∩ θA.

In lattice terms, an algebra has the CIP if and only if

∆ ∨ (ρ ∧ θ) = (∆ ∨ ρ) ∧ (∆ ∨ θ).

Hence, A has the CIP if and only if ∆ is a distributive element of
the lattice C wA, if and only if n∆ : ρ 7→ ρ∨∆ is a homomorphism
from Conw(A) onto ↑∆.

B. Šešelja Special elements – Weak congruences – Ω-algebras



Congruence Intersection Property, CIP

If ρ is a congruence on a subalgebra of A, then let

ρA :=
⋂

(θ ∈ ConA | ρ ⊆ θ).

In the lattice of weak congruences, ρA = ρ ∨∆.
A is said to have the congruence intersection property (CIP) if
for any ρ ∈ConB, θ ∈Con C, B, C ∈SubA,

(ρ ∩ θ)A = ρA ∩ θA.

In lattice terms, an algebra has the CIP if and only if

∆ ∨ (ρ ∧ θ) = (∆ ∨ ρ) ∧ (∆ ∨ θ).

Hence, A has the CIP if and only if ∆ is a distributive element of
the lattice C wA, if and only if n∆ : ρ 7→ ρ∨∆ is a homomorphism
from Conw(A) onto ↑∆.
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A special case of the CIP is the weak congruence intersection
property (wCIP).

An algebra A satisfies the wCIP if for any congruence ρ on a
subalgebra of A and for any congruence θ on A,

(ρ ∩ θ)A = ρA ∩ θ.

Equivalently, A has the wCIP if and only if for any ρ, θ ∈ CwA,

∆ 6 θ implies ∆ ∨ (ρ ∧ θ) = (∆ ∨ ρ) ∧ θ.

That is, A has the wCIP if and only if ∆ is a modular element in
the lattice Conw(A).

B. Šešelja Special elements – Weak congruences – Ω-algebras



A special case of the CIP is the weak congruence intersection
property (wCIP).
An algebra A satisfies the wCIP if for any congruence ρ on a
subalgebra of A and for any congruence θ on A,

(ρ ∩ θ)A = ρA ∩ θ.

Equivalently, A has the wCIP if and only if for any ρ, θ ∈ CwA,

∆ 6 θ implies ∆ ∨ (ρ ∧ θ) = (∆ ∨ ρ) ∧ θ.

That is, A has the wCIP if and only if ∆ is a modular element in
the lattice Conw(A).
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Varieties satisfying the CIP

As it is known, an algebra A is Abelian if it satisfies the term
condition (TC): For each term t(x , y) in the language of A and
for all a, b, c and d in A (where x stands for the n-tuple x1, . . . , xn)
if t(a, c) = t(a, d), then t(b, c) = t(b, d).

Theorem

If A2 satisfies the weak CIP, then the algebra A is Abelian.

Corollary

Every CIP variety is Abelian.

Since a locally finite variety is Abelian if and only if it is
Hamiltonian (Kiss,Valeriote, 1993), the following holds:

Every locally finite CIP variety is Hamiltonian.
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B. Šešelja Special elements – Weak congruences – Ω-algebras



Varieties satisfying the CIP

As it is known, an algebra A is Abelian if it satisfies the term
condition (TC): For each term t(x , y) in the language of A and
for all a, b, c and d in A (where x stands for the n-tuple x1, . . . , xn)
if t(a, c) = t(a, d), then t(b, c) = t(b, d).

Theorem

If A2 satisfies the weak CIP, then the algebra A is Abelian.

Corollary

Every CIP variety is Abelian.

Since a locally finite variety is Abelian if and only if it is
Hamiltonian (Kiss,Valeriote, 1993), the following holds:

Every locally finite CIP variety is Hamiltonian.

B. Šešelja Special elements – Weak congruences – Ω-algebras



Varieties satisfying the CIP

As it is known, an algebra A is Abelian if it satisfies the term
condition (TC): For each term t(x , y) in the language of A and
for all a, b, c and d in A (where x stands for the n-tuple x1, . . . , xn)
if t(a, c) = t(a, d), then t(b, c) = t(b, d).

Theorem

If A2 satisfies the weak CIP, then the algebra A is Abelian.

Corollary

Every CIP variety is Abelian.

Since a locally finite variety is Abelian if and only if it is
Hamiltonian (Kiss,Valeriote, 1993), the following holds:

Every locally finite CIP variety is Hamiltonian.
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Theorem

A CM Abelian variety has the CIP if and only if it has a constant
term operation.

Theorem

A CM variety is Abelian if and only if it has the wCIP.

The above equivalences are not generally satisfied for single
algebras in CM varieties. As an example we mention the
eight-element quaternion group, which satisfies the CIP, but fails
to be Abelian.

Theorem

If a variety V is CM and SM, then it is a CIP variety.

Problem

Which (possibly locally finite) Abelian (or Hamiltonian) varieties
possess the CIP?
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Congruence Extension Property, CEP

Recall that an algebra A has the Congruence Extension
Property, the CEP, if for any congruence ρ on a subalgebra B of
A, there is a congruence θ on A, such that ρ = B2 ∩ θ.

Theorem

The following are equivalent for an algebra A :
(i) A has the CEP;
(ii) in Conw(A), for ρ, θ ∈ ConB, B ∈ SubA,

ρ ∨∆ = θ ∨∆ implies ρ = θ;
(iii) for ρ, θ ∈ Conw(A),

ρ 6 θ implies ρ ∨ (∆ ∧ θ) = (ρ ∨∆) ∧ θ;
(iv) for ρ ∈ Conw(A), B ∈ SubA,

ρ 6 B2 implies ρ ∨ (∆ ∧ B2) = (ρ ∨∆) ∧ B2;
(v) for ρ, θ ∈ Conw(A),
ρ ∨ (∆ ∧ θ) = (ρ ∨∆) ∧ (ρ ∨ θ).
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Corollary

An algebra A has the CIP and the CEP if and only if ∆ is a
neutral element in the lattice Conw(A).

