On congruence extension and Hamiltonian ordered algebras

Lauri Tart

University of Tartu

54th Summer School on General Algebra and Ordered Sets
Sep 3 - 9, 2016
Trojanovice, Czech Republic
Outline

1. Introduction
 - Background

2. Preliminaries
 - Ordered universal algebras
 - Congruence extension properties

3. Hamiltonian ordered algebras
 - Hamiltonian ordered algebras and CEP
 - Hamiltonian squares and congruence extension

4. Final remarks
 - Open problems
Outline

1 Introduction
 • Background

2 Preliminaries
 • Ordered universal algebras
 • Congruence extension properties

3 Hamiltonian ordered algebras
 • Hamiltonian ordered algebras and CEP
 • Hamiltonian squares and congruence extension

4 Final remarks
 • Open problems
This talk will cover some of my joint work [3] with Valdis Laan and Nasir Sohail on a property of partially ordered universal algebras and congruences thereof. Namely, we studied when congruences on subalgebras of an algebra can be extended to the algebra itself.

The generic name for such a property is the congruence extension property (CEP) and the topic has seen intermittent study since the early seventies, notably in the cases of (unordered) semigroups and universal algebras.
The talk

This talk will cover some of my joint work [3] with Valdis Laan and Nasir Sohail on a property of partially ordered universal algebras and congruences thereof.

Namely, we studied when congruences on subalgebras of an algebra can be extended to the algebra itself.

The generic name for such a property is the congruence extension property (CEP) and the topic has seen intermittent study since the early seventies, notably in the cases of (unordered) semigroups and universal algebras.
This talk will cover some of my joint work [3] with Valdis Laan and Nasir Sohail on a property of partially ordered universal algebras and congruences thereof.

Namely, we studied when congruences on subalgebras of an algebra can be extended to the algebra itself.

The generic name for such a property is the congruence extension property (CEP) and the topic has seen intermittent study since the early seventies, notably in the cases of (unordered) semigroups and universal algebras.
Outline

1 Introduction
 - Background

2 Preliminaries
 - Ordered universal algebras
 - Congruence extension properties

3 Hamiltonian ordered algebras
 - Hamiltonian ordered algebras and CEP
 - Hamiltonian squares and congruence extension

4 Final remarks
 - Open problems
Definition 1

Let Ω be a type. An ordered Ω-algebra (or simply ordered algebra) is a triple $A = (A, \Omega_A, \leq_A)$ comprising a poset (A, \leq_A) and a set Ω_A of monotone operations on A, where $\omega_A \in \Omega_A$ has arity k if $\omega \in \Omega_k$ and where the monotonicity of ω_A means that

$$a_1 \leq_A a'_1 \land \ldots \land a_k \leq_A a'_k \implies \omega_A(a_1, \ldots, a_k) \leq_A \omega_A(a'_1, \ldots, a'_k)$$

for all $a_1, \ldots, a_k, a'_1, \ldots, a'_k \in A$.

Lauri Tart (University of Tartu)

CEP and Hamiltonian algebras

3.09-9.09, Trojanovice
...subalgebras...

Definition 2

An ordered algebra \(B = (B, \Omega_B, \leq_B) \) is called a subalgebra of \(A = (A, \Omega_A, \leq_A) \) if

1. \(B \subseteq A \),
2. for every \(k \) and for every \(\omega \in \Omega_k \), \(\omega_B = \omega_A |_{B^k} \),
3. \(\leq_B = \leq_A \cap (B \times B) \).

The order and operations on the direct product of ordered algebras are defined componentwise.
Definition 2

An ordered algebra \(B = (B, \Omega_B, \leq_B) \) is called a subalgebra of \(A = (A, \Omega_A, \leq_A) \) if

1. \(B \subseteq A \),
2. for every \(k \) and for every \(\omega \in \Omega_k \), \(\omega_B = \omega_A \mid _{B^k} \),
3. \(\leq_B = \leq_A \cap (B \times B) \).

The order and operations on the direct product of ordered algebras are defined componentwise.
A homomorphism $f : A \rightarrow B$ of ordered algebras is a monotone operation-preserving mapping from an ordered Ω-algebra A to an ordered Ω-algebra B.

A homomorphism is called f an order-embedding if additionally

$$f(a) \leq_B f(a') \implies a \leq_A a'$$

for all $a, a' \in A$.
A homomorphism $f : A \rightarrow B$ of ordered algebras is a monotone operation-preserving mapping from an ordered Ω-algebra A to an ordered Ω-algebra B.

