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Let (X ,≤X ) and (Y ,≤Y ) be posets. Monotone mappings
f : X → Y and g : Y → X are adjoint if

f (x) ≤Y y ⇐⇒ x ≤X g(y)

for any x ∈ X , y ∈ Y .

f ‘left adjoint’, ‘residuated’, preserves existing joins
g ‘right adjoint’, ‘residual’, preserves existing meets

Sup-lattice – complete join-semilattice
(actually a complete lattice)

Homomorphism – join-preserving mapping
f (
∨
X ) =

∨
{f (x) | x ∈ X}

Category Sup
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Quantale – a sup-lattice Q with an associative binary operation
‘·’ satisfying q · (

∨
A) =

∨
{q · a | a ∈ A} and

(
∨

A) · q =
∨
{a · q | a ∈ A}

Unital if Q has a multiplicative unit e

Commutative if · is commutative

Homomorphism f (
∨
A) =

∨
{f (a) | a ∈ A} and

f (q · r) = f (q) · f (r)

Category Quant (UnQuant) – semigroups (monoids) in Sup
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Left Q-module – a sup-lattice M with left action ∗ of the quantale
satisfying q ∗ (

∨
N) =

∨
{q ∗ n | n ∈ N},

(
∨

R) ∗m =
∨
{r ∗m | r ∈ R},

(q · r) ∗m = q ∗ (r ∗m).

Unital if Q is unital and me = m for all m

Homomorphism f (
∨

mi ) =
∨
f (mi ), f (mq) = f (m)q

Category Q-Mod

If Q is unital, Q-modules are also assumed as unital
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Let Q be a commutative quantale

Q-algebra – a left Q-module A with an associative binary
operation ‘·’ such that A is a quantale, and both
a · − and − · a are module homomorphisms for any
a ∈ A (a · (q ∗ b) = q ∗ (a · b) = (q ∗ a) · b)

Homomorphism – Q-module homomorphism that also preserves
multiplication

Category Q-Alg

Analogy: abelian groups, rings, modules, algebras
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For any q ∈ Q, both mappings q · − and − · q preserve joins =⇒
they have right adjoints q → − and − ← q characterized by
r ≤ q → s ⇐⇒ q · r ≤ s ⇐⇒ q ≤ s ← r

If Q is commutative, → and ← coincide

Explicitly, q → s =
∨
{r ∈ Q | q · r ≤ s}

q →
∧

S =
∧
s∈S

(q → s)
∨

S → r =
∧
s∈S

(s → r)

⊥ → r = > q → (r → s) = (q · r)→ s

If Q is unital:

1→ r = r q → q ≥ 1
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From now on, assume that Q is a fixed commutative unital
quantale (the ‘base quantale’).

Definition

Let X be a set. A mapping e : X × X → Q is called a Q-order if
for any x , y , z ∈ X the following are satisfied:

1 e(x , x) ≥ 1 (reflexivity),

2 e(x , y) · e(y , z) ≤ e(x , z) (transitivity),

3 if e(x , y) ≥ 1 and e(y , x) ≥ 1, then x = y (antisymmetry).

The pair (X , e) is then called a Q-ordered set.

x = y iff e(x , z) = e(y , z) for any z ∈ X iff e(z , x) = e(z , y) for
any z ∈ X .
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For a Q-order e on X , the relation ≤e defined as
x ≤e y ⇐⇒ e(x , y) ≥ 1 is a partial order in the usual sense (the
induced partial order).

This means that any Q-ordered set can be viewed as an ordinary
poset satisfying additional properties.

Vice versa, for a partial order ≤ on a set X and any quantale Q we
can define a Q-order e≤ by

e≤(x , y) =

{
1 if x ≤ y ,

⊥ otherwise.
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Example

1 The base quantale Q itself can be regarded as a Q-ordered set
via e(q, r) = q → r as for any q, r , s ∈ Q we have:

1 1 · q = q implies 1 ≤ q → q,
2 q · (q → r) · (r → s) ≤ r · (r → s) ≤ s, which is equivalent to

(q → r) · (r → s) ≤ q → s,
3 1 ≤ q → r iff q = 1 · q ≤ r , similarly 1 ≤ q → q iff r ≤ q.

2 The same actually works for any Q-module L when putting
e(l ,m) = l →Q m =

∨
{q ∈ Q | q ∗ l ≤ m}.
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Definition

Let (X , eX ), (Y , eY ) be Q-ordered sets. A mapping f : X → Y is
called Q-monotone if eX (x , y) ≤ eY (f (x), f (y)) for any x , y ∈ X .