Hence, A has both, the CIP and the CEP, if and only if the
mapping p∆ : ρ 7→ (Bρ, ρ ∨∆), where Bρ = {x ∈ A | x ρ x}, is an
embedding of the lattice Conw(A) into the direct product
SubA× ConA.
If ∆ has a complement, i.e., if it belongs to the center of
Conw(A), then p∆ is an isomorphism.

Theorem

If an algebra A has the CIP and the CEP, then any lattice identity
holds on Conw(A) if and only if it holds on SubA and on ConA.
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∗CIP

An algebra A is said to posses the ∗CIP if for any family
{ρi | i ∈ I} of congruences on subalgebras of A (ρi ∈ Ai ),⋂

(ρi | i ∈ I )A =
⋂

((ρi )A | i ∈ I ).

Obviously, A has the ∗CIP if and only if ∆ is an infinitely
distributive element in the lattice Conw(A), i.e., if

∆ ∨
∧
i∈I
ρi =

∧
i∈I

(∆ ∨ ρi ).
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Lattice identities in Conw(A)

Proposition

If an algebra A has the CIP and the CEP, and SubA and ConA
are modular (distributive) lattices, then also its lattice of weak
congruences is modular (distributive).

For the converse, observe that in a modular lattice every
codistributive element is neutral.

Theorem

An algebra A has modular (distributive) lattice of weak
congruences if and only if SubA and ConA are modular
(distributive) lattices and A has the CIP and the CEP.
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Theorem

The lattice of weak congruences of an algebra A is relatively
complemented if and only if all of the following conditions are
satisfied:
- A has at least one nullary operation,
- no nontrivial congruence on A has a block which is a subalgebra
of A,
- A satisfies the CEP and the CIP, and
- both SubA and ConA are relatively complemented lattices.
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Theorem

Let A be an algebra which has the CIP. Then the weak congruence
lattice of A is complemented if and only if the following conditions
hold:
- A has at least one nullary operation;
- no congruence on A has a block which is a proper subalgebra of
A;
- SubA and ConA are complemented lattices.

Corollary

The weak congruence lattice of an algebra A is Boolean if and
only if A satisfies conditions:
(i) for every subalgebra B, ConB is isomorphic with ConA, under
ρ 7→ ρA and
(ii) SubA and ConA are Boolean lattices.
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Weak congruences on groups and rings

For every group G there is a 1-1 correspondence between weak
congruences and ordered pairs (H,K ) of subgroups of G, such that
K / H.
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Theorem (Czédli, Šešelja, Tepavčević, 2009)

For any finite group G the following five conditions are equivalent.
(i) G is a Dedekind group;
(ii) G has the CIP;
(iii) ∆ is a join-semidistributive element in Conw(G );
(iv) for every normal subgroup N of G,

CN := {K ∈ Sub(G ) : ∃H ∈ SubN(K ) with (H)G = N}

is a sublattice of Sub(G );
(v) for every normal subgroup N of G, CN is closed with respect to
intersection.
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Theorem (Czédli, Erné, Šešelja, Tepavčević, 2009)

The following statements on a group G are equivalent:

(1) G is a Dedekind group.

(2) Conw(G ) is modular.

(3) ∆ is a standard (equivalently, a neutral) element of Conw(G ).

(4) G has the CIP and the CEP.

Recall that Ore’s Theorem says that the locally cyclic groups are
exactly those with a distributive subgroup lattice.

Corollary

A group is locally cyclic if and only if its weak congruence lattice is
distributive.

B. Šešelja Special elements – Weak congruences – Ω-algebras
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We call a ring Hamiltonian if each subring is an ideal.

Theorem (Czédli, Erné, Šešelja, Tepavčević, 2009)

A ring is Hamiltonian if and only if it is generated by its
Hamiltonian subrings and has a modular weak congruence lattice
(or ∆ is a neutral element of it).

Example
In the ring Z of all integers, the subrings coincide with the additive
subgroups nZ and with the ideals. Thus Z is Hamiltonian. The
weak congruence lattice Conw(Z) is distributive, being isomorphic
to

D≥ = {(x , y) ∈ D2 | x ≥ y},

where D is the lattice of all natural numbers (including 0), ordered
by the dual of the divisibility relation.

B. Šešelja Special elements – Weak congruences – Ω-algebras



We call a ring Hamiltonian if each subring is an ideal.
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A ring is Hamiltonian if and only if it is generated by its
Hamiltonian subrings and has a modular weak congruence lattice
(or ∆ is a neutral element of it).

Example

In the ring Z of all integers, the subrings coincide with the additive
subgroups nZ and with the ideals. Thus Z is Hamiltonian. The
weak congruence lattice Conw(Z) is distributive, being isomorphic
to

D≥ = {(x , y) ∈ D2 | x ≥ y},

where D is the lattice of all natural numbers (including 0), ordered
by the dual of the divisibility relation.
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Proposition

Every module satisfies the CEP and the CIP. In addition, the
lattice of weak congruences of a module is modular.

Theorem (Chajda, Šešelja, Tepavčević, 1995)

The variety of modules is weak congruence modular.

Theorem (Chajda, Šešelja, Tepavčević, 1995)

A variety V which has a nullary operation in the similarity type is
weak congruence modular if and only if V is polynomially
equivalent to the variety of modules over a ring with unit.
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The CIP for groups

If H is a subgroup of a group G, then let H be the normal closure
of H, i.e., the smallest normal subgroup of G containing H.
Then G has the CIP if and only if for every pair of subgroups H, K ,

H ∩ K = H ∩ K .

Analogously, G satisfies the ∗CIP if and only if⋂
i∈I

Hi =
⋂
i∈I

Hi ,

for every family {Hi | i ∈ I} of subgroups.

Theorem

A finite group G is a Dedekind group if and only if it satisfies the
CIP.

Theorem

A group G is a Dedekind group if and only if it satisfies the ∗CIP.
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B. Šešelja Special elements – Weak congruences – Ω-algebras



Problem

Is it true that a group is a Dedekind one if and only if it satisfies
the CIP?

