Q-orders

Q-sup-lattices

Q-sup-algebras

Q-sup-lattices and Q-sup-algebras

Radek Šlesinger xslesing@math.muni.cz

Department of Mathematics and Statistics Masaryk University Brno

54th Summer School on Algebra and Ordered Sets Trojanovice, 4 September 2016

Supported by the bilateral project "New Perspectives on Residuated Posets" financed by the Austrian Science Fund: project I 1923-N25 and the Czech Science Foundation: project 15-34697L

Q-sup-lattices

Q-sup-algebras

Let (X, \leq_X) and (Y, \leq_Y) be posets. Monotone mappings $f: X \to Y$ and $g: Y \to X$ are *adjoint* if

$$f(x) \leq_Y y \iff x \leq_X g(y)$$

for any $x \in X$, $y \in Y$.

f 'left adjoint', 'residuated', preserves existing joinsg 'right adjoint', 'residual', preserves existing meets

Sup-lattice – complete join-semilattice (actually a complete lattice) Homomorphism – join-preserving mapping $f(\bigvee X) = \bigvee \{f(x) \mid x \in X\}$

Category Sup

Introduction & preliminaries	Q-orders	<i>Q-sup-lattices</i>	Q-sup-algebras
	0000000000	000000000000000	0000

Quantale – a sup-lattice Q with an associative binary operation '.' satisfying $q \cdot (\bigvee A) = \bigvee \{q \cdot a \mid a \in A\}$ and $(\bigvee A) \cdot q = \bigvee \{a \cdot q \mid a \in A\}$ Unital if Q has a multiplicative unit eCommutative if \cdot is commutative Homomorphism $f(\bigvee A) = \bigvee \{f(a) \mid a \in A\}$ and $f(q \cdot r) = f(q) \cdot f(r)$

Category Quant (UnQuant) – semigroups (monoids) in Sup

Introduction & preliminaries	<i>Q</i> -orders	<i>Q-sup-lattices</i> 000000000000000	Q-sup-algebras 0000

Left Q-module – a sup-lattice M with left action * of the quantale satisfying $q * (\bigvee N) = \bigvee \{q * n \mid n \in N\}$, $(\bigvee R) * m = \bigvee \{r * m \mid r \in R\}$, $(q \cdot r) * m = q * (r * m)$. Unital if Q is unital and me = m for all m Homomorphism $f(\bigvee m_i) = \bigvee f(m_i)$, f(mq) = f(m)qCategory Q-Mod If Q is unital, Q-modules are also assumed as unital

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへぐ

Introduction & preliminaries	<i>Q</i> -orders	Q-sup-lattices	Q-sup-algebras
	0000000000		0000

Let Q be a commutative quantale

Q-algebra – a left Q-module A with an associative binary operation '·' such that A is a quantale, and both $a \cdot -$ and $- \cdot a$ are module homomorphisms for any $a \in A$ $(a \cdot (q * b) = q * (a \cdot b) = (q * a) \cdot b)$

Homomorphism – *Q*-module homomorphism that also preserves multiplication

Category Q-Alg

Analogy: abelian groups, rings, modules, algebras

For any $q \in Q$, both mappings $q \cdot -$ and $- \cdot q$ preserve joins \implies they have right adjoints $q \rightarrow -$ and $- \leftarrow q$ characterized by $r \leq q \rightarrow s \iff q \cdot r \leq s \iff q \leq s \leftarrow r$

Q-sup-lattices

If Q is commutative, \rightarrow and \leftarrow coincide

Explicitly,
$$q \rightarrow s = \bigvee \{r \in Q \mid q \cdot r \leq s\}$$

$$egin{aligned} q o igwedge S &= igwedge _{s \in S}(q o s) & igwedge S o r &= igwedge _{s \in S}(s o r) \ oldsymbol{\perp} o r &= oldsymbol{ au} & q o (r o s) &= (q \cdot r) o s \end{aligned}$$

If Q is unital:

Introduction & preliminaries

$$1 \rightarrow r = r$$
 $q \rightarrow q \ge 1$

Q-sup-algebras

Introduction	&	preliminaries
00000		

Q-sup-lattices

Q-sup-algebras

From now on, assume that Q is a fixed commutative unital quantale (the 'base quantale').

