THE OMEGA-INEQUALITY PROBLEM FOR CONCATENATION HIERARCHIES OF STAR-FREE LANGUAGES

Jorge Almeida

(joint work with Michal Kunc and Ondřej Klíma, from Masaryk University)

${ }_{\mathrm{C}}$U. PORTO
Centro de Matemática Departamento de Matemática
Faculdade de Ciências
Universidade do Porto
http://www.fc.up.pt/cmup/jalmeida

Brno, February 5, 2016

- By a variety of languages we mean a correspondence \mathcal{V} associating to each finite alphabet A a set $\mathcal{V}(A)$ of regular languages of A^{*} such that
- $\mathcal{V}(A)$ is closed under finite union, finite intersection, and complementation;
- if $\varphi: A^{*} \rightarrow B^{*}$ is a monoid homomorphism and $L \in \mathcal{V}(B)$ then $\varphi^{-1}(L) \in \mathcal{V}(A)$;
- if L belongs to $\mathcal{V}(A)$ and $a \in A$, then so do the languages

$$
\begin{aligned}
& a^{-1} L=\left\{w \in A^{*}: a w \in L\right\} \\
& L a^{-1}=\left\{w \in A^{*}: w a \in L\right\} .
\end{aligned}
$$

- By a positive variety of languages we mean a correspondence \mathcal{V} associating to each finite alphabet A a set $\mathcal{V}(A)$ of regular languages of A^{*} such that
- $\mathcal{V}(A)$ is closed under finite union, finite intersection e-monementurn;
- if $\varphi: A^{*} \rightarrow B^{*}$ is a monoid homomorphism and $L \in \mathcal{V}(B)$ then $\varphi^{-1}(L) \in \mathcal{V}(A)$;
- if L belongs to $\mathcal{V}(A)$ and $a \in A$, then so do the languages

$$
\begin{aligned}
& a^{-1} L=\left\{w \in A^{*}: a w \in L\right\} \\
& L a^{-1}=\left\{w \in A^{*}: w a \in L\right\} .
\end{aligned}
$$

- Boolean closure: $\mathcal{V} \mapsto \mathcal{B} \mathcal{V}$, where $\mathcal{B} \mathcal{V}(A)$ is the closure of $\mathcal{V}(A)$ under finite union, finite intersection and complementation.
- Polynomial closure: $\mathcal{V} \mapsto P o l \mathcal{V}$, where $\operatorname{Pol} \mathcal{V}(A)$ consists of all finite unions of languages of the form

$$
L_{0} a_{1} L_{1} \cdots a_{n} L_{n}
$$

with $a_{i} \in A$ and $L_{i} \in \mathcal{V}(A)$.

- Unambiguous polynomial closure: $\mathcal{V} \mapsto$ UPol \mathcal{V}, where UPol $\mathcal{V}(A)$ consists of all finite disjoint unions of unambiguous products of the form

$$
L_{0} a_{1} L_{1} \cdots a_{n} L_{n}
$$

with $a_{i} \in A$ and $L_{i} \in \mathcal{V}(A)$.

We are interested in hierarchies constructed from a variety of languages \mathcal{V}_{0} defined recursively by

- $\mathcal{V}_{n+1 / 2}=\operatorname{Pol} \mathcal{V}_{n}$,
- $\mathcal{V}_{n+1}=\mathcal{B} \mathcal{V}_{n+1 / 2}$.

The half-levels of the hierarchy are positive varieties of languages, while the integer levels are varieties of languages.
The union of the hierarchy is the simultaneous polynomial and Boolean closure of \mathcal{V}_{0}.

In particular, starting from the trivial variety of languages $\left(\mathcal{V}_{0}(A)=\left\{\emptyset, A^{*}\right\}\right)$, we obtain a hierarchy of star-free languages, which is known as the Straubing-Thérien hierarchy.
languages

- star-free

languages

monoids

logic
- $\mathrm{FO}[<]$

Σ_{4}
languages

A key technique has emerged in the proofs of decidability (of the membership problem) for the Straubing-Thérien hierarchy, which consists in solving the following harder problem for a pseudovariety V of ordered monoids:

- given a pair of elements (s, t) of a finite A-generated ordered monoid (M, \leqslant), determine whether there exists a witness pair of elements (u, v) of the free profinite monoid $\bar{\Omega}_{A} \mathbf{M}$ such that
(i) $u=s$ and $v=t$ in M;
(ii) $u \leqslant v$ in \mathbf{V};

Place and Zeitoun'2014 call this the separation problem because it is equivalent to deciding whether, given two regular languages $L, K \subseteq A^{*}$, there exists a V-recognizable language L^{\prime} such that $L \subseteq L^{\prime}$ and $L^{\prime} \cap K=\emptyset$.