V.N. Obraztsov (1998) proved that there exists a group G such
that
- G is torsion-free;
- in G every two non trivial cyclic subgroups have a non-trivial
intersection;
- G is simple.
Obviously such a group has the CIP but it is not a Dedekind one.
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Representation of lattices by weak congruences

Bacic representation problem

Represent an algebraic lattice by a weak congruence lattice of an
algebra.

Easily solved by Grätzer-Schmidt theorem:
Let B = (A,F ) be an algebra such that ConB is isomorphic with
L. Then the required algebra A can be obtained by adding to F all
the elements from A as nullary operations: A = (A,F ∪ {A}).
Obviously, Conw(A) ∼= ConB ∼= L.

The above construction by which the diagonal relation of the
algebra corresponds to the bottom of the lattice is called the
trivial representation.
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Weak congruence lattice representation problem

Let L be an algebraic lattice and a∈ L. Find an algebra such that
its weak congruence lattice is isomorphic with L, the diagonal
relation being the image of a under the isomorphism.

A representation by which the diagonal relation corresponds to an
element different from the bottom of the lattice is said to be
non-trivial.
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Examples: lattices without non-trivial
representations
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∆-suitable elements of a lattice

Let L be an algebraic lattice. An element a∈ L is said to be
∆-suitable if there is an algebra A such that the weak congruence
lattice Conw(A) is isomorphic to L, and ∆ corresponds to a under
the isomorphism.

Proposition

Every ∆-suitable element of a lattice is co-distributive.
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Proposition

A ∆-suitable element a ∈ L satisfies the following:

if x ∧ y 6= 0 then x ∨ y = x ∨ y;

if x 6= 0 and x < y, then y ∧ a 6= y ∧ a;

if x ≺ a, then
∨

(y ∈ ↑a | y ∨ x < 1) 6= 1;

If y ∈↓a and x ≺ y, then there exists z ∈ [y , y ], such that
- for all t ∈ [x , x ], the set {c ∈ Ext(t) | c 6 z} is either empty
or has the top element, and
- for all t ∈ [x , x ], the set {c ∈ Ext(t) | c 66 z} is an antichain
(possibly empty), where

Ext(t) := {w ∈ [y , y ] | w ∩ x = t}.
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Proposition

If a is a ∆-suitable element of the lattice L, then the following hold:

x ∧ a < y ∧ a implies x ∨ a < y ∨ a for all x , y ∈ L if and only
if every algebra representing L is Hamiltonian;

a is a cancellable element in L if and only if every algebra
representing L has the CEP;

a is a distributive element in L if and only if every algebra
representing L has the CIP;

x ∨ a = 1 for every x ∈ L if and only if no congruence on an
algebra representing L has a block which is a proper
subalgebra;
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x ≺ a implies x ∨ a < 1 for every x ∈ L if and only if every
algebra representing L is quasi-Hamiltonian;

a has a complement in L if and only if every algebra
representing L has at least one nullary operation and has no
congruence whose block is a proper subalgebra.

B. Šešelja Special elements – Weak congruences – Ω-algebras



x ≺ a implies x ∨ a < 1 for every x ∈ L if and only if every
algebra representing L is quasi-Hamiltonian;

a has a complement in L if and only if every algebra
representing L has at least one nullary operation and has no
congruence whose block is a proper subalgebra.
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Theorem

If a is a ∆-suitable element belonging to the center of a lattice L,
then every algebra representing L satisfies the following:

A has at least one nullary operation;

A has the CEP and the CIP;

for every subalgebra B of A, ConB is isomorphic with ConA;

A is not Hamiltonian, moreover no congruence on A has a
block which is a subalgebra of A.
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In the free distributive lattice with three generators, the generating
elements (and, trivially, the bottom) are the only ones which are
∆-suitable.

Hence, there is one possible non-trivial representation of this
lattice.
Every algebra representing this lattice:

is non-Hamiltonian;

has nullary operations;

satisfy the CEP and the CIP;

all its proper subalgebras are Hamiltonian.
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B. Šešelja Special elements – Weak congruences – Ω-algebras



In the free distributive lattice with three generators, the generating
elements (and, trivially, the bottom) are the only ones which are
∆-suitable.
Hence, there is one possible non-trivial representation of this
lattice.
Every algebra representing this lattice:

is non-Hamiltonian;

has nullary operations;

satisfy the CEP and the CIP;

all its proper subalgebras are Hamiltonian.
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In a complete and atomic Boolean algebra B all elements except
the top are ∆-suitable.

Hence, for every a ∈ B, a 6= 1, there could be a representation of
B by weak congruences.
The representation is not trivial if a 6= 0. In this case, every
algebra A representing B has the following properties:

A has at least one nullary operation in its similarity type;

A satisfies the CEP and the CIP;

A is not Hamiltonian, neither quasi-Hamiltonian;

no congruence on A has a block which is a subalgebra of A;

all congruence lattices of subalgebras of A are isomorphic
with ConA.
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Theorem

The weak congruence lattice of an algebra A is atomistic if and
only if all the following conditions are fulfilled:

1 The subalgebra lattice of A is atomistic;

2 A has the smallest nontrivial subalgebra Bm whose
congruence lattice is atomistic;

3 Every congruence on every subalgebra is an extension of a
congruence on the smallest subalgebra.
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Particular solution

A nontrivial representation problem is solved in a case L = L1 × L2

where L1 and L2 are algebraic lattices, L2 having a single co-atom.
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Theorem (Šešelja, Stepanović, Tepavčević)

Let L be an algebraic lattice and a ∈ L an element from the center
of the lattice, such that ↑a has a single co-atom.

Then, there is an algebra A, whose weak congruence lattice
Conw(A) is isomorphic with L under a mapping sending ∆ to a.
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B. Šešelja Special elements – Weak congruences – Ω-algebras



References

Tran Duc Mai, Partitions and congruences in algebras. I Basic
properties, II, III Archivum Math. 10 (1974) 111-122.
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Introduction to Ω-structures

In 1977., Fourman and Scott introduced models for intuitionistic
predicate logic. These were Ω-sets, or Heyting-valued sets, Ω being
a Heyting algebra.