Definition

Let X be a set. A mapping $e: X \times X \to Q$ is called a *Q*-order if for any $x, y, z \in X$ the following are satisfied:

•
$$e(x,x) \ge 1$$
 (reflexivity),

$$e(x,y) \cdot e(y,z) \leq e(x,z) \quad \text{(transitivity),}$$

3 if $e(x, y) \ge 1$ and $e(y, x) \ge 1$, then x = y (antisymmetry).

The pair (X, e) is then called a *Q*-ordered set.

$$x = y$$
 iff $e(x, z) = e(y, z)$ for any $z \in X$ iff $e(z, x) = e(z, y)$ for any $z \in X$.

Introduction & preliminaries	Q-orders	Q-sup-lattices	Q-sup-algebras
00000	000000000	000000000000000000000000000000000000000	0000

For a *Q*-order *e* on *X*, the relation \leq_e defined as $x \leq_e y \iff e(x, y) \geq 1$ is a partial order in the usual sense (the *induced partial order*).

This means that any Q-ordered set can be viewed as an ordinary poset satisfying additional properties.

Vice versa, for a partial order \leq on a set X and any quantale Q we can define a $Q\text{-order}\ e_{\leq}$ by

$$e_{\leq}(x,y) = egin{cases} 1 & ext{if } x \leq y, \ ot & ext{otherwise.} \end{cases}$$

Introduction	&	preliminaries
00000		

Q-sup-lattices

Q-sup-algebras

Example

• The base quantale Q itself can be regarded as a Q-ordered set via $e(q, r) = q \rightarrow r$ as for any $q, r, s \in Q$ we have:

$$1 \cdot q = q \text{ implies } 1 \leq q \rightarrow q,$$

- $\begin{array}{l} \textbf{O} \quad q \cdot (q \rightarrow r) \cdot (r \rightarrow s) \leq r \cdot (r \rightarrow s) \leq s, \text{ which is equivalent to} \\ (q \rightarrow r) \cdot (r \rightarrow s) \leq q \rightarrow s, \end{array}$
- $\ \, {\bf O} \ \ \, 1\leq q\rightarrow r \ \, {\rm iff} \ \, q=1\cdot q\leq r, \ {\rm similarly} \ \, 1\leq q\rightarrow q \ \, {\rm iff} \ \, r\leq q.$
- The same actually works for any *Q*-module *L* when putting
 $e(l, m) = l →_Q m = \bigvee \{q \in Q \mid q * l \le m\}.$

Introduction	&	preliminaries
00000		

Q-orders
000000000000000000000000000000000000000

Q-sup-lattices

Q-sup-algebras

Definition

Let (X, e_X) , (Y, e_Y) be Q-ordered sets. A mapping $f: X \to Y$ is called Q-monotone if $e_X(x, y) \leq e_Y(f(x), f(y))$ for any $x, y \in X$.

Like with the case of Q-orders, any Q-monotone mapping $(X, e_X) \rightarrow (Y, e_Y)$ is an ordinary monotone mapping $(X, \leq_{e_X}) \rightarrow (Y, \leq_{e_Y})$ with respect to the induced partial orders.

Conversely, a monotone mapping $(X, \leq_X) \to (Y, \leq_Y)$ becomes a Q-monotone mapping $(X, e_{\leq_X}) \to (Y, e_{\leq_Y})$ with respect to the Q-orders induced by \leq_X and \leq_Y .

 Introduction & preliminaries	Q-orders	Q-sup-lattices	Q-sup-a
00000	0000000000	000000000000000	0000

Definition

Let $f: (X, e_X) \to (Y, e_Y)$, $g: (Y, e_Y) \to (X, e_X)$ be Q-monotone mappings. We say that (f, g) is a Q-adjunction, if $e_Y(f(x), y) = e_X(x, g(y))$ for any $x \in X$, $y \in Y$. Then f is called a *left* and g a *right Q-adjoint*.

Again, a Q-adjunction is an ordinary adjunction satisfying an additional property.

Introduction	&	preliminaries
00000		

Q-sup-lattices

Q-sup-algebras

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Definition

A *Q*-subset of a set X is an element of the set Q^X .

This corresponds to viewing ordinary subsets of X as elements of 2^X where 2 is the two-element quantale.