A homomorphism is called f an order-embedding if additionally

$$f(a) \leq_B f(a') \implies a \leq_A a'$$

for all $a, a' \in A$.
Given a quasiorder \(\theta \) on a poset \((A, \leq)\) and \(a, a' \in A\), we write

\[
\frac{a \leq a'}{\theta} \iff (\exists n \in \mathbb{N})(\exists a_1, \ldots, a_n \in A)(a \leq a_1 \theta a_2 \leq \ldots \leq a_n \leq a').
\]

Definition 3

An order-congruence on an ordered algebra \(A \) is an algebraic congruence \(\theta \) such that the closed chains condition is satisfied:

\[
(\forall a, a' \in A)\left(\frac{a \leq a'}{\theta} \iff a \theta a'\right).
\]
Given a quasiorder θ on a poset (A, \leq) and $a, a' \in A$, we write

$$a \leq_{\theta} a' \iff (\exists n \in \mathbb{N})(\exists a_1, \ldots, a_n \in A)(a \leq a_1 \theta a_2 \leq \theta a_3 \ldots \theta a_n \leq a').$$

Definition 3

An order-congruence on an ordered algebra A is an algebraic congruence θ such that the closed chains condition is satisfied:

$$(\forall a, a' \in A) \left(a \leq_{\theta} a' \leq_{\theta} a \implies a \theta a' \right).$$
...and compatible quasiorders.

Definition 4

We call a preorder σ on an ordered algebra \mathcal{A} a **compatible quasiorder** if it is compatible with operations and extends the order of \mathcal{A}, i.e. $\leq_{\mathcal{A}} \subseteq \sigma$.

Such relations have also been called **admissible preorders**.
...and compatible quasiorders.

Definition 4

We call a preorder σ on an ordered algebra A a **compatible quasiorder** if it is compatible with operations and extends the order of A, i.e. $\leq_A \subseteq \sigma$.

Such relations have also been called **admissible preorders**.
1 Introduction
 • Background

2 Preliminaries
 • Ordered universal algebras
 • Congruence extension properties

3 Hamiltonian ordered algebras
 • Hamiltonian ordered algebras and CEP
 • Hamiltonian squares and congruence extension

4 Final remarks
 • Open problems
Definition 5
We say that an ordered algebra A has the **congruence extension property (CEP)** with respect to subalgebra B if every order-congruence θ on B is the restriction of some order-congruence Θ on A, i.e. $\Theta \cap (B \times B) = \theta$.

Definition 6
We say that an ordered algebra A has the **quasiorder extension property (QEP)** with respect to subalgebra B if every compatible quasiorder σ on B is the restriction of some compatible quasiorder Σ on A, i.e. $\Sigma \cap (B \times B) = \sigma$.

Proposition 7
If an ordered algebra A has QEP with respect to subalgebra B then it has CEP with respect to B.
Definition 5

We say that an ordered algebra A has the **congruence extension property (CEP)** with respect to subalgebra B if every order-congruence θ on B is the restriction of some order-congruence Θ on A, i.e. $\Theta \cap (B \times B) = \theta$.

Definition 6

We say that an ordered algebra A has the **quasiorder extension property (QEP)** with respect to subalgebra B if every compatible quasiorder σ on B is the restriction of some compatible quasiorder Σ on A, i.e. $\Sigma \cap (B \times B) = \sigma$.

Proposition 7

If an ordered algebra A has **QEP** with respect to subalgebra B then it has **CEP** with respect to B.
Congruence extension properties

Definition 5

We say that an ordered algebra A has the **congruence extension property (CEP)** with respect to subalgebra B if every order-congruence θ on B is the restriction of some order-congruence Θ on A, i.e. $\Theta \cap (B \times B) = \theta$.

Definition 6

We say that an ordered algebra A has the **quasiorder extension property (QEP)** with respect to subalgebra B if every compatible quasiorder σ on B is the restriction of some compatible quasiorder Σ on A, i.e. $\Sigma \cap (B \times B) = \sigma$.

Proposition 7

If an ordered algebra A has QEP with respect to subalgebra B then it has CEP with respect to $B.
Strong congruence extension properties...

Definition 8
We say that an ordered algebra \mathcal{A} has the strong congruence extension property (SCEP) if any order-congruence θ on any subalgebra \mathcal{B} of \mathcal{A} can be extended to an order-congruence Θ on \mathcal{A} in such a way that $\Theta \cap (B \times A) = \theta$.