M.P. Fourman and D.S. Scott, Sheaves and logic, Lecture
Notes in Mathematics, vol. 753, Springer, Berlin, Heidelberg,
New York, 1979, 302–401.

See also

F. Borceux, R. Cruciani, Skew Omega-sets coincide with
Omega-posets, Cahiers de topologie et géométrie différentielle
catégoriques 39.3 (1998): 205-220, and

F. Borceux, A hanbook of categorical algebra, volume 3,
categories of sheaves, Cambridge University Press, 1994.
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An Ω-set is a nonempty set equipped with an Ω-valued equality.

The notion has been further applied to non-classical predicate
logics e.g.:

G.P. Monro, Quasitopoi, logic and Heyting-valued models,
Journal of pure and applied algebra, (1986) 42(2), 141-164,

E. Palmgren, S.J. Vickers, Partial Horn logic and cartesian
categories, Annals of Pure and Applied Logic, (2007) 145(3),
314-353.
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B. Šešelja Special elements – Weak congruences – Ω-algebras



An Ω-set is a nonempty set equipped with an Ω-valued equality.

The notion has been further applied to non-classical predicate
logics e.g.:

G.P. Monro, Quasitopoi, logic and Heyting-valued models,
Journal of pure and applied algebra, (1986) 42(2), 141-164,

E. Palmgren, S.J. Vickers, Partial Horn logic and cartesian
categories, Annals of Pure and Applied Logic, (2007) 145(3),
314-353.
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Ω-sets and related notions were also applied to foundations of
Fuzzy Set Theory, e.g.:

U. Höhle, Fuzzy sets and sheaves. Part I: basic concepts,
Fuzzy Sets and Systems, (2007) 158(11),

S. Gottwald, Universes of fuzzy sets and axiomatizations of
fuzzy set theory, Part II: Category theoretic approaches,
Studia Logica, (2006) 84(1), 23-50. 1143-1174.

R. Bělohlávek, Fuzzy Relational Systems: Foundations and
Principles, Kluwer Academic/Plenum Publishers, New York,
2002.

R. Bělohlávek, V. Vychodil, Algebras with fuzzy equalities,
Fuzzy Sets and Systems 157 (2006) 161-201.

M. Demirci, Foundations of fuzzy functions and vague algebra
based on many-valued equivalence relations part I: fuzzy
functions and their applications, (part II part III), Int. J.
General Systems 32 (3) (2003) 123-155, 157-175, 177-201.
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Lattice-valued functions and relations

Let Ω be a complete lattice.

A lattice-valued function on a nonempty set X is mapping
µ : X → Ω.

If µ : X → Ω is a lattice-valued function on a set X then for
p ∈ Ω, the set

µp := {x ∈ X | µ(x) > p}

is a p-cut, or a cut set, (cut) of µ.
Obviously,

µp = µ−1(↑p).

Proposition

The collection {µp | p ∈ Ω} of all cuts of the function µ : X → Ω
is a closure system on X .
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A lattice-valued (binary) relation R on A is a lattice-valued
function on A2, i.e., it is a mapping R : A2 → Ω.

R is symmetric if

R(x , y) = R(y , x) for all x , y ∈ A;

R is transitive if

R(x , y) > R(x , z) ∧ R(z , y) for all x , y , z ∈ A.
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Let µ : A→ Ω and R : A2 → Ω be a lattice-valued function a
lattice-valued relation on A, respectively.

Then R is a lattice-valued relation on µ if for all x , y ∈ A

R(x , y) 6 µ(x) ∧ µ(y).

A lattice-valued relation R on µ : A→ Ω is said to be reflexive on
µ or µ-reflexive if

R(x , x) = µ(x) for every x ∈ A.

A symmetric and transitive Ω-valued relation R on A, which is
µ-reflexive is a lattice-valued equivalence on µ : A→ Ω.

A lattice-valued equivalence R on A fulfills the strictness property:

R(x , y) 6 R(x , x) ∧ R(y , y).

A lattice-valued equivalence R on A is a lattice-valued equality,
if it satisfies the separation property:

R(x , y) = R(x , x) = R(y , x) 6= 0 implies x = y .

B. Šešelja Special elements – Weak congruences – Ω-algebras



Let µ : A→ Ω and R : A2 → Ω be a lattice-valued function a
lattice-valued relation on A, respectively.
Then R is a lattice-valued relation on µ if for all x , y ∈ A

R(x , y) 6 µ(x) ∧ µ(y).

A lattice-valued relation R on µ : A→ Ω is said to be reflexive on
µ or µ-reflexive if

R(x , x) = µ(x) for every x ∈ A.

A symmetric and transitive Ω-valued relation R on A, which is
µ-reflexive is a lattice-valued equivalence on µ : A→ Ω.

A lattice-valued equivalence R on A fulfills the strictness property:

R(x , y) 6 R(x , x) ∧ R(y , y).

A lattice-valued equivalence R on A is a lattice-valued equality,
if it satisfies the separation property:

R(x , y) = R(x , x) = R(y , x) 6= 0 implies x = y .
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If A = (A,F ) is an algebra, then the function µ : A→ Ω is
compatible with the operations on A if it is not constantly equal
to 0, and fulfils the following:

For any operation f from F with arity greater than 0,
f : An → A, n ∈ N, and for all a1, . . . , an ∈ A, we have that

n∧
i=1

µ(ai ) 6 µ(f (a1, . . . , an)),

and for a nullary operation c ∈ F , µ(c) = 1.

A lattice-valued relation R : A2 → Ω on an algebra A = (A,F ) is
compatible with the operations in F if the following holds:
For every n-ary operation f ∈ F , for all a1, . . . , an, b1, . . . , bn ∈ A,
and for every constant (nullary operation) c ∈ F

n∧
i=1

R(ai , bi ) 6 R(f (a1, . . . , an), f (b1, . . . , bn));

and R(c, c) = 1.
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B. Šešelja Special elements – Weak congruences – Ω-algebras



If A = (A,F ) is an algebra, then the function µ : A→ Ω is
compatible with the operations on A if it is not constantly equal
to 0, and fulfils the following:
For any operation f from F with arity greater than 0,
f : An → A, n ∈ N, and for all a1, . . . , an ∈ A, we have that

n∧
i=1

µ(ai ) 6 µ(f (a1, . . . , an)),

and for a nullary operation c ∈ F , µ(c) = 1.