Introduction	&	preliminaries
00000		

Q-orders
0000000000000

Q-sup-lattices

Definition

Let *M* be a *Q*-subset of a *Q*-ordered set (X, e). An element *s* of *X* is called a *Q*-join of *M*, denoted $\bigsqcup M$ if:

- $M(x) \le e(x,s)$ for all $x \in X$, and
- $\ \ \, \hbox{ or all }y\in X, \ \ \, \bigwedge_{x\in X}(M(x)\rightarrow e(x,y))\leq e(s,y).$

By analogy, an element *m* of *X* is called a *Q*-meet of *M*, denoted $\prod M$, if:

- $M(x) \le e(m, x)$ for all $x \in X$, and
- 3 for all $y \in X$, $\bigwedge_{x \in X} (M(x) \to e(y, x)) \le e(y, m)$.

Q-sup-lattices

Q-sup-algebras

Proposition

Let
$$(X, e)$$
 be a Q-ordered set, $s, m \in X$ and $M \in Q^X$.

•
$$s = \bigsqcup M$$
 iff for all $y \in X$, $e(s, y) = \bigwedge_{x \in X} (M(x) \to e(x, y))$,

$$m = \prod M \text{ iff for all } y \in X, \ e(y,m) = \bigwedge_{x \in X} (M(x) \to e(y,x)).$$

The antisymmetry property of the Q-order implies that if a Q-join (Q-meet) of a Q-subset exists, it is unique.

Definition

- A Q-ordered set (X, e) is called:
 - **Q**-join-complete if $\bigsqcup M$ exists for any Q-subset M of X,
 - **2** *Q*-meet-complete if $\prod M$ exists for any *Q*-subset *M* of *X*,
 - Q-complete if it is both Q-join-complete and Q-meet-complete.

Q-orders

Q-sup-lattices

Q-sup-algebras

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proposition

Let (X, e) be a Q-complete Q-ordered set. Then (X, \leq_e) is a complete poset, and for any $S \subseteq X$ we have $\bigvee S = | | \varphi_S$ where

$$arphi_{\mathcal{S}}(x) = egin{cases} 1 & \textit{if } x \in \mathcal{S}, \ ot & \textit{otherwise.} \end{cases}$$

Introduction	&	preliminaries
00000		

Q-sup-lattices

Q-sup-algebras

We will denote a *Q*-complete set (X, e) by (X, \bigsqcup) .

Definition

Let X and Y be sets, and $f: X \to Y$ be mapping. We define Zadeh's forward power set operator that maps Q-subsets of X to Q-subsets of Y as:

$$f_Q^{\rightarrow}(M)(y) = \bigvee_{x \in f^{-1}(y)} M(x).$$

Definition

Let (X, e_X) and (Y, e_Y) be Q-ordered sets. We say that a mapping $f: X \to Y$ is Q-join-preserving if for any Q-subset M of X such that $\bigsqcup_X M$ exists, $\bigsqcup_Y f_Q^{\to}(M)$ exists and

$$f\left(\bigsqcup_X M\right) = \bigsqcup_Y f_Q^{\to}(M).$$

Q-orders

Q-sup-lattices

Q-sup-algebras

Proposition

Let (X, e_X) , (Y, e_Y) be Q-ordered sets, and $f : X \to Y$, $g : Y \to X$ be two mappings. Then the following hold:

- If (X, e_X) is Q-complete, then f is Q-monotone and has a right adjoint iff $f(\bigsqcup_X M) = \bigsqcup_Y f_Q^{\rightarrow}(M)$ for all $M \in Q^X$.
- ② If (Y, e_Y) is Q-complete, then g is Q-monotone and has a left adjoint iff g $(\prod_Y N) = \prod_X g_Q^{\rightarrow}(N)$ for all $N \in Q^Y$.

<mark>Q-orders</mark> 000000000000 *Q*-sup-lattices

Q-sup-algebras

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Definition

A Q-sup-lattice is a Q-join-complete set. Homomorphisms of Q-sup-lattices are Q-join-preserving mappings. By Q-**Sup** we will denote the category whose objects are Q-sup-lattices, and morphisms are Q-sup-lattice homomorphisms.