Like with the case of Q-orders, any Q-monotone mapping
(X , eX )→ (Y , eY ) is an ordinary monotone mapping
(X ,≤eX )→ (Y ,≤eY ) with respect to the induced partial orders.

Conversely, a monotone mapping (X ,≤X )→ (Y ,≤Y ) becomes a
Q-monotone mapping (X , e≤X

)→ (Y , e≤Y
) with respect to the

Q-orders induced by ≤X and ≤Y .
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Definition

Let f : (X , eX )→ (Y , eY ), g : (Y , eY )→ (X , eX ) be Q-monotone
mappings.
We say that (f , g) is a Q-adjunction, if eY (f (x), y) = eX (x , g(y))
for any x ∈ X , y ∈ Y .
Then f is called a left and g a right Q-adjoint.

Again, a Q-adjunction is an ordinary adjunction satisfying an
additional property.
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Definition

A Q-subset of a set X is an element of the set QX .

This corresponds to viewing ordinary subsets of X as elements of
2X where 2 is the two-element quantale.
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Definition

Let M be a Q-subset of a Q-ordered set (X , e). An element s of X
is called a Q-join of M, denoted

⊔
M if:

1 M(x) ≤ e(x , s) for all x ∈ X , and

2 for all y ∈ X ,
∧

x∈X (M(x)→ e(x , y)) ≤ e(s, y).

By analogy, an element m of X is called a Q-meet of M, denotedd
M, if:

1 M(x) ≤ e(m, x) for all x ∈ X , and

2 for all y ∈ X ,
∧

x∈X (M(x)→ e(y , x)) ≤ e(y ,m).
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Proposition

Let (X , e) be a Q-ordered set, s,m ∈ X and M ∈ QX .

1 s =
⊔

M iff for all y ∈ X, e(s, y) =
∧

x∈X (M(x)→ e(x , y)),

2 m =
d
M iff for all y ∈ X, e(y ,m) =

∧
x∈X (M(x)→ e(y , x)).

The antisymmetry property of the Q-order implies that if a Q-join
(Q-meet) of a Q-subset exists, it is unique.

Definition

A Q-ordered set (X , e) is called:

1 Q-join-complete if
⊔
M exists for any Q-subset M of X ,

2 Q-meet-complete if
d
M exists for any Q-subset M of X ,

3 Q-complete if it is both Q-join-complete and
Q-meet-complete.
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Proposition

Let (X , e) be a Q-complete Q-ordered set. Then (X ,≤e) is a
complete poset, and for any S ⊆ X we have

∨
S =

⊔
ϕS where

ϕS(x) =

{
1 if x ∈ S ,

⊥ otherwise.
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We will denote a Q-complete set (X , e) by (X ,
⊔

).

Definition

Let X and Y be sets, and f : X → Y be mapping. We define
Zadeh’s forward power set operator that maps Q-subsets of X to
Q-subsets of Y as:

f→Q (M)(y) =
∨

x∈f −1(y)

M(x).

Definition

Let (X , eX ) and (Y , eY ) be Q-ordered sets. We say that a
mapping f : X → Y is Q-join-preserving if for any Q-subset M of
X such that

⊔
X M exists,

⊔
Y f→Q (M) exists and

f
(⊔

X
M
)

=
⊔

Y
f→Q (M).



Introduction & preliminaries Q-orders Q-sup-lattices Q-sup-algebras

Proposition

Let (X , eX ), (Y , eY ) be Q-ordered sets, and f : X → Y ,
g : Y → X be two mappings. Then the following hold:

1 If (X , eX ) is Q-complete, then f is Q-monotone and has a
right adjoint iff f (

⊔
X M) =

⊔
Y f→Q (M) for all M ∈ QX .

2 If (Y , eY ) is Q-complete, then g is Q-monotone and has a
left adjoint iff g (

d
Y N) =

d
X g→Q (N) for all N ∈ QY .
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Definition

A Q-sup-lattice is a Q-join-complete set. Homomorphisms of
Q-sup-lattices are Q-join-preserving mappings. By Q-Sup we will
denote the category whose objects are Q-sup-lattices, and
morphisms are Q-sup-lattice homomorphisms.
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Let I be a set, (Xi ,
⊔

Xi
) be Q-sup-lattices for all i ∈ I , and M be a

Q-subset of the set
∏

i∈I Xi . For each j ∈ I and y ∈ Xj we then

define M̂j ∈ QXj as

M̂j(y) =
∨{

M((xi )i∈I ) | (xi )i∈I ∈
∏
i∈I

Xi , xj = y

}
.