A lattice-valued relation R : A2 → Ω on an algebra A = (A,F ) is
compatible with the operations in F if the following holds:

For every n-ary operation f ∈ F , for all a1, . . . , an, b1, . . . , bn ∈ A,
and for every constant (nullary operation) c ∈ F

n∧
i=1

R(ai , bi ) 6 R(f (a1, . . . , an), f (b1, . . . , bn));

and R(c, c) = 1.
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and for every constant (nullary operation) c ∈ F

n∧
i=1

R(ai , bi ) 6 R(f (a1, . . . , an), f (b1, . . . , bn));

and R(c, c) = 1.
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Ω-set

Let Ω be a fixed complete lattice.
In the sequel we use ’Ω-valued’ instead of ’lattice-valued’.

An Ω-set is a pair (A,E ), where A is a nonempty set, and E is a
symmetric and transitive Ω-valued relation on A, fulfilling the
separation property.

For an Ω-set (A,E ), we denote by µ the Ω-valued function on A,
defined by

µ(x) := E (x , x).

We say that µ is determined by E .
By the strictness property, E is an Ω-valued relation on µ, namely,
it is an Ω-valued equality on µ.
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Proposition

If (A,E ) is an Ω-set and p ∈ Ω, then the cut µp is a subset of A,
and the cut Ep is an equivalence relation on µp.

In addition, the collection of all cuts {Ep | p ∈ Ω} of E is a closure
system, a subposet of the lattice of all weak equivalences on A.
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Ω-algebra; identities

Let A = (A,F ) be an algebra and E : A2 → Ω an Ω-valued
equality on A, which is compatible with the operations in F .
Then, (A,E ) is an Ω-algebra.
Algebra A is the underlying algebra of (A,E ).

The function µ : A→ Ω, defined by µ(x) = E (x , x) is obviously
compatible on A.

Proposition

Let (A,E ) be an Ω-algebra. Then the following hold for every
p ∈ Ω:
(i ) The cut µp of µ is a subalgebra of A, and
(ii ) The cut Ep of E is a congruence relation on µp.
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B. Šešelja Special elements – Weak congruences – Ω-algebras



Ω-algebra; identities

Let A = (A,F ) be an algebra and E : A2 → Ω an Ω-valued
equality on A, which is compatible with the operations in F .
Then, (A,E ) is an Ω-algebra.

Algebra A is the underlying algebra of (A,E ).

The function µ : A→ Ω, defined by µ(x) = E (x , x) is obviously
compatible on A.

Proposition

Let (A,E ) be an Ω-algebra. Then the following hold for every
p ∈ Ω:
(i ) The cut µp of µ is a subalgebra of A, and
(ii ) The cut Ep of E is a congruence relation on µp.
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Therefore:

Every Ω-algebra (A,E ) uniquely determines a closure system in
the lattice Conw(A) of weak congruences on A.

The converse:

Theorem

Let A be an algebra and R a closure system in Conw(A) such that
for all a, b ∈ A,

if a 6= b, then (a, b) 6∈
⋂
{R ∈ R | (a, a) ∈ R}.

Then there is a complete lattice Ω and an Ω-algebra (A,E ) with
the underlying algebra A, such that R consists of cuts of E .
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Let
u(x1, . . . , xn) ≈ v(x1, . . . , xn) (briefly u ≈ v)

be an identity in the type of an Ω-algebra (A,E ).

We assume that
variables appearing in terms u and v are from x1, . . . , xn.

Then, (A,E ) satisfies identity u ≈ v (this identity holds on
(A,E )) if the following condition is fulfilled:

n∧
i=1

µ(ai ) 6 E (u(a1, . . . , an), v(a1, . . . , an)),

for all a1, . . . , an ∈ A and the term-operations uA and vA on A
corresponding to terms u and v respectively.
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If Ω-algebra (A,E ) satisfies an identity, then this identity does not
necessarily hold on A.

On the other hand, if the supporting algebra fulfills an identity
then also the corresponding Ω-algebra does.

Proposition

If an identity u ≈ v holds on an algebra A, then it also holds on an
Ω-algebra (A,E ).
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Theorem

Let (A,E ) be an Ω-algebra, and F a set of identities in the
language of A. Then, (A,E ) satisfies all identities in F if and only
if for every p ∈ L the quotient algebra µp/Ep satisfies the same
identities.

In addition, the poset

({µp/Ep | p ∈ Ω},⊆)

is a closure system which is, up to an isomorphism, a subposet of
the weak congruence lattice of A.
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Ω-subalgebra

Let (A,E ) be an Ω-algebra, and E1 : A→ Ω a symmetric and
transitive Ω-relation on A, so that the following holds:
For all x , y ∈ A

E1(x , y) = E (x , y) ∧ E1(x , x) ∧ E1(y , y).

Let also E1 be compatible with the operations in A.

Obviously, (A,E1) is an Ω-algebra and we say that it is an
Ω-subalgebra of (A,E ).

Proposition

If (A,E1) is an Ω-subalgebra of an Ω-algebra (A,E ), and
µ1 : A→ Ω is an Ω-valued function on A, defined by
µ1(x) := E1(x , x), then µ1 is compatible on A.
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B. Šešelja Special elements – Weak congruences – Ω-algebras



Ω-subalgebra

Let (A,E ) be an Ω-algebra, and E1 : A→ Ω a symmetric and
transitive Ω-relation on A, so that the following holds:
For all x , y ∈ A

E1(x , y) = E (x , y) ∧ E1(x , x) ∧ E1(y , y).

Let also E1 be compatible with the operations in A.

Obviously, (A,E1) is an Ω-algebra and we say that it is an
Ω-subalgebra of (A,E ).