A standard compactness argument shows that, if \mathbf{V} may be recursively enumerated, then so may be the negative instances of the separation problem.
Thus, for such \mathbf{V}, to prove that the problem is decidable, it suffices to show that the positive instances may also be recursively enumerated.
Since $\bar{\Omega}_{A} \mathbf{M}$ is uncountable, it is better to reduce the set of witness pairs (u, v) that need to be considered, which leads to the following two properties of \mathbf{V}, as suggested by work of JA-Steinberg'2000:

- ω-reducibility (for $x \leqslant y$): if there is a witness (u, v) then there is one in which u and v are ω-words;
- ω-inequality problem: given two ω-words u and v, determine whether \mathbf{V} satisfies $u \leqslant v$.

A standard compactness argument shows that, if \mathbf{V} may be recursively enumerated, then so may be the negative instances of the separation problem.
Thus, for such \mathbf{V}, to prove that the problem is decidable, it suffices to show that the positive instances may also be recursively enumerated.
Since $\bar{\Omega}_{A} \mathbf{M}$ is uncountable, it is better to reduce the set of witness pairs (u, v) that need to be considered, which leads to the following two properties of \mathbf{V}, as suggested by work of JA-Steinberg'2000:

- ω-reducibility (for $x \leqslant y$): if there is a witness (u, v) then there is one in which u and v are ω-words;
- ω-inequality problem: given two ω-words u and v, determine whether \mathbf{V} satisfies $u \leqslant v$.

Theorem

If a recursively enumerable pseudovariety of ordered monoids \mathbf{V} is ω-reducible (for $x \leqslant y$) and the ω-inequality problem for \mathbf{V} is effectively solvable, then so is the separation problem for \mathbf{V}.

MAIN THEOREM

Let \mathbf{V} be a recursively enumerable pseudovariety of aperiodic monoids and let $\mathbf{W}=$ Pol \mathbf{V}. If the ω-inequality problem for \mathbf{W} is decidable, then so is it for Pol B W.

Corollary

The ω-inequality problem is decidable for all levels of the Straubing-Thérien hierarchy.

- Let $\mathbf{W}=$ Pol \mathbf{V}.
- If an ω-inequality does not hold in Pol B W, then it fails in some member of Pol B W.
- Since Pol B W is recursively enumerable, it follows that the negative instances of the ω-inequality problem for Pol B W may be recursively enumerated.
- Thus, to prove decidability of the ω-inequality problem for Pol B W, it remains to show that the positive instances may also be recursively enumerated.
- We show that the natural deductive calculus for ω-inequalities is complete, in the sense that an ω-inequality is valid in Pol B W if and only if it may be formally deduced from a certain recursively enumerable set of ω-inequalities valid in Pol B W which are given by a theorem of Pin of Weil'1997.
- The following are the main ingredients in this proof:

THEOREM (LIFTING FACTORIZATIONS)

Let \mathbf{W} be a polynomially closed pseudovariety of ordered monoids and let $u, v \in \bar{\Omega}_{A} \mathbf{M}$. If the inequality $u \leqslant v$ holds in \mathbf{W} then, for every factorization $u=u_{1} u_{2}$, there is a factorization $v=v_{1} v_{2}$ such that each inequality $u_{i} \leqslant v_{i}$ holds in $\mathbf{W}(i=1,2)$.

Proposition (REPETITIONS)

Suppose, for each $i \geqslant 1, v_{i}, x_{i}$ are ω-words in $\Omega_{A}^{\omega} \mathbf{A}$ such that $v_{i}=x_{i} v_{i+1}$. Then there exist indices i and j with $i<j$ such that $v_{i}=\left(x_{i} \cdots x_{j}\right)^{\omega} v_{j+1}$.

Proposition (Completeness)

Let \mathbf{V} be a pseudovariety of aperiodic monoids; $\mathbf{W}=$ Pol \mathbf{V}, and let Γ be the set of all trivial ω-inequalities together with all inequalities of the form $x^{\omega} \leqslant x^{\omega} y x^{\omega}$ such that the ω-inequality $y \leqslant x$ is valid in W. If an ω-inequality $u \leqslant v$ is valid in Pol B W, then $\Gamma \vdash u \leqslant v$.
. star-free

. A

. star-free

. A

OPEN PROBLEM

Let \mathbf{V} be a pseudovariety monoids. Does the operation $\mathbf{V} \mapsto \mathbf{L I} \oplus \mathbf{V}$ preserve decidability of the ω-identity problem?

Thank you!