Proposition

Let (Xi ,
⊔

Xi
) be Q-sup-lattices for all i ∈ I . Then X =

∏
i∈I Xi is

a Q-sup-lattice too, with
⊔

X M = (
⊔

Xi
M̂i )i∈I .

Proposition

Let (Xi ,
⊔

Xi
), i ∈ I , be Q-sup-lattices. Then their product is

(
∏

i∈I Xi ,
⊔

X ) .
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Example

For any set X , the set of its Q-subsets (QX , subX ) is Q-complete:

For M ∈ QQX
put S ∈ QX as S(x) =

∨
P∈QX M(P) · P(x).

Applying the characterization of Q-joins, we can verify that S is
the Q-join of M.
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Proposition

The category Q-Sup has equalizers: Let f , g : X → Y be two
homomorphisms. Then their equalizer is ((Xfg ,

⊔
X |Xfg

), ε) where
Xfg = {x ∈ X |f (x) = g(x)} and ε : Xfg → X is the set inclusion.

Corollary

The category Q-Sup is complete.

Example

The terminal object in the category Q-Sup is the one-element
Q-sup-lattice ({∗}, e∗) with e∗(∗, ∗) = >.
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Proposition

The category Q-Sup has coproducts.

Proposition

The category Q-Sup has coequalizers.

Both are constructed using products resp. equalizers, adjoints, and
dual Q-orders (e ′(x , y) = e(y , x)).
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Proposition

For Q-sup-lattices X and Y , the set Hom(X ,Y ) is also a
Q-sup-lattice.

Example

A Q-quantale is a Q-sup-lattice A endowed with an associative
binary operation · which is Q-join-preserving in both components,
namely for any a ∈ A and M ∈ QA,(⊔

M
)
· a =

⊔
(− · a)→Q (M)

a ·
(⊔

M
)

=
⊔

(a · −)→Q (M)

(Q-quantales are semigroup objects in Q-Sup like quantales are
semigroup objects in Sup.)
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Example (Cont.)

Typical example: a commutative quantale Q with e(x , y) = x → y

A new instance: Let X be a Q-sup-lattice, then the set of all its
endomorphisms End(X ) = Hom(X ,X ) is a Q-quantale with
composition of mappings as the multiplication.

(One can verify that
⊔

(g ◦ −)→Q (M) = g ◦
⊔
M for any

M ∈ QEnd(X ).)
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Definition

Let (X , eX ) be a Q-ordered set.

A mapping f : X → X is Q-inflating if eX (x , f (x)) ≥ 1 for any
x ∈ X .

A Q-monotone, Q-inflating mapping is called a Q-order
prenucleus.

An idempotent Q-order prenucleus is called a Q-order nucleus.
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Definition

Let (X , eX ) be a Q-ordered set.

A mapping f : X → X is Q-deflating if eX (f (x), x) ≥ 1 for
any x ∈ X .

A Q-monotone, Q-deflating mapping is called a Q-order
preconucleus.

An idempotent Q-order preconucleus is called a Q-order
conucleus.



Introduction & preliminaries Q-orders Q-sup-lattices Q-sup-algebras

Proposition

Let (f , g) be a Q-adjunction between (X , eX ) and (Y , eY ). Then
g ◦ f is a Q-order nucleus on X , and f ◦ g is a Q-order conucleus
on Y .

As any Q-sup-lattice homomorphism is a left Q-adjoint, we
instantly get the following:

Proposition

Let (X ,
⊔

X ) and (Y ,
⊔

Y ) be Q-sup-lattices, and let f : X → Y be
a homomorphism. Then f ∗ ◦ f is a Q-order nucleus on X , and
f ◦ f ∗ is a Q-order conucleus on Y .
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Definition

Let (X ,
⊔

) be a Q-sup-lattice, Y ⊆ X , and M ∈ QY . We define
an extension M ′ ∈ QX of M as

M ′(x) =

{
M(x) x ∈ Y ,

⊥ x 6∈ Y .

