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Introduction & preliminaries
°

Let (X,<x) and (Y, <y) be posets. Monotone mappings
f: X—=Yand g: Y — X are adjoint if

f(x)<yy <= x<xgly)

forany xe X, y e Y.

f ‘left adjoint’, ‘residuated’, preserves existing joins
g ‘right adjoint’, ‘residual’, preserves existing meets

Sup-lattice — complete join-semilattice
(actually a complete lattice)

Homomorphism — join-preserving mapping
FVX)=V{f(x) [ x e X}

Category Sup
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Quantale — a sup-lattice @ with an associative binary operation
*." satisfying ¢- (VA) = VV{q-a| ae€ A} and
(VA)-g=V{a-qacA}
Unital if @ has a multiplicative unit e
Commutative if - is commutative
Homomorphism f (\/ A) = \/{f(a) | a € A} and
f(q-r)=f(q)-f(r)

Category Quant (UnQuant) — semigroups (monoids) in Sup
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Left @-module — a sup-lattice M with left action * of the quantale
satisfying g (\/ N) = \/{g*n | nec N},
(VR)«xm=\/{r«m]|reR}
(g-r)*xm=qx(r*m).

Unital if @ is unital and me = m for all m

Homomorphism f (\/ m;) =\/ f(m;), f(mq) = f(m)q

Category Q-Mod

If Q is unital, @-modules are also assumed as unital




Introduction & preliminaries
feleY 1)

Let @ be a commutative quantale
Q-algebra — a left @-module A with an associative binary
operation ‘-’ such that A is a quantale, and both
a-— and — - a are module homomorphisms for any
acA(a-(gxb)=gqg=*(a-b)=(g*a)-b)
Homomorphism — @-module homomorphism that also preserves
multiplication

Category Q-Alg

Analogy: abelian groups, rings, modules, algebras
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Q-sup-algebras

For any g € @, both mappings g - — and — - g preserve joins —>
they have right adjoints ¢ — — and — < g characterlzed by
r<q—s <= q-r<s < g<s<r

If Q@ is commutative, — and < coincide )

Explicitly, g = s =\V{re Q| q-r <s} J

q—>/\5:/\(q—>s) \/S—>r:/\(s—>r)

seS seS
L—=r=T g—(r—=s)=(g-r)—s

If Q is unital:

1—>r=r qg—q=>1
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From now on, assume that @ is a fixed commutative unital
quantale (the ‘base quantale’).

Definition
Let X be a set. A mapping e: X x X — Q is called a Q-order if
for any x, y,z € X the following are satisfied:

O e(x,x)>1 (reflexivity),

Q e(x,y)-e(y,z) <e(x,z) (transitivity),

@ ife(x,y) >1and e(y,x) > 1, then x=y (antisymmetry).
The pair (X, e) is then called a Q-ordered set.

x =y iff e(x,z) = e(y, z) for any z € X iff e(z,x) = e(z, y) for
any z € X.
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For a Q-order e on X, the relation <. defined as
x <ey <= e(x,y) > 1is a partial order in the usual sense (the
induced partial order).

This means that any Q-ordered set can be viewed as an ordinary
poset satisfying additional properties.

Vice versa, for a partial order < on a set X and any quantale @ we
can define a Q-order e< by

1 ifx<y,
1 otherwise.

e<(x,y) = {
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© The base quantale @ itself can be regarded as a Q-ordered set
via e(q,r) = q — r as for any q,r,s € Q we have:
@ 1-g=qimpliesl <qg—gq,
@ q-(q—r)-(r—s)<r-(r—s)<s, which is equivalent to
(g—=r)-(r—s)<gqg-—s,
Q@ 1<qg—riffg=1-q<r,similarly 1 <qg— qiff r <g.

@ The same actually works for any @-module L when putting
e(l,m)=1—-qgm=\{qe Q| qgx/<m}.
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Definition
Let (X, ex), (Y, ey) be Q-ordered sets. A mapping f: X — Y is
called Q-monotone if ex(x,y) < ey(f(x), f(y)) for any x,y € X.

Like with the case of Q-orders, any Q-monotone mapping
(X,ex) — (Y,ey) is an ordinary monotone mapping
(X, <ex) = (Y, <e,) with respect to the induced partial orders.

v

Conversely, a monotone mapping (X, <x) — (Y, <y) becomes a
Q-monotone mapping (X, e<,) — (Y, e<,) with respect to the
Q-orders induced by <x and <y.
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Definition

Let f: (X,ex) = (Y,ey), g: (Y,ey) = (X, ex) be @-monotone
mappings.