Definition 9
We say that an ordered algebra \mathcal{A} has the strong quasiorder extension property (SQEP) if for any compatible quasiorder σ on any subalgebra \mathcal{B} of \mathcal{A} there exists a compatible quasiorder Σ on \mathcal{A} such that

1. $\Sigma \cap (B \times B) = \sigma$,
2. $\Sigma \cap \Sigma^{-1} \cap (B \times A) = \sigma \cap \sigma^{-1}$.
Definition 8

We say that an ordered algebra \(\mathcal{A} \) has the **strong congruence extension property (SCEP)** if any order-congruence \(\theta \) on any subalgebra \(\mathcal{B} \) of \(\mathcal{A} \) can be extended to an order-congruence \(\Theta \) on \(\mathcal{A} \) in such a way that \(\Theta \cap (\mathcal{B} \times \mathcal{A}) = \theta \).

Definition 9

We say that an ordered algebra \(\mathcal{A} \) has the **strong quasio rder extension property (SQEP)** if for any compatible quasio rder \(\sigma \) on any subalgebra \(\mathcal{B} \) of \(\mathcal{A} \) there exists a compatible quasio rder \(\Sigma \) on \(\mathcal{A} \) such that

1. \(\Sigma \cap (\mathcal{B} \times \mathcal{B}) = \sigma \),
2. \(\Sigma \cap \Sigma^{-1} \cap (\mathcal{B} \times \mathcal{A}) = \sigma \cap \sigma^{-1} \).
...and consequences thereof.

Proposition 10

If an ordered algebra A has **SQEP** with respect to subalgebra B then it has **SCEP** and **QEP** with respect to B. If A has **SCEP** with respect to B then it has **CEP** with respect to B.

Proposition 11

If an ordered algebra A has **SQEP** or **SCEP** then all its subalgebras are convex.

A subposet B of a poset A is called convex if $\forall b, b' \in B \ \forall a \in A \ (b \leq a \leq b' \implies a \in B)$.
...and consequences thereof.

Proposition 10

If an ordered algebra A has *SQEP* with respect to subalgebra B then it has *SCEP* and *QEP* with respect to B. If A has *SCEP* with respect to B then it has *CEP* with respect to B.

Proposition 11

If an ordered algebra A has *SQEP* or *SCEP* then all its subalgebras are convex.

A subposet B of a poset A is called **convex** if $\forall b, b' \in B \ \forall a \in A (b \leq a \leq b' \implies a \in B)$.

Lauri Tart (University of Tartu)
CEP and Hamiltonian algebras
3.09-9.09, Trojanovice
11 / 19
Outline

1 Introduction
 • Background

2 Preliminaries
 • Ordered universal algebras
 • Congruence extension properties

3 Hamiltonian ordered algebras
 • Hamiltonian ordered algebras and CEP
 • Hamiltonian squares and congruence extension

4 Final remarks
 • Open problems
Hamiltonian algebras

Definition 12

An unordered algebra \mathcal{A} is called Hamiltonian if every subalgebra \mathcal{B} of \mathcal{A} is a class of some congruence on \mathcal{A}.

Observe that if θ is an order-congruence on an ordered algebra \mathcal{A} then every θ-class is a convex subset of \mathcal{A}. Therefore it makes sense to distinguish between two kinds of ordered Hamiltonian algebras.

Definition 13

We say that an ordered algebra \mathcal{A} is

1. Hamiltonian if every convex subalgebra \mathcal{B} of \mathcal{A} is a class of some order-congruence on \mathcal{A},

2. strongly Hamiltonian if every subalgebra \mathcal{B} of \mathcal{A} is a class of some order-congruence on \mathcal{A}.
Hamiltonian algebras

Definition 12

An unordered algebra \mathcal{A} is called **Hamiltonian** if every subalgebra \mathcal{B} of \mathcal{A} is a class of some congruence on \mathcal{A}.

Observe that if θ is an order-congruence on an ordered algebra \mathcal{A} then every θ-class is a **convex** subset of \mathcal{A}. Therefore it makes sense to distinguish between two kinds of ordered Hamiltonian algebras.

Definition 13

We say that an ordered algebra \mathcal{A} is

1. **Hamiltonian** if every convex subalgebra \mathcal{B} of \mathcal{A} is a class of some order-congruence on \mathcal{A},

2. **strongly Hamiltonian** if every subalgebra \mathcal{B} of \mathcal{A} is a class of some order-congruence on \mathcal{A}.
Hamiltonian algebras

Definition 12

An unordered algebra \mathcal{A} is called **Hamiltonian** if every subalgebra \mathcal{B} of \mathcal{A} is a class of some congruence on \mathcal{A}.