Proposition

If (A,E1) is an Ω-subalgebra of an Ω-algebra (A,E ), and
µ1 : A→ Ω is an Ω-valued function on A, defined by
µ1(x) := E1(x , x), then µ1 is compatible on A.
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B. Šešelja Special elements – Weak congruences – Ω-algebras



Ω-subalgebra

Let (A,E ) be an Ω-algebra, and E1 : A→ Ω a symmetric and
transitive Ω-relation on A, so that the following holds:
For all x , y ∈ A

E1(x , y) = E (x , y) ∧ E1(x , x) ∧ E1(y , y).

Let also E1 be compatible with the operations in A.

Obviously, (A,E1) is an Ω-algebra and we say that it is an
Ω-subalgebra of (A,E ).

Proposition

If (A,E1) is an Ω-subalgebra of an Ω-algebra (A,E ), and
µ1 : A→ Ω is an Ω-valued function on A, defined by
µ1(x) := E1(x , x), then µ1 is compatible on A.
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An Ω-subalgebra (A,E1) of (A,E ) fulfills all the identities that the
latter does:

Theorem

Let (A,E1) be an Ω-subalgebra of an Ω-algebra (A,E ). If (A,E )
satisfies the set Σ of identities, then also (A,E1) satisfies all
identities in Σ.
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Example: Ω-group

Let (G,E ) be an Ω-algebra in which G = (G , · ,−1 , e) is an algebra
with a binary operation ( · ), unary operation (−1) and a constant
(e).
Then, (G,E ) is an Ω-group if the following known group identities
hold with respect to E :

x · (y · z) ≈ (x · y) · z ,
x · e ≈ x , e · x ≈ x ,

x · x−1 ≈ e, x−1 · x ≈ e.

In terms of Ω-algebras, these identities are equivalent with
formulas:

(i) E (x · (y · z), (x · y) · z) > µ(x) ∧ µ(y) ∧ µ(z),

(ii) E (x · e, x) > µ(x) and E (e · x , x) > µ(x),

(iii) E (x · x−1, e) > µ(x) and E (x−1 · x , e) > µ(x).
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x · (y · z) ≈ (x · y) · z ,
x · e ≈ x , e · x ≈ x ,

x · x−1 ≈ e, x−1 · x ≈ e.

In terms of Ω-algebras, these identities are equivalent with
formulas:

(i) E (x · (y · z), (x · y) · z) > µ(x) ∧ µ(y) ∧ µ(z),

(ii) E (x · e, x) > µ(x) and E (e · x , x) > µ(x),

(iii) E (x · x−1, e) > µ(x) and E (x−1 · x , e) > µ(x).
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Theorem

Let (G,E ) be an Ω-algebra. Then, (G,E ) is an Ω-group if and only
if for every p ∈ Ω, the cut µp is a subalgebra of G, the cut relation
Ep is a congruence on µp, and the quotient structure µp/Ep is a
group.
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Normal Ω-subgroup

Let G = (G,Eµ) be an Ω-group and N = (G,E ν) an Ω-subgroup
of G.
Then, N is a normal Ω-subgroup of G, if there is an Ω-valued
congruence Θ on G, such that for all x , y ∈ G ,

E ν(x , y) = Eµ(x , y) ∧Θ(e, x) ∧Θ(e, y).

Theorem

An Ω-subgroup N = (G,E ν) of an Ω-group G = (G,Eµ) is a
normal Ω-subgroup of G, if and only if for every p ∈ Ω, νp/E ν

p is a
normal subgroup of the group µp/Eµ

p .

Corollary

If G = (G,Eµ) is a commutative Ω-group, then every Ω-subgroup
of G is normal.
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B. Šešelja Special elements – Weak congruences – Ω-algebras



Normal Ω-subgroup
Let G = (G,Eµ) be an Ω-group and N = (G,E ν) an Ω-subgroup
of G.
Then, N is a normal Ω-subgroup of G, if there is an Ω-valued
congruence Θ on G, such that for all x , y ∈ G ,

E ν(x , y) = Eµ(x , y) ∧Θ(e, x) ∧Θ(e, y).

Theorem

An Ω-subgroup N = (G,E ν) of an Ω-group G = (G,Eµ) is a
normal Ω-subgroup of G, if and only if for every p ∈ Ω, νp/E ν

p is a
normal subgroup of the group µp/Eµ

p .

Corollary

If G = (G,Eµ) is a commutative Ω-group, then every Ω-subgroup
of G is normal.
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Concrete example

G = (N0,⊕,−1 , 0), N0 = {0, 1, 2, . . .}
⊕ – a binary operation on N0:

x ⊕ y :=

{
0 if x = y
x + y if x 6= y

,

−1 – a unary operation on N0 defined by x−1 = x .
A neutral element in G is 0, but ⊕ is not associative, hence G is
not a group.
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µ :=

(
0 1 2 3 . . . n . . .
1 p1 p2 p3 . . . pn . . .

)
.

Eµ 0 1 2 3 4 5 . . .

0 1 0 r 0 r 0 · · ·
1 0 p1 0 r 0 r · · ·
2 r 0 p2 0 r 0 · · ·
3 0 r 0 p3 0 r · · ·
4 r 0 r 0 p4 0 · · ·
5 0 r 0 r 0 p5 · · ·
...

...
...

...
...

...
...

The structure (G,Eµ) is an Ω-group.
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Cut subalgebras:

µ1 – the trivial one-element subalgebra {0}.
For every pn ∈ Ω, µpn = {0,n}.

⊕ 0 n
0 0 n
n n 0

;

Eµ
pn 0 n
0 1 0
n 0 1

.

For every pn ∈ Ω, the quotient structure µpn/Eµ
pn is a two-element

group.
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Relational structures: Ω-poset and Ω-lattice

Let E be an Ω-valued equality on a nonempty set A.
An Ω-valued relation R : A2 → Ω on A is E -antisymmetric, if the
following holds:

R(x , y) ∧ R(y , x) = E (x , y), for all x , y ∈ A.

