On the relational degree of a clone

Erhard Aichinger

Department of Algebra Johannes Kepler University Linz, Austria

AAA91, Brno, Czech Republic

Supported by the Austrian Science Fund (FWF) in P24077

Definition

Let **A** be an algebra.

 $deg(\mathbf{A}) = min\{d \in \mathbb{N} | Clo(\mathbf{A}) = Pol(Sub(\mathbf{A}^d))\}.$

If no such *d* exists, **A** is not finitely related.

Hence $deg(\mathbf{A}) = min \{ d \in \mathbb{N} | Clo(\mathbf{A}) = Pol Inv^{[d]} Clo(\mathbf{A}) \}.$

Relational degree and interpolation

Definition Let *C* be a clone on *A*, $d \in \mathbb{N}$. Then

$$\mathsf{Loc}_d(C) = \{ I : A^n \to A \mid n \in \mathbb{N}, \\ \forall S \subseteq A^n : |S| \le d \Rightarrow \\ \exists c \in C : c|_S = I|_S \}.$$

Theorem (Eigenthaler?)

Let *C* be a clone on *A*, $d \in \mathbb{N}$. Then

- $\operatorname{Loc}_{d}(C) = \operatorname{Pol}\operatorname{Inv}^{[d]}(C).$
- deg(\mathbf{A}) = min{ $d \in \mathbb{N} \mid \text{Loc}_d(C) \subseteq C$ } if such a *d* exists.

Finitely related algebras

Examples

The following algebras are finitely related:

- 1. finite algebras with Mal'cev term.
- 2. finite algebras with edge term (Aichinger, Mayr, McKenzie, 2009).
- 3. commutative semigroups. (Dayey, Jackson, Pitkethly, Szabó, 2011)

Examples

The following algebras are not finitely related:

- 1. ($\{0,1\}, x \land (y \lor z)$). (Post & classic clone theory)
- **2**. ({0, 1}, →).
- 3. The 6-element Brandt monoid (seen as a semigroup) (Mayr, 2013).

How to prove "A is finitely related"

- Come up with a set of relations *R* such that Clo(A) = Pol(*R*).
- 2. Look for completeness results: **A** might be primal, endoprimal, quasiprimal.
- 3. A might be affine complete, polynomially rich.
- 4. For finite **A**: Is there an infinite chain of clones intersecting to Clo(**A**)?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

How to prove "A is not finitely related"

- For finite A: Find an infinite chain of clones intersecting to Clo(A)!
- 2. For every *n*, find a function that can be interpolated at all choices of *n* places by a term function, but is not a term function.
- 3. For finite **A**: Find infinitely many *n* such that there is *n*-ary *f* with $f \notin Clo(\mathbf{A})$ and all n 1-ary minors are in $Clo(\mathbf{A})$.

(日) (日) (日) (日) (日) (日) (日) (日)

There is a three element groupoid $\mathbf{A} = (A, *)$ such that

- 1. A is finitely related, but it has $I = (\{0, 1\}, \rightarrow)$ as subalgebra and homomorphic image.
- 2. $I_{0,1} = (\{0,1\}, \rightarrow, 0, 1)$ and $I_{1,0} = (\{0,1\}, \rightarrow, 1, 0)$ are finitely related, but $I_{0,1} \times I_{1,0}$ is not.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Theorem (Markovic, Maroti, McKenzie)

Let **R**, **C** be finite algebras such that $\mathbf{R} \leq \mathbf{C}^n$ and $\pi_1(\mathbf{R}) = \mathbf{C}$. Then **R** is finitely related \Leftrightarrow **C** is finitely related.

Corollary (Davey, Jackson, Pitkethly, Szabo)

Let **A**, **B** be finite algebras such that $V(\mathbf{A}) = V(\mathbf{B})$. If **A** is finitely related, then so is **B**.

Remark

In this case $Clo(\mathbf{A})$ and $Clo(\mathbf{B})$ are isomorphic as abstract clones.

Let **A** be an algebra of relational degree *m*, let *I* be a set, and for each $i \in I$, let **B**_{*i*} be an algebra in SH(**A**). Let $\mathbf{C} \leq \mathbf{A} \times \prod_{i \in I} \mathbf{B}_i$. We assume that π_A is surjective, i.e., $\pi_A(C) = A$. Then **C** is of relational degree at most max(2, *m*).

Lemma

Let $k, m \in \mathbb{N}$, and let **A** be a finite *k*-generated algebra. If $\mathbf{F}_{V(\mathbf{A})}(k)$ is of relational degree *m*, then **A** is of relational degree at most $m \cdot |\mathbf{A}|^k$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Let **A** be a finite algebra of finite type with edge term such that $V(\mathbf{A})$ is residually small. Then there is $k \in \mathbb{N}$ such that every algebra in $\mathbb{V}(\mathbf{A})$ is of relational degree at most k.

Let *C* be a clone on *A*. $Inv(C) = \bigcup_{n \in \mathbb{N}} Inv^{[n]}(C)$.

Definition C is locally closed : \Leftrightarrow C = Pol Inv C.

Let *A* be a set with $|A| = \aleph_0$, and let *C* be a clone with quasigroup operations. If $|Pol Inv C| \le \aleph_0$, then C = Pol Inv C.

Theorem

There exist a set A with $|A| = \aleph_0$ and a constantive clone C on A such that $|Po| Inv C| = \aleph_0$ and $C \neq Po| Inv C$.

Let *A* be a set with $|A| = \aleph_0$, and let *C* be a clone on *A* with quasigroup operations. Then the following are equivalent:

- 1. $|\text{Pol Inv } C| \leq \aleph_0$.
- 2. For each $n \in \mathbb{N}$, $C^{[n]}$ has a finite base of equality.
- 3. $|C| \leq \aleph_0$ and $\forall n \in \mathbb{N} \exists k \in \mathbb{N} : C^{[n]} = (\operatorname{Loc}_k C)^{[n]}$.

(日) (日) (日) (日) (日) (日) (日) (日)

4. $|C| \leq \aleph_0$ and C = Pol Inv C.

▲日▼▲国▼★国▼★国▼ ▲日▼

▲日▼▲国▼★国▼★国▼ ▲日▼