Observe that if θ is an order-congruence on an ordered algebra \mathcal{A} then every θ-class is a convex subset of \mathcal{A}. Therefore it makes sense to distinguish between two kinds of ordered Hamiltonian algebras.

Definition 13

We say that an ordered algebra \mathcal{A} is

1. Hamiltonian if every convex subalgebra \mathcal{B} of \mathcal{A} is a class of some order-congruence on \mathcal{A},

2. strongly Hamiltonian if every subalgebra \mathcal{B} of \mathcal{A} is a class of some order-congruence on \mathcal{A}.
Hamiltonian algebras

Definition 12

An unordered algebra \mathcal{A} is called **Hamiltonian** if every subalgebra \mathcal{B} of \mathcal{A} is a class of some congruence on \mathcal{A}.

Observe that if θ is an order-congruence on an ordered algebra \mathcal{A} then every θ-class is a **convex** subset of \mathcal{A}. Therefore it makes sense to distinguish between two kinds of ordered Hamiltonian algebras.

Definition 13

We say that an ordered algebra \mathcal{A} is

1. **Hamiltonian** if every convex subalgebra \mathcal{B} of \mathcal{A} is a class of some order-congruence on \mathcal{A},

2. **strongly Hamiltonian** if every subalgebra \mathcal{B} of \mathcal{A} is a class of some order-congruence on \mathcal{A}.

Lauri Tart (University of Tartu)
Hamiltonian algebras

Definition 12

An unordered algebra \mathcal{A} is called Hamiltonian if every subalgebra \mathcal{B} of \mathcal{A} is a class of some congruence on \mathcal{A}.

Observe that if θ is an order-congruence on an ordered algebra \mathcal{A} then every θ-class is a convex subset of \mathcal{A}. Therefore it makes sense to distinguish between two kinds of ordered Hamiltonian algebras.

Definition 13

We say that an ordered algebra \mathcal{A} is

1. Hamiltonian if every convex subalgebra \mathcal{B} of \mathcal{A} is a class of some order-congruence on \mathcal{A},

2. strongly Hamiltonian if every subalgebra \mathcal{B} of \mathcal{A} is a class of some order-congruence on \mathcal{A}.
Hamiltonian algebras and congruence extension

We have the following results relating Hamiltonian-ness and congruence extension properties:

Proposition 14

An ordered algebra is strongly Hamiltonian if and only if it is Hamiltonian and its subalgebras are convex.

Theorem 15

An ordered algebra has SCEP if and only if it is strongly Hamiltonian and has CEP.

Theorem 16

An ordered algebra has SQEP if and only if it is strongly Hamiltonian and has QEP.
Hamiltonian algebras and congruence extension

We have the following results relating Hamiltonian-ness and congruence extension properties:

Proposition 14

An ordered algebra is *strongly Hamiltonian* if and only if it is Hamiltonian and its subalgebras are convex.

Theorem 15

An ordered algebra has SCEP if and only if it is strongly Hamiltonian and has CEP.

Theorem 16

An ordered algebra has SQEP if and only if it is strongly Hamiltonian and has QEP.
Hamiltonian algebras and congruence extension

We have the following results relating Hamiltonian-ness and congruence extension properties:

Proposition 14

An ordered algebra is strongly Hamiltonian if and only if it is Hamiltonian and its subalgebras are convex.

Theorem 15

An ordered algebra has SCEP if and only if it is strongly Hamiltonian and has CEP.

Theorem 16

An ordered algebra has SQEP if and only if it is strongly Hamiltonian and has QEP.
We have the following results relating Hamiltonian-ness and congruence extension properties:

Proposition 14

An ordered algebra is strongly Hamiltonian if and only if it is Hamiltonian and its subalgebras are convex.

Theorem 15

An ordered algebra has SCEP if and only if it is strongly Hamiltonian and has CEP.

Theorem 16

An ordered algebra has SQEP if and only if it is strongly Hamiltonian and has QEP.
Outline

1 Introduction
 • Background

2 Preliminaries
 • Ordered universal algebras
 • Congruence extension properties

3 Hamiltonian ordered algebras
 • Hamiltonian ordered algebras and CEP
 • Hamiltonian squares and congruence extension

4 Final remarks
 • Open problems
Hamiltonian squares and congruence extension

If an algebra has a Hamiltonian square, we have the SCEP with an extra assumption:

Theorem 17

Let \(B \) be a convex subalgebra of an ordered algebra \(A \), where \(A \times A \) is Hamiltonian. If \(\theta \) is an order-congruence on \(B \) which is a convex subset of \(B \times B \) then there exists an order-congruence \(\Theta \) on \(A \) such that \(\Theta \cap (B \times A) = \theta \).