Let (M,E ) be an Ω-set.
An Ω-valued relation R : M2 → Ω on M is an Ω-valued order on
(M,E ), if it fulfills the strictness property:

R(x , y) 6 R(x , x) ∧ R(y , y),

it is E -antisymmetric, and it is transitive:

R(x , z) ∧ R(z , y) 6 R(x , y) for all x , y , z ∈ M.

A structure (M,E ,R) is an Ω-poset, if (M,E ) is an Ω-set, and
R : M2 → Ω is an Ω-valued order on (M,E ).
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It is clear that by E -antisymmetry, R(x , x) = E (x , x), for every
x ∈ M.

As usual, we denote by µ the Ω-valued function on M, defined by
µ(x) = E (x , x) = R(x , x).

In an Ω-set, every cut Ep of E is a classical equivalence relation on
the cut µp of µ.
Let [x ]Ep be the equivalence class of x ∈ µp.
µp/Ep is the corresponding quotient set: for p ∈ Ω
[x ]Ep := {y ∈ µp | xEpy}, x ∈ µp; µp/Ep := {[x ]Ep | x ∈ µp}.

Proposition

Let (M,E ,R) be an Ω-poset. Then for every p ∈ Ω, the binary
relation ≤p on µp/Ep, defined by
[x ]Ep ≤p [y ]Ep if and only if (x , y) ∈ Rp

is a classic ordering relation.
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Let (M,E ,R) be an Ω-poset and a, b ∈ M. An element c ∈ M is a
pseudo-infimum of a and b, if for every p 6 µ(a) ∧ µ(b) the
following holds:

(i) p 6 R(c , a) ∧ R(c, b) and
for every x ∈ µp
p 6 R(x , a) ∧ R(x , b) implies p 6 R(x , c).

An element d ∈ M is a pseudo-supremum of a, b ∈ M, if for
every p 6 µ(a) ∧ µ(b) the following holds:
(ii) p 6 R(a, d) ∧ R(b, d) and
for every x ∈ µp
p 6 R(a, x) ∧ R(b, x) implies p 6 R(d , x).

It is straightforward that a pseudo-infimum (supremum) of a and b
belongs to µp for every p 6 µ(a) ∧ µ(b).
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A pseudo-infimum and a pseudo-supremum for given a, b ∈ M, if
they exist, are not unique in general.

Proposition

Let (M,E ,R) be an Ω-poset and a, b, c , c1, d , d1 ∈ M.
If c is a pseudo-infimum of a and b, then
µ(a)∧ µ(b) 6 E (c , c1) if and only if c1 is also a pseudo-infimum of
a and b. Analogously, if d is a pseudo-supremum of a and b, then
µ(a)∧ µ(b) 6 E (d , d1) if and only if d1 is also a pseudo-supremum
of a and b.

Since for p 6 q, every equivalence class of µq/Eq is contained in a
class of µp/Ep, we get that pseudo-infima (suprema) of two
elements a, b, if they exist, belong to the same equivalence class in
µp/Ep, for p 6 µ(a) ∧ µ(b).
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We say that an Ω-poset (M,E ,R) is an Ω-lattice as an ordered
structure, if for every a, b ∈ M there exist a pseudo-infimum and
a pseudo-supremum.

Theorem

Let (M,E ,R) be an Ω-poset. Then it is an Ω-lattice as an ordered
structure if and only if for every q ∈ Ω, the poset (µq/Eq, ≤q ) is a
lattice, and the following holds:
for all a, b ∈ M, and p = µ(a) ∧ µ(b),
inf([a]Ep , [b]Ep) ⊆ inf([a]Eq , [b]Eq) and
sup([a]Ep , [b]Ep) ⊆ sup([a]Eq , [b]Eq),
for every q, q 6 p.
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Ω-lattice as Ω-algebra

Let M = (M,u,t) be a bi-groupoid and E : M2 → Ω an Ω-valued
equality on M, hence (M,E ) is supposed to be an Ω-set.
In addition, E should be compatible with operations u and t in
the following sense:
E (x , y) ∧ E (z , t) 6 E (x u z , y u t) and
E (x , y) ∧ E (z , t) 6 E (x t z , y t t).

Proposition

If E is a compatible Ω-valued equality on a bi-groupoid
M = (M,u,t), and µ : M → Ω is defined by µ(x) = E (x , x),
then the following hold:
(i) For all x , y ∈ M,
µ(x) ∧ µ(y) 6 µ(x u y) and µ(x) ∧ µ(y) 6 µ(x t y).
(ii) For every p ∈ Ω, the cut µp of µ is a sub-bi-groupoid of M.
(iii) For every p ∈ Ω, the cut Ep of E is a congruence on µp.
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B. Šešelja Special elements – Weak congruences – Ω-algebras



Ω-lattice as Ω-algebra

Let M = (M,u,t) be a bi-groupoid and E : M2 → Ω an Ω-valued
equality on M, hence (M,E ) is supposed to be an Ω-set.
In addition, E should be compatible with operations u and t in
the following sense:
E (x , y) ∧ E (z , t) 6 E (x u z , y u t) and
E (x , y) ∧ E (z , t) 6 E (x t z , y t t).

Proposition

If E is a compatible Ω-valued equality on a bi-groupoid
M = (M,u,t), and µ : M → Ω is defined by µ(x) = E (x , x),
then the following hold:
(i) For all x , y ∈ M,
µ(x) ∧ µ(y) 6 µ(x u y) and µ(x) ∧ µ(y) 6 µ(x t y).
(ii) For every p ∈ Ω, the cut µp of µ is a sub-bi-groupoid of M.
(iii) For every p ∈ Ω, the cut Ep of E is a congruence on µp.
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Let M = (M,u,t) be a bi-groupoid and (M,E ) an Ω-algebra.
Then (M,E ) is an Ω-lattice as an Ω-algebra (Ω-lattice as an
algebra), if it satisfies the lattice identities:

`1 : x u y ≈ y u x
`2 : x t y ≈ y t x

(commutativity)

`3 : x u (y u z) ≈ (x u y) u z
`4 : x t (y t z) ≈ (x t y) t z

(associativity)

`5 : (x u y) t x ≈ x
`6 : (x t y) u x ≈ x .