We say that (f, g) is a Q-adjunction, if ey(f(x),y) = ex(x,g(y))
forany xe X, y € Y.

Then f is called a left and g a right Q-adjoint.

Again, a Q-adjunction is an ordinary adjunction satisfying an
additional property.
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Definition

A Q-subset of a set X is an element of the set QX.

This corresponds to viewing ordinary subsets of X as elements of
2X where 2 is the two-element quantale.

J




Q-orders
®0000

Definition
Let M be a Q-subset of a Q-ordered set (X, e). An element s of X
is called a Q-join of M, denoted | | M if:

Q@ M(x) < e(x,s) for all x € X, and

Q forally € X, A, cx(M(x) — e(x,y)) < e(s,y).
By analogy, an element m of X is called a Q-meet of M, denoted
[1M, if:

Q@ M(x) < e(m,x) for all x € X, and

Q forally € X, A, cx(M(x) — e(y,x)) < e(y, m).
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Proposition

Let (X, e) be a Q-ordered set, s,m € X and M € QX.
Q@ s=|IMiffforally € X, e(s,y) = Nyex(M(x) = e(x,y)),
@ m=[|Miffforally € X, e(y,m) = A\ ex(M(x) = e(y, x)).

The antisymmetry property of the Q-order implies that if a Q-join
(Q-meet) of a Q-subset exists, it is unique.
Definition
A Q-ordered set (X, e) is called:
Q@ Q-join-complete if | | M exists for any Q-subset M of X,
@ Q-meet-complete if [ | M exists for any Q-subset M of X,

© Q-complete if it is both Q-join-complete and
Q-meet-complete.




Q-orders
00®00

Let (X, e) be a Q-complete Q-ordered set. Then (X, <.) is a
complete poset, and for any S C X we have \/ S = | | ps where

1 ifxes,
SDS(X):{

1 otherwise.
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We will denote a Q-complete set (X, e) by (X,|]).
Definition
Let X and Y be sets, and f: X — Y be mapping. We define

Zadeh's forward power set operator that maps Q-subsets of X to
Q-subsets of Y as:

fo (M) =\ MKx).

x€f=1(y)

Definition
Let (X, ex) and (Y, ey) be Q-ordered sets. We say that a

mapping f: X — Y is Q-join-preserving if for any Q-subset M of
X such that | |y M exists, | |y fo' (M) exists and

f (|_|X M) =L, ' (m).

| A
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Proposition

Let (X, ex), (Y,ey) be Q-ordered sets, and f: X — Y,
g: Y — X be two mappings. Then the following hold:
Q@ If (X, ex) is Q-complete, then f is Q-monotone and has a
right adjoint iff f (| |x M) = ||y fg" (M) for all M € QX.
Q If (Y, ey) is Q-complete, then g is Q-monotone and has a
left adjoint iff g ([1y N) =[x &g’ (N) for all N € QY.
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A Q-sup-lattice is a Q-join-complete set. Homomorphisms of
Q-sup-lattices are Q-join-preserving mappings. By Q-Sup we will
denote the category whose objects are Q-sup-lattices, and
morphisms are Q-sup-lattice homomorphisms.
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Let / be a set, (Xi’l_lx,-) be Q-sup-lattices for all i € /, and M be a
Q-subset of the set [];.,; X;. For each j € I and y € X; we then

define Mj € Q% as

M;(y) = \/ {M((Xi)ie/) | (xi)ier € HXh Xj = Y} :

i€l

| \

Proposition
Let (Xi,|x,) be Q-sup-lattices for all i € I. Then X =[]
a Q-sup-lattice too, with | |y M = (| ]x. I\//\I,-),-E,.

iEIXi 1S

Proposition

Let (X, |—|X,-)’ i €1, be Q-sup-lattices. Then their product is

(er/ Xi, Ug) .




Q-sup-lattices
oeo

For any set X, the set of its @-subsets (QX,subX) is Q-complete:
For M € Q¥ put S € QX as S(x) = Vpcox M(P) - P(x).
Applying the characterization of Q-joins, we can verify that S is
the Q-join of M.
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Proposition

The category Q-Sup has equalizers: Let f,g: X — Y be two
homomorphisms. Then their equalizer is ((Xzg, | x|x, ), €) where
Xeg = {x € X|f(x) = g(x)} and e: Xgg — X is the set inclusion.

The category Q-Sup is complete.

The terminal object in the category Q-Sup is the one-element
Q-sup-lattice ({*}, e.) with e,(*,%) = T.
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Proposition

The category Q-Sup has coproducts.

Proposition
The category Q-Sup has coequalizers.