Q-sup-lattices

Q-sup-algebras

Let I be a set, (X_i, \bigsqcup_{X_i}) be Q-sup-lattices for all $i \in I$, and M be a Q-subset of the set $\prod_{i \in I} X_i$. For each $j \in I$ and $y \in X_j$ we then define $\widehat{M}_j \in Q^{X_j}$ as

$$\widehat{M}_j(y) = \bigvee \left\{ M((x_i)_{i \in I}) \mid (x_i)_{i \in I} \in \prod_{i \in I} X_i, \ x_j = y \right\}.$$

Proposition

Let (X_i, \bigsqcup_{X_i}) be Q-sup-lattices for all $i \in I$. Then $\underline{X} = \prod_{i \in I} X_i$ is a Q-sup-lattice too, with $\bigsqcup_{\underline{X}} M = (\bigsqcup_{X_i} \widehat{M}_i)_{i \in I}$.

Proposition

Let (X_i, \bigsqcup_{X_i}) , $i \in I$, be Q-sup-lattices. Then their product is $(\prod_{i \in I} X_i, \bigsqcup_{\underline{X}})$.

<mark>Q-orders</mark> 00000000000 *Q*-sup-lattices

Q-sup-algebras

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Example

For any set X, the set of its Q-subsets (Q^X, sub_X) is Q-complete: For $M \in Q^{Q^X}$ put $S \in Q^X$ as $S(x) = \bigvee_{P \in Q^X} M(P) \cdot P(x)$. Applying the characterization of Q-joins, we can verify that S is the Q-join of M.

Introduction	&	preliminaries
00000		

Q-orders
00000000000

Q-sup-lattices

Q-sup-algebras

Proposition

The category Q-Sup has equalizers: Let $f, g: X \to Y$ be two homomorphisms. Then their equalizer is $((X_{fg}, \bigsqcup_X |_{X_{fg}}), \varepsilon)$ where $X_{fg} = \{x \in X | f(x) = g(x)\}$ and $\varepsilon: X_{fg} \to X$ is the set inclusion.

Corollary

The category Q-Sup is complete.

Example

The terminal object in the category Q-**Sup** is the one-element Q-sup-lattice ({*}, e_*) with $e_*(*, *) = \top$.

<mark>Q-orders</mark> 00000000000 *Q*-sup-lattices

Q-sup-algebras

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Proposition

The category Q-Sup has coproducts.

Proposition

The category Q-Sup has coequalizers.

Both are constructed using products resp. equalizers, adjoints, and dual *Q*-orders (e'(x, y) = e(y, x)).

Q-sup-lattices

Q-sup-algebras

Proposition

For Q-sup-lattices X and Y, the set Hom(X, Y) is also a Q-sup-lattice.

Example

A *Q*-quantale is a *Q*-sup-lattice *A* endowed with an associative binary operation \cdot which is *Q*-join-preserving in both components, namely for any $a \in A$ and $M \in Q^A$,

$$\left(\bigsqcup M\right) \cdot a = \bigsqcup (-\cdot a)_Q^{\rightarrow}(M)$$

$$a \cdot \left(\bigsqcup_{M} \right) = \bigsqcup_{Q} (a \cdot -)_{Q} (M)$$

(*Q*-quantales are semigroup objects in *Q*-**Sup** like quantales are semigroup objects in **Sup**.)

<mark>Q-orders</mark> 00000000000 *Q*-sup-lattices

Q-sup-algebras

Example (Cont.)

Typical example: a commutative quantale Q with $e(x, y) = x \rightarrow y$

A new instance: Let X be a Q-sup-lattice, then the set of all its endomorphisms End(X) = Hom(X, X) is a Q-quantale with composition of mappings as the multiplication.

(One can verify that $\bigsqcup (g \circ -)_Q^{\rightarrow}(M) = g \circ \bigsqcup M$ for any $M \in Q^{\operatorname{End}(X)}$.)

<mark>Q-orders</mark> 00000000000 *Q*-sup-lattices

Q-sup-algebras

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Definition

Let (X, e_X) be a *Q*-ordered set.

- A mapping $f: X \to X$ is *Q*-inflating if $e_X(x, f(x)) \ge 1$ for any $x \in X$.
- A *Q*-monotone, *Q*-inflating mapping is called a *Q*-order prenucleus.
- An idempotent *Q*-order prenucleus is called a *Q*-order nucleus.

