Algebraic characterization of temporal logics on forests

Szabolcs Iván University of Szeged

AAA'91 6 February, 2016, Brno

Szabolcs IvánUniversity of Szeged Algebraic characterization of temporal logics (AAA'916 February, 2016, Brno 1 / 12

Roadmap

- Forests, trees
- Forest automata, regular forests
- The Forest Logics $\operatorname{FL}(\mathcal{L})$
- Algebraic characterization of the languages definable in the logics
- Application: a decidable fragment of CTL

Origins

The Forest Logics studied here is originating from the work of Ésik (2005) (difference: forests, separating tree and forest formulas) and similar to the work of Bojanczyk, Straubing and Walukiewicz (2012) (difference: modality evaluation is consistent for trees here). The general algebraic characterization and the decidability result of the given fragment draws heavily from Ésik (2005) and Ésik and Iván (2008).

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

An alphabet is a finite nonempty set A.

Trees, forests

Trees and forests over some alphabet A are defined via mutual recursion as

- if t_1, t_2, \ldots, t_n are trees for some $n \ge 0$, then the ordered sum $t_1 + \ldots + t_n$ is a forest;
- if s is a forest and $a \in A$ is a symbol, then a(s) is a tree.
- nothing else is a tree nor a forest.
- In particular, the empty forest, denoted **0** is a forest.
- For $A = \{a, b\}$, $a(\mathbf{0})$ is a tree and $a(\mathbf{0}) + b(\mathbf{0}) + a(\mathbf{0})$ is a forest. Omitting zeros: a + b + a.
- Also: a(a + b(a)) + b(b + a(b)) + a.

3

Forest automata

A (finite) forest automaton over an alphabet A is a system $\mathcal{M} = (Q, +, 0, A, \cdot)$ where

- (Q, +, 0) is a (finite) monoid, its elements are also called states,
- the function \cdot maps $A \times Q$ to Q.

Evaluation

In $\mathcal M$ above, each tree t and forest s evaluates to a state $t^{\mathcal M}$ and $s^{\mathcal M}$ respectively as

•
$$(t_1 + t_2 + ... + t_n)^{\mathcal{M}} = t_1^{\mathcal{M}} + t_2^{\mathcal{M}} + ... + t_n^{\mathcal{M}}$$
 and

•
$$(a(s))^{\mathcal{M}} = a \cdot (s^{\mathcal{M}}).$$

In particular, the empty forest **0** evaluates to 0.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A forest language (over A) is an arbitrary set of A-forests.

The forest automaton $\mathcal{M} = (Q, +, 0, A, \cdot)$ equipped with a set $F \subseteq Q$ of final states recognizes the forest language

$$L(\mathcal{M}, F) = \{s \in F_A : s^{\mathcal{M}} \in F\}.$$

A forest language is called regular if it can be recognized by some finite forest automaton by some set of final states.

Each regular forest language L has a minimal forest automaton $\mathcal{M}(L)$, unique up to isomorphism, which can be computed in polynomial time from any forest automaton recognizing L.

< 口 > < 同 >

Logics

Forest formulas

- $s \models \top$, $s \not\models \bot$
- $\varphi \lor \psi$, $\neg \varphi$
- $L \subseteq F_B$ a forest language over $B, (\varphi_b)_{b \in B}$ a set of tree formulas over A: $L[b \mapsto \varphi_b]_{b \in B}$

Tree formulas

 all forest formulas, same semantics (a tree is a forest of a single tree)

(日)

3

•
$$\varphi \lor \psi$$
, $\neg \varphi$

Example

$$L_{\mathrm{EX}} = \{ s \in F_{\{0,1\}} : \exists \text{ depth-one node labeled } 1 \}$$

$$(b) = (c) = (c) + (c)$$

When \mathcal{L} is a class of forest languages, let $FL(\mathcal{L})$ stand for the logics whose forest formulas of the form $L[b \mapsto \varphi_b]$ are allowed only if $L \in \mathcal{L}$. Let $FL(\mathcal{L})$ stand for the forest languages definable in $FL(\mathcal{L})$.

Example

The forest language over $\{a, b, c\}$ consisting of exactly those forests having a depth-one node labeled *a* having a child labeled *b* having a child labeled *a* and a child labeled *c* is in **FL**($\{L_{EX}\}$).

Definability problem

Fix some class \mathcal{L} of regular forest languages (or "modalities"). Is it decidable, given some forest language L, with (say) its minimal forest automaton, whether $L \in \mathbf{FL}(\mathcal{L})$ holds?

Let $\mathcal{M}_1 = (Q_1, +_1, 0_1, A, \cdot_1)$ and $\mathcal{M}_2 = (Q_2, +_2, 0_2, B, \cdot_2)$ be forest automata and $\alpha : Q_1 \times A \to B$ be a control function, then the Moore product $\mathcal{M}_1 \times_{\alpha} \mathcal{M}_2$ is the forest automaton

 $(Q_1 \times Q_2, +, (0_1, 0_2), A, \cdot)$

with $(q_1, q_2) + (q_1', q_2') = (q_1 +_1 q_1', q_2 +_2 q_2')$ and

 $\mathbf{a} \cdot (\mathbf{q}_1, \mathbf{q}_2) = (\mathbf{a} \cdot_1 \mathbf{q}_1, \alpha(\mathbf{a} \cdot_1 \mathbf{q}_1, \mathbf{a}) \cdot_2 \mathbf{q}_2).$

Theorem

Suppose \mathcal{L} is a class of regular forest languages such that for each modality $L \in \mathcal{L}$ and forest language K recognizable in $\mathcal{M}(L)$ we have $K \in FL(\mathcal{L})$. Then the following are equivalent for any forest language L:

- L is definable in $FL(\mathcal{L})$
- *M*(*L*) is contained in the least class of forest automata which contains each forest automaton *M*(*K*), *K* ∈ *L*, and is closed under renamings, subautomata, homomorphic images and Moore products.

Note

This does not gives an effective characterization.

→ 3 → 4 3

EF^*

The formulas of the logic EF^* over some alphabet A are

- \top , \perp are forest formulas,
- $a \in A$ are tree formulas,
- $\varphi \lor \psi$, $\neg \varphi$ are also forest (tree) formulas if so are φ and ψ ,
- every tree formula is a forest formula as well,
- $\mathrm{EF}^* \varphi$, with φ being a tree formula.

A forest s satisfies $EF^*\varphi$ iff some subtree of s satisfies φ .

In particular, if s = a(s') is a tree satisfying φ , then s satisfies $\mathrm{EF}^*\varphi$ as well.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

Let $L \subseteq F_A$ be a regular forest language, $\mathcal{M}(L) = (Q, +, 0, A, \cdot)$ be its minimal forest automaton and \leq be the reflexive-transitive closure of $q \leq a \cdot q$, $q \leq p + q$.

Then L is definable in EF^* if and only if all the following conditions hold:

- (Q, +, 0) is a commutative monoid;
- aap = ap for each $a \in A$, $p \in Q$;
- ≤ is a partial ordering;
- $p \leq q$ implies p + q = q for each $p, q \in Q$.

米部 とくほど くほとし ほ

- A class of logics is defined on forests (here: ordered vectors of finite, ordered, unranked trees).
- We gave an algebraic characterization of the languages definable in these logics by means of the Moore product.
- Using the above characterization we showed that definability in the ${
 m CTL}$ -fragment ${
 m EF}^*$ is decidable in low polynomial time.
- Many open problems remain, one of them being the definability of CTL itself.