Both are constructed using products resp. equalizers, adjoints, and
dual Q-orders (€'(x,y) = e(y, x)).

J
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For Q-sup-lattices X and Y, the set Hom(X,Y) is also a
Q-sup-lattice.

Example

| \

A Q-quantale is a Q-sup-lattice A endowed with an associative
binary operation - which is Q-join-preserving in both components,
namely for any a € A and M € Q4,

(LIM) 2= a)gm)
a- (M) = Iz~ =) (m)

(Q-quantales are semigroup objects in Q-Sup like quantales are
semigroup objects in Sup.)

A
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Example (Cont.)

Typical example: a commutative quantale Q with e(x,y) =x — y

A new instance: Let X be a Q-sup-lattice, then the set of all its
endomorphisms End(X) = Hom(X, X) is a Q-quantale with
composition of mappings as the multiplication.

(One can verify that | (g o —)5 (M) = g o | M for any
M e QEnd(X).)
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Let (X, ex) be a Q-ordered set.
e A mapping : X — X is Q-inflating if ex(x,f(x)) > 1 for any
x € X.

@ A Q-monotone, Q-inflating mapping is called a Q-order
prenucleus.

@ An idempotent Q-order prenucleus is called a Q-order nucleus.
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Definition
Let (X, ex) be a Q-ordered set.
e A mapping f: X — X is Q-deflating if ex(f(x),x) > 1 for
any x € X.

@ A @Q-monotone, Q-deflating mapping is called a Q-order
preconucleus.

@ An idempotent Q-order preconucleus is called a Q-order
conucleus.
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Proposition

Let (f,g) be a Q-adjunction between (X, ex) and (Y,ey). Then
gof isa Q-order nucleus on X, and f o g is a Q-order conucleus
onY.

As any Q-sup-lattice homomorphism is a left Q-adjoint, we
instantly get the following:

Proposition

Let (X, | |x) and (Y,|ly) be Q-sup-lattices, and let f: X — Y be
a homomorphism. Then f* o f is a Q-order nucleus on X, and
fof* isa Q-order conucleus on Y.




Q-sup-lattices
00000

Definition
Let (X,| ]) be a Q-sup-lattice, Y C X, and M € QY. We define
an extension M’ € QX of M as

M/ (x) = {I\/l(x) xeY,

il xe&Y.

We say that Y is a sub-Q-sup-lattice of X if it is closed under
Q-joins in the following sense: for any M € QY the element
| |M" € X also belongs to Y.
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Proposition

Let (X, ]) be a Q-sup-lattice, and j be a Q-order-prenucleus on
X. Then the subset of fixed points of j, X; = {x € X | j(x) = x}
is a Q-sup-lattice with |_|Xj M =j(Ix M).

X; is closed under Q-meets, Q-joins are calculated using j
J

Let (X, | ]x) and (Y, ly) be Q-sup-lattices, and f: X — Y be a
surjective homomorphism. Then there exists a Q-order nucleus
J: X — X such that Y = X.
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Proposition

Let (X,|]) be a Q-sup-lattice, and g: X — X be a Q-order
preconucleus on X. Then Xy = {x € X | g(x) =x} is a
sub-Q-sup-lattice of X.

(Q-joins are inherited, Q-meets computed using g)

Let (X, | ]x) and (Y,|ly) be Q-sup-lattices, and f: X — Y be an
injective homomorphism. Then there exists a Q-order conucleus
g: Y — Y such that X = Y.
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S. A. Solovyov 2016: For a given commutative unital quantale @,
the categories Q-Sup and @Q-Mod are isomorphic.

| 5\

F: Q-Mod — Q-Sup
Q es(ar, a) = a1 g &

Q UM =V, ca(M(a) * a)

F: Q-Sup — @-Mod
Q a1 < ayiff 1 <ep(ag, ap) for every a1,a, € A
Q@ \/S=|]Miforevery SCA
© gxa=||MJ forevery g€ Q and every ac A

| A

where

1 otherwise.

A\
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Existing results on @-modules can be directly transferred to
Q-Sup:

Proposition

| \

In the category Q-Sup, the following hold:
@ All monomorphisms are injective mappings.
@ Al epimorphisms are surjective mappings.

© All monomorphisms are regular, i.e., equalizers of some pair of
homomorphisms.

@ All epimorphisms are regular, i.e., coequalizers of some pair of
homomorphisms.

Theorem

| A

There exists the free Q-sup-lattice FX over any set X as
X = QX with e((qX)XEX> (rx)xeX) = (qx) —Q (rx)-
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Proposition

The category Q-Sup has tensor products.