Introduction	&	preliminaries
00000		

<mark>Q-orders</mark> 00000000000 *Q*-sup-lattices

Q-sup-algebras

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Definition

Let (X, e_X) be a *Q*-ordered set.

- A mapping f: X → X is Q-deflating if e_X(f(x), x) ≥ 1 for any x ∈ X.
- A *Q*-monotone, *Q*-deflating mapping is called a *Q*-order preconucleus.
- An idempotent *Q*-order preconucleus is called a *Q*-order conucleus.

Introduction	&	preliminaries
00000		

Q-orders
00000000000

Q-sup-lattices

Q-sup-algebras

Proposition

Let (f,g) be a Q-adjunction between (X, e_X) and (Y, e_Y) . Then $g \circ f$ is a Q-order nucleus on X, and $f \circ g$ is a Q-order conucleus on Y.

As any Q-sup-lattice homomorphism is a left Q-adjoint, we instantly get the following:

Proposition

Let (X, \bigsqcup_X) and (Y, \bigsqcup_Y) be Q-sup-lattices, and let $f : X \to Y$ be a homomorphism. Then $f^* \circ f$ is a Q-order nucleus on X, and $f \circ f^*$ is a Q-order conucleus on Y.

Introduction	&	preliminaries
00000		

Q-sup-lattices

Q-sup-algebras

Definition

Let (X, \bigsqcup) be a *Q*-sup-lattice, $Y \subseteq X$, and $M \in Q^Y$. We define an extension $M' \in Q^X$ of *M* as

$$M'(x) = egin{cases} M(x) & x \in Y, \ ot & x
otin Y. \ & x
otin Y. \end{cases}$$

We say that Y is a *sub-Q-sup-lattice* of X if it is closed under Q-joins in the following sense: for any $M \in Q^Y$, the element $\bigsqcup M' \in X$ also belongs to Y.

Introduction	&	preliminaries
00000		

Q-orders
00000000000

Q-sup-lattices

Proposition

Let (X, \bigsqcup) be a Q-sup-lattice, and j be a Q-order-prenucleus on X. Then the subset of fixed points of j, $X_j = \{x \in X \mid j(x) = x\}$ is a Q-sup-lattice with $\bigsqcup_{X_j} M = j(\bigsqcup_X M')$.

 $(X_j \text{ is closed under } Q \text{-meets}, Q \text{-joins are calculated using } j)$

Theorem

Let (X, \bigsqcup_X) and (Y, \bigsqcup_Y) be Q-sup-lattices, and $f : X \to Y$ be a surjective homomorphism. Then there exists a Q-order nucleus $j : X \to X$ such that $Y \cong X_j$.

Introduction	&	preliminaries
00000		

Q-orders
00000000000

Q-sup-lattices

Q-sup-algebras

Proposition

Let (X, \bigsqcup) be a Q-sup-lattice, and $g: X \to X$ be a Q-order preconucleus on X. Then $X_g = \{x \in X \mid g(x) = x\}$ is a sub-Q-sup-lattice of X.

(Q-joins are inherited, Q-meets computed using g)

Theorem

Let (X, \bigsqcup_X) and (Y, \bigsqcup_Y) be Q-sup-lattices, and $f : X \to Y$ be an injective homomorphism. Then there exists a Q-order conucleus $g : Y \to Y$ such that $X \cong Y_g$.

Q-sup-lattices

Q-sup-algebras

S. A. Solovyov 2016: For a given commutative unital quantale Q, the categories Q-**Sup** and Q-**Mod** are isomorphic.

$\textit{F} \colon \textit{Q-Mod} \to \textit{Q-Sup}$

$$\bullet e_{\mathcal{A}}(a_1,a_2) = a_1 \rightarrow_Q a_2$$

$$\ \square M = \bigvee_{a \in A} (M(a) * a)$$

$\textit{F} \colon \textit{Q-Sup} \to \textit{Q-Mod}$

$${f 0}$$
 $a_1\leq a_2$ iff $1\leq e_{\mathcal A}(a_1,a_2)$ for every $a_1,a_2\in \mathcal A$

②
$$\bigvee S = igsqcup M^1_S$$
 for every $S \subseteq A$

$${f 3}$$
 $q*a=igsquee M^q_a$ for every $q\in Q$ and every $a\in A$

where

$$M^q_S(x) = egin{cases} q, & x \in S, \ ot & ext{otherwise}. \end{cases}$$

Existing results on Q-modules can be directly transferred to Q-Sup:

Proposition

In the category Q-Sup, the following hold:

- All monomorphisms are injective mappings.
- 2 All epimorphisms are surjective mappings.
- All monomorphisms are regular, i.e., equalizers of some pair of homomorphisms.
- All epimorphisms are regular, i.e., coequalizers of some pair of homomorphisms.