We say that Y is a sub-Q-sup-lattice of X if it is closed under
Q-joins in the following sense: for any M ∈ QY , the element⊔
M ′ ∈ X also belongs to Y .
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Proposition

Let (X ,
⊔

) be a Q-sup-lattice, and j be a Q-order-prenucleus on
X . Then the subset of fixed points of j , Xj = {x ∈ X | j(x) = x}
is a Q-sup-lattice with

⊔
Xj
M = j (

⊔
X M ′).

(Xj is closed under Q-meets, Q-joins are calculated using j)

Theorem

Let (X ,
⊔

X ) and (Y ,
⊔

Y ) be Q-sup-lattices, and f : X → Y be a
surjective homomorphism. Then there exists a Q-order nucleus
j : X → X such that Y ∼= Xj .
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Proposition

Let (X ,
⊔

) be a Q-sup-lattice, and g : X → X be a Q-order
preconucleus on X . Then Xg = {x ∈ X | g(x) = x} is a
sub-Q-sup-lattice of X .

(Q-joins are inherited, Q-meets computed using g)

Theorem

Let (X ,
⊔

X ) and (Y ,
⊔

Y ) be Q-sup-lattices, and f : X → Y be an
injective homomorphism. Then there exists a Q-order conucleus
g : Y → Y such that X ∼= Yg .
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S. A. Solovyov 2016: For a given commutative unital quantale Q,
the categories Q-Sup and Q-Mod are isomorphic.

F : Q-Mod→ Q-Sup

1 eA(a1, a2) = a1 →Q a2

2
⊔
M =

∨
a∈A(M(a) ∗ a)

F : Q-Sup→ Q-Mod

1 a1 ≤ a2 iff 1 ≤ eA(a1, a2) for every a1, a2 ∈ A

2
∨
S =

⊔
M1

S for every S ⊆ A

3 q ∗ a =
⊔
Mq

a for every q ∈ Q and every a ∈ A

where

Mq
S (x) =

{
q, x ∈ S ,

⊥ otherwise.
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Existing results on Q-modules can be directly transferred to
Q-Sup:

Proposition

In the category Q-Sup, the following hold:

1 All monomorphisms are injective mappings.

2 All epimorphisms are surjective mappings.

3 All monomorphisms are regular, i.e., equalizers of some pair of
homomorphisms.

4 All epimorphisms are regular, i.e., coequalizers of some pair of
homomorphisms.

Theorem

There exists the free Q-sup-lattice FX over any set X as
FX ∼= QX with e ((qx)x∈X , (rx)x∈X ) = (qx)→Q (rx).
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Proposition

The category Q-Sup has tensor products.

Proposition

The category Q-Sup with the tensor product and Q as the unit
object is a symmetric closed monoidal category.

Proposition

A Q-sup-lattice (X ,
⊔

) is injective iff its dual (X ,
d

) is projective.

Proposition

A Q-sup-lattice (X ,
⊔

) is flat iff it is projective.

Characterization of projectivity not yet available, just partial results
such as:
A is projective if A ∼=

∏
i∈I (Q · di ) for some I where di · di = di for

every i ∈ I .
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Such isomorphism was shown between the categories Q-Alg and
Q-Quant (the conversion behaves nicely wrt. to multiplication).



Introduction & preliminaries Q-orders Q-sup-lattices Q-sup-algebras

Q-sup-algebras – general algebras in the category Q-Sup

A type is a set Ω of function symbols.
To each ω ∈ Ω, a number n ∈ N0 is assigned (arity).
For each n ∈ N0, Ωn ⊆ Ω is the subset of all n-ary function
symbols from Ω.



Introduction & preliminaries Q-orders Q-sup-lattices Q-sup-algebras

Definition

A Q-ordered algebra) is a triple A = (A, e,Ω) where (A, e) is a
Q-ordered set, (A,Ω) is an Ω-algebra, and each operation ω of
non-zero arity is Q-monotone in any component, that is,

e(b, c) ≤ e(ω(a1, . . . , aj−1, b, aj+1, . . . , an),

ω(a1, . . . , aj−1, c , aj+1, . . . , an))

for any n ∈ N, ω ∈ Ωn, j ∈ {1, . . . , n}, and a1, . . . , an, b, c ∈ A.
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Definition

Let (A, eA,Ω) and (B, eB ,Ω) be Q-ordered algebras, and
ϕ : A→ B be a Q-monotone mapping. Then ϕ is called a
Q-ordered algebra subhomomorphism if