This assumption of convexity is necessary if we want to leverage the Hamiltonian-ness of \(A \times A \), but it turns out to be rather strong:

Lemma 18

An order-congruence \(\theta \) on an ordered algebra \(A \) is a convex subset of \(A \times A \) if and only if \(\theta \) extends the order of \(A \) (i.e. \(\leq_A \subseteq \theta \)).
If an algebra has a Hamiltonian square, we have the SCEP with an extra assumption:

Theorem 17

Let B be a convex subalgebra of an ordered algebra A, where $A \times A$ is Hamiltonian. If θ is an order-congruence on B which is a convex subset of $B \times B$ then there exists an order-congruence Θ on A such that $\Theta \cap (B \times A) = \theta$.

This assumption of convexity is necessary if we want to leverage the Hamiltonian-ness of $A \times A$, but it turns out to be rather strong:

Lemma 18

An order-congruence θ on an ordered algebra A is a convex subset of $A \times A$ if and only if θ extends the order of A (i.e. $\leq_A \subseteq \theta$).
If an algebra has a Hamiltonian square, we have the SCEP with an extra assumption:

Theorem 17

Let B be a convex subalgebra of an ordered algebra A, where $A \times A$ is Hamiltonian. If θ is an order-congruence on B which is a convex subset of $B \times B$ then there exists an order-congruence Θ on A such that $\Theta \cap (B \times A) = \theta$.

This assumption of convexity is necessary if we want to leverage the Hamiltonian-ness of $A \times A$, but it turns out to be rather strong:

Lemma 18

An order-congruence θ on an ordered algebra A is a convex subset of $A \times A$ if and only if θ extends the order of A (i.e. $\leq_A \subseteq \theta$).
If an algebra has a Hamiltonian square, we have the SCEP with an extra assumption:

Theorem 17

Let B be a convex subalgebra of an ordered algebra A, where $A \times A$ is Hamiltonian. If θ is an order-congruence on B which is a convex subset of $B \times B$ then there exists an order-congruence Θ on A such that $\Theta \cap (B \times A) = \theta$.

This assumption of convexity is necessary if we want to leverage the Hamiltonian-ness of $A \times A$, but it turns out to be rather strong:

Lemma 18

An order-congruence θ on an ordered algebra A is a convex subset of $A \times A$ if and only if θ extends the order of A (i.e. $\leq_A \subseteq \theta$).
Hamiltonian squares and quasiorder extension

If we restrict ourselves to up-closed or down-closed subalgebras, then we also get the SQEP:

Theorem 19

Let \mathcal{B} be an up-closed (or down-closed) subalgebra of an ordered algebra \mathcal{A}, where $\mathcal{A} \times \mathcal{A}$ is Hamiltonian. If σ is a compatible quasiorder on \mathcal{B} which is a convex subset of $\mathcal{B} \times \mathcal{B}$ then there exists a compatible quasiorder Σ on \mathcal{A} such that $\Sigma \cap (\mathcal{B} \times \mathcal{B}) = \sigma$ and $\Sigma \cap \Sigma^{-1} \cap (\mathcal{B} \times \mathcal{A}) = \sigma \cap \sigma^{-1}$.

The SCEP is also transferable from the underlying unordered algebra in this case:

Proposition 20

Let \mathcal{B} be an up-closed (or down-closed) subalgebra of an ordered algebra \mathcal{A}. Assume that \mathcal{A} has the algebraic SCEP with respect to \mathcal{B}. Then \mathcal{A} has SCEP with respect to \mathcal{B} as an ordered algebra.
Hamiltonian squares and quasiorder extension

If we restrict ourselves to up-closed or down-closed subalgebras, then we also get the SQEP:

Theorem 19

Let \mathcal{B} be an up-closed (or down-closed) subalgebra of an ordered algebra \mathcal{A}, where $\mathcal{A} \times \mathcal{A}$ is Hamiltonian. If σ is a compatible quasiorder on \mathcal{B} which is a convex subset of $\mathcal{B} \times \mathcal{B}$ then there exists a compatible quasiorder Σ on \mathcal{A} such that $\Sigma \cap (\mathcal{B} \times \mathcal{B}) = \sigma$ and $\Sigma \cap \Sigma^{-1} \cap (\mathcal{B} \times \mathcal{A}) = \sigma \cap \sigma^{-1}$.

The SCEP is also transferable from the underlying unordered algebra