Theorem

There exists the free Q-sup-lattice FX over any set X as $FX \cong Q^X$ with $e((q_x)_{x \in X}, (r_x)_{x \in X}) = (q_x) \rightarrow_Q (r_x)$.

<mark>Q-orders</mark> 000000000000 Q-sup-lattices

Q-sup-algebras

Proposition

The category Q-Sup has tensor products.

Proposition

The category Q-**Sup** with the tensor product and Q as the unit object is a symmetric closed monoidal category.

Proposition

A Q-sup-lattice (X, \bigsqcup) is injective iff its dual (X, \bigsqcup) is projective.

Proposition

A Q-sup-lattice (X, \bigsqcup) is flat iff it is projective.

Characterization of projectivity not yet available, just partial results such as:

A is projective if $A \cong \prod_{i \in I} (Q \cdot d_i)$ for some I where $d_i \cdot d_i = d_i$ for every $i \in I$.

Q-orders DOOOOOOOOOOO Q-sup-lattices

Q-sup-algebras

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Such isomorphism was shown between the categories Q-Alg and Q-Quant (the conversion behaves nicely wrt. to multiplication).

Introduction	&	preliminaries
00000		

Q-sup-lattices

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Q-sup-algebras – general algebras in the category Q-Sup

A type is a set Ω of function symbols. To each $\omega \in \Omega$, a number $n \in \mathbb{N}_0$ is assigned (arity). For each $n \in \mathbb{N}_0$, $\Omega_n \subseteq \Omega$ is the subset of all *n*-ary function symbols from Ω .

Introduction	&	preliminaries
00000		

Q-sup-lattices

Q-sup-algebras

Definition

A *Q*-ordered algebra) is a triple $\mathcal{A} = (A, e, \Omega)$ where (A, e) is a *Q*-ordered set, (A, Ω) is an Ω -algebra, and each operation ω of non-zero arity is *Q*-monotone in any component, that is,

$$e(b,c) \leq e(\omega(a_1,\ldots,a_{j-1},b,a_{j+1},\ldots,a_n),$$

$$\omega(a_1,\ldots,a_{j-1},c,a_{j+1},\ldots,a_n))$$

for any $n \in \mathbb{N}$, $\omega \in \Omega_n$, $j \in \{1, \ldots, n\}$, and $a_1, \ldots, a_n, b, c \in A$.

Introduction	&	preliminaries
00000		

Q-sup-lattices

Q-sup-algebras

Definition

Let (A, e_A, Ω) and (B, e_B, Ω) be Q-ordered algebras, and $\varphi \colon A \to B$ be a Q-monotone mapping. Then φ is called a Q-ordered algebra subhomomorphism if

$$1 \leq e_B(\omega_B(\varphi(a_1), \dots, \varphi(a_n)), \varphi(\omega_A(a_1, \dots, a_n)))$$

for any $n \in \mathbb{N}$, $\omega \in \Omega_n$, and $a_1, \ldots, a_n \in A$, and

 $1 \leq e_B(\omega_B, \varphi(\omega_A))$

for every $\omega \in \Omega_0$.

Introduction	&	preliminaries
00000		

Q-sup-lattices

Q-sup-algebras

Definition

A *Q*-sup-algebra of type Ω (shortly, a *Q*-sup-algebra) is a triple $\mathcal{A} = (A, \bigsqcup, \Omega)$ where (A, \bigsqcup) is a *Q*-sup-lattice, (A, Ω) is an Ω -algebra, and each operation ω is *Q*-join-preserving in any component, that is,

$$\omega\left(a_{1},\ldots,a_{j-1},\bigsqcup M,a_{j+1},\ldots,a_{n}\right)$$
$$=\bigsqcup \omega(a_{1},\ldots,a_{j-1},-,a_{j+1},\ldots,a_{n})\overset{\rightarrow}{}_{Q}(M)$$

for any $n \in \mathbb{N}$, $\omega \in \Omega_n$, $j \in \{1, \ldots, n\}$, $a_1, \ldots, a_n \in A$, and $M \in Q^A$.