(absorption)
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In terms of Ω-algebras for all x , y , z ∈ M, the following formulas
should be satisfied, where, as already indicated, the mapping
µ : M → Ω is defined by µ(x) = E (x , x):

L1 : µ(x) ∧ µ(y) 6 E (x u y , y u x)
L2 : µ(x) ∧ µ(y) 6 E (x t y , y t x)
L3 : µ(x) ∧ µ(y) ∧ µ(z) 6 E ((x u y) u z , x u (y u z))
L4 : µ(x) ∧ µ(y) ∧ µ(z) 6 E ((x t y) t z , x t (y t z))
L5 : µ(x) ∧ µ(y) 6 E ((x u y) t x , x)
L6 : µ(x) ∧ µ(y) 6 E ((x t y) u x , x).

Theorem

Let M = (M,u,t) be a bi-groupoid, and let E be an Ω-valued
compatible equality on M. Then, (M,E ) is an Ω-lattice if and
only if for every p ∈ Ω, the quotient structure µp/Ep is a lattice.
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Equivalence of two approaches

Let (M,E ,R) be an Ω-lattice as an ordered structure.
Using Axiom of Choice, we define two binary operations, u and t
on M as follows:

For every pair a, b of elements from M, a u b is an arbitrary, fixed
pseudo-infimum of a and b, and a t b is an arbitrary, fixed
pseudo-supremum of a and b.

Theorem

If (M,E ,R) is an Ω-lattice as an ordered structure, and
M = (M,u,t) the bi-groupoid in which operations u, t are
introduced above, then (M,E ) is an Ω-lattice as an algebra.
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B. Šešelja Special elements – Weak congruences – Ω-algebras



Equivalence of two approaches

Let (M,E ,R) be an Ω-lattice as an ordered structure.
Using Axiom of Choice, we define two binary operations, u and t
on M as follows:

For every pair a, b of elements from M, a u b is an arbitrary, fixed
pseudo-infimum of a and b, and a t b is an arbitrary, fixed
pseudo-supremum of a and b.

Theorem

If (M,E ,R) is an Ω-lattice as an ordered structure, and
M = (M,u,t) the bi-groupoid in which operations u, t are
introduced above, then (M,E ) is an Ω-lattice as an algebra.
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Theorem

Let M = (M,u,t) be a bi-groupoid, (M,E ) an Ω-lattice as an
algebra and R : M2 → Ω an Ω-valued relation on M defined by
R(x , y) := µ(x) ∧ µ(y) ∧ E (x u y , x).
Then, (M,E ,R) is an Ω-lattice as an ordered structure.
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Example

Let M = {a, b, c , d , e, f , g}, and let Ω be the lattice given in
Figure 1.
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E a b c d e f g

a r p 0 0 0 0 0
b p r 0 0 0 0 0
c 0 0 s q q 0 0
d 0 0 q 1 q 0 0
e 0 0 q q 1 0 0
f 0 0 0 0 0 q 0
g 0 0 0 0 0 0 q

R a b c d e f g

a r r 0 0 r 0 0
b p r 0 0 r 0 0
c 0 0 s q s q q
d r r s 1 1 q q
e 0 0 q q 1 q q
f 0 0 0 0 0 q q
g 0 0 0 0 0 0 q

Table 1: Ω-valued equality E Table 2: Ω-valued order R

E (x , y) = R(x , y) ∧ R(y , x)

(M,E ,R) is an Ω-lattice as an ordered structure.
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B. Šešelja Special elements – Weak congruences – Ω-algebras



E a b c d e f g

a r p 0 0 0 0 0
b p r 0 0 0 0 0
c 0 0 s q q 0 0
d 0 0 q 1 q 0 0
e 0 0 q q 1 0 0
f 0 0 0 0 0 q 0
g 0 0 0 0 0 0 q

R a b c d e f g

a r r 0 0 r 0 0
b p r 0 0 r 0 0
c 0 0 s q s q q
d r r s 1 1 q q
e 0 0 q q 1 q q
f 0 0 0 0 0 q q
g 0 0 0 0 0 0 q

Table 1: Ω-valued equality E Table 2: Ω-valued order R

E (x , y) = R(x , y) ∧ R(y , x)

(M,E ,R) is an Ω-lattice as an ordered structure.

B. Šešelja Special elements – Weak congruences – Ω-algebras



µ =

(
a b c d e f g
r r s 1 1 q q

)
.

The cuts of µ and the cuts of E represented by partitions are:

µ0 = M ; E0 = M2;
µp = {a, b, c , d , e} ; Ep = {{a, b}, {c}, {d}, {e}};
µq = {c , d , e, f , g} ; Eq = {{c , d , e}, {f }, {g}};
µr = {a, b, d , e} ; Er = {{a}, {b}, {d}, {e}};
µs = {c , d , e} ; Es = {{c}, {d}, {e}};
µt = µ1 = {d , e}; Et = E1 = {{d}, {e}}.
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Figure 2: Quotient lattices

B. Šešelja Special elements – Weak congruences – Ω-algebras



Two binary operations on M are constructed by means of
pseudo-infima and pseudo-suprema. In this way, we obtain the
bi-groupoid M = (M,u,t).

u a b c d e f g

a a a d d a b∗∗ c∗∗

b a b d d b a∗∗ g∗∗

c d d c d c c∗ c∗

d d d d d d d∗ d∗

e a b c d e e∗ c∗

f d∗∗ a∗∗ d∗ e∗ c∗ f f
g a∗∗ e∗∗ c∗ e∗ c∗ f g
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t a b c d e f g

a a b e a e f ∗∗ a∗∗

b b b e b e a∗∗ c∗∗

c e e c c e f g
d a b c d e f g
e e e e e e f g
f g∗∗ g∗∗ f f f f g
g b∗∗ g∗∗ g g g g g

(M,E ) is an Ω-lattice as an algebra.
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(submitted).

O.S. Almabruk/Bleblou, B. Šešelja, A. Tepavčević, Normal
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Thank you for your attention!
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