1 ≤ eB(ωB(ϕ(a1), . . . , ϕ(an)), ϕ(ωA(a1, . . . , an)))

for any n ∈ N, ω ∈ Ωn, and a1, . . . , an ∈ A, and

1 ≤ eB(ωB , ϕ(ωA))

for every ω ∈ Ω0.
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Definition

A Q-sup-algebra of type Ω (shortly, a Q-sup-algebra) is a triple
A = (A,

⊔
,Ω) where (A,

⊔
) is a Q-sup-lattice, (A,Ω) is an

Ω-algebra, and each operation ω is Q-join-preserving in any
component, that is,

ω
(
a1, . . . , aj−1,

⊔
M, aj+1, . . . , an

)
=
⊔

ω(a1, . . . , aj−1,−, aj+1, . . . , an)→Q (M)

for any n ∈ N, ω ∈ Ωn, j ∈ {1, . . . , n}, a1, . . . , an ∈ A, and
M ∈ QA.
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Definition

Let (A,
⊔

A,Ω) and (B,
⊔

B ,Ω) be Q-sup algebras, and ϕ : A→ B
be a Q-join-preserving mapping. Then ϕ is called a Q-sup-algebra
homomorphism if

ωB(ϕ(a1), . . . , ϕ(an)) = ϕ(ωA(a1, . . . , an))

for any n ∈ N, ω ∈ Ω, and a1, . . . , an ∈ A, and

ωB = ϕ(ωA)

for any ω ∈ Ω0.

Category Q-Sup-Ω-Alg
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As any Q-sup-algebra can be regarded as a Q-ordered algebra, the
concept of subhomomorphism applies here as well.

Proposition

If f : A→ B is a homomophism, then f ∗ : B → A is a
subhomomorphism.

Composition of subhomomorphisms is a subhomomorphism.
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Definition

Let (A,
⊔
,Ω) be a Q-sup-algebra.

A Q-monotone, Q-inflating mapping which is a
subhomomorphism is called a prenucleus on A.

An idempotent prenucleus is called a nucleus.
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Proposition

Let A = (A,
⊔

A,Ω) be a Q-sup-algebra, and j : A→ A be a
nucleus on A. Put

1 Aj = {a ∈ A | j(a) = a},
2
⊔

Aj
M = j (

⊔
AM ′) for every M ∈ QAj ,

3 ωAj
(a1, . . . , an) = j(ωA(a1, . . . , an)) for every n ∈ N, ω ∈ Ωn,

a1, . . . , an ∈ Aj , and

4 ωAj
= j(ωA) for any ω ∈ Ω0.

Then (Aj ,
⊔

Aj
,Ω) is a Q-sup-algebra, and j is a Q-sup-algebra

homomorphism from A to Aj .

Theorem

Let f : A→ B be a surjective homomorphism of Q-sup-algebras.
Then there exists a nucleus j on A such that B ∼= Aj .
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Definition

A Q-sup-algebra (B,
⊔

B ,Ω) is a sub-Q-sup-algebra of a
Q-sup-algebra (A,

⊔
A,Ω) if B ⊆ A, and the inclusion mapping is a

Q-sup-algebra homomorphism.

Proposition

Let g : A→ A be a conucleus on a Q-sup-algebra A = (A,
⊔

A,Ω).
Then (Ag ,

⊔
A|Ag ,Ω) where Ag = {a ∈ A | g(a) = a} is a

sub-Q-sup-algebra of A.

Theorem

Let (A,
⊔

A,Ω) and (B,
⊔

B ,Ω) be Q-sup-algebras, and f : A→ B
be an injective homomorphism. Then there exists a conucleus
g : B → B such that A ∼= Bg .
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Theorem

The categories Q-Mod-Ω-Alg (Ω-algebras in the category of
Q-modules) and Q-Sup-Ω-Alg are isomorphic.
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R. Šlesinger: On some basic constructions in categories of
quantale-valued sup-lattices, Mathematics for Applications 5,
2016

W. Yao and L.-X. Lu: Fuzzy Galois connections on fuzzy
posets. Mathematical Logic Quarterly 55, 2009.

X. Zhang and V. Laan: Quotients and subalgebras of
sup-algebras, Proceedings of the Estonian Academy of
Sciences 64, 2015



Introduction & preliminaries Q-orders Q-sup-lattices Q-sup-algebras

Thank you for your attention.
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