Proposition

The category Q-Sup with the tensor product and @ as the unit
object is a symmetric closed monoidal category.

Proposition

A Q-sup-lattice (X, | |) is injective iff its dual (X,[]) is projective.

Proposition

A Q-sup-lattice (X, | |) is flat iff it is projective.

Characterization of projectivity not yet available, just partial results
such as:

A is projective if A= [[;,(Q - d;) for some | where d; - d; = d; for
every i € /.
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Such isomorphism was shown between the categories Q-Alg and
Q-Quant (the conversion behaves nicely wrt. to multiplication). J
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Q-sup-algebras — general algebras in the category Q-Sup J

A type is a set ) of function symbols.

To each w € Q, a number n € Ny is assigned (arity).

For each n € Ny, Q, C Q is the subset of all n-ary function
symbols from 2.
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Definition

A Q-ordered algebra) is a triple A = (A, e, Q) where (A, e) is a
Q-ordered set, (A, Q) is an Q-algebra, and each operation w of
non-zero arity is @-monotone in any component, that is,

e(b,c) < e(w(a1,...,aj-1,b,aj41,...,an),

w(at,...,a-1,C,aj+1,---,an))

forany ne N, we Q,, je{l,...,n}, and a1,...,an, b, c € A.
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Definition

Let (A, ea, ) and (B, eg, 2) be Q-ordered algebras, and
p: A— B be a Q-monotone mapping. Then ¢ is called a
Q-ordered algebra subhomomorphism if

1< eB(wB(Qp(al)a 900y @(an))v QD(WA(ab 9coy an)))

forany ne N, w € Q,, and a1,...,a, € A, and

1 < eg(wa, p(wa))

for every w € Q.
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A Q-sup-algebra of type Q (shortly, a Q-sup-algebra) is a triple
A= (A, ], Q) where (A, ]) is a Q-sup-lattice, (A, Q) is an
Q-algebra, and each operation w is Q-join-preserving in any
component, that is,

w (al,...,aj_1,|_|M,aj+1,...,a,,)
_ —
= |_|w(31, 3321, 75341, -+ @n) q (M)

foranyneN, weQ,, je{l,...,n}, a1,...,a, € A, and
M e QA.
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Let (A, |4, Q) and (B,| g, Q2) be Q-sup algebras, and ¢: A— B
be a Q-join-preserving mapping. Then ¢ is called a Q-sup-algebra
homomorphism if

wg(p(a1), - - ., ¢(an)) = p(walar, ..., an))
forany ne N, w € Q, and a1,...,a, € A, and

wp = p(wa)

for any w € Q.

Category Q-Sup-Q-Alg |
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As any Q-sup-algebra can be regarded as a Q-ordered algebra, the
concept of subhomomorphism applies here as well.

Proposition

e Iff: A— B is a homomophism, then f*: B — A is a
subhomomorphism.

o Composition of subhomomorphisms is a subhomomorphism.
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Definition

Let (A, |,2) be a Q-sup-algebra.

@ A Q-monotone, Q-inflating mapping which is a
subhomomorphism is called a prenucleus on A.

@ An idempotent prenucleus is called a nucleus.
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Proposition

Let A= (A, |4, Q) be a Q-sup-algebra, and j: A — A be a
nucleus on A. Put

0 A —{acAlja)=a),
(2] |_|AjI\/I:j(|_|A M') for every M € Q4,

Q wa(a1,...,an) = j(wal(ar, ..., an)) forevery n € N, w € Q,,
ai,...,an € Aj, and

Q wa, = j(wa) for any w € Q.
Then (Aj, | A Q) is a Q-sup-algebra, and j is a Q-sup-algebra
homomorphism from A to A;.

Let f: A— B be a surjective homomorphism of Q-sup-algebras.
Then there exists a nucleus j on A such that B = A;.
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Definition

A Q-sup-algebra (B,| |g,) is a sub-Q-sup-algebra of a
Q-sup-algebra (A, | |4, ) if B C A, and the inclusion mapping is a
Q-sup-algebra homomorphism.

| A\

Proposition

Let g: A — A be a conucleus on a Q-sup-algebra A = (A, |4, Q).
Then (Ag,|ala,,2) where A, ={a€ Al g(a) =a} isa
sub-Q-sup-algebra of A.

Theorem

Let (A, 4, Q2) and (B, | g, 2) be Q-sup-algebras, and f: A— B
be an injective homomorphism. Then there exists a conucleus
g: B — B such that A= B;.

| A

N
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The categories Q-Mod-Q-Alg (Q-algebras in the category of
Q-modules) and Q-Sup-Q-Alg are isomorphic.
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Thank you for your attention.
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