Introduction	&	preliminaries
00000		

Q-sup-lattices

Q-sup-algebras

Definition

Let (A, \bigsqcup_A, Ω) and (B, \bigsqcup_B, Ω) be Q-sup algebras, and $\varphi \colon A \to B$ be a Q-join-preserving mapping. Then φ is called a Q-sup-algebra homomorphism if

$$\omega_{\mathcal{B}}(\varphi(a_1),\ldots,\varphi(a_n))=\varphi(\omega_{\mathcal{A}}(a_1,\ldots,a_n))$$

for any $n \in \mathbb{N}$, $\omega \in \Omega$, and $a_1, \ldots, a_n \in A$, and

$$\omega_{B} = \varphi(\omega_{A})$$

for any $\omega \in \Omega_0$.

Category Q-Sup- Ω -Alg

Introduction & preliminaries	Q-orders 0000000000	<i>Q-sup-lattices</i> 000000000000000	Q-sup-algebras

As any Q-sup-algebra can be regarded as a Q-ordered algebra, the concept of subhomomorphism applies here as well.

Proposition

- If f: A → B is a homomophism, then f*: B → A is a subhomomorphism.
- Composition of subhomomorphisms is a subhomomorphism.

Q-orders 00000000000 *Q*-sup-lattices

Q-sup-algebras ●○○○

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Definition

Let (A, \bigsqcup, Ω) be a *Q*-sup-algebra.

- A *Q*-monotone, *Q*-inflating mapping which is a subhomomorphism is called a *prenucleus* on *A*.
- An idempotent prenucleus is called a nucleus.

Q-sup-lattices

Q-sup-algebras ○●○○

Proposition

Let $\mathcal{A} = (A, \bigsqcup_A, \Omega)$ be a Q-sup-algebra, and $j \colon A \to A$ be a nucleus on \mathcal{A} . Put

Theorem

Let $f : A \to B$ be a surjective homomorphism of Q-sup-algebras. Then there exists a nucleus j on A such that $B \cong A_j$.

Q-sup-lattices

Q-sup-algebras ○○●○

Definition

A Q-sup-algebra (B, \bigsqcup_B, Ω) is a *sub-Q-sup-algebra* of a Q-sup-algebra (A, \bigsqcup_A, Ω) if $B \subseteq A$, and the inclusion mapping is a Q-sup-algebra homomorphism.

Proposition

Let $g: A \to A$ be a conucleus on a Q-sup-algebra $\mathcal{A} = (A, \bigsqcup_A, \Omega)$. Then $(A_g, \bigsqcup_A |_{A_g}, \Omega)$ where $A_g = \{a \in A \mid g(a) = a\}$ is a sub-Q-sup-algebra of \mathcal{A} .

Theorem

Let (A, \bigsqcup_A, Ω) and (B, \bigsqcup_B, Ω) be Q-sup-algebras, and $f : A \to B$ be an injective homomorphism. Then there exists a conucleus $g : B \to B$ such that $A \cong B_g$.

Introduction	&	preliminaries
00000		

Q-sup-lattices

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Theorem

The categories Q-Mod- Ω -Alg (Ω -algebras in the category of Q-modules) and Q-Sup- Ω -Alg are isomorphic.

Introduction	&	preliminaries
00000		

Q-sup-lattices

Q-sup-algebras

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

References

- S. A. Solovyov: *Quantale algebras as a generalization of lattice-valued frames*, Hacet. J. Math. Stat. 45, 2016
- R. Šlesinger: On some basic constructions in categories of quantale-valued sup-lattices, Mathematics for Applications 5, 2016
- W. Yao and L.-X. Lu: *Fuzzy Galois connections on fuzzy posets*. Mathematical Logic Quarterly 55, 2009.
- X. Zhang and V. Laan: *Quotients and subalgebras of sup-algebras*, Proceedings of the Estonian Academy of Sciences 64, 2015

Introduction & preliminaries	Q-orders	Q-sup-lattices	Q-sup-algebras
00000	0000000000	00000000000000000	0000

Thank you for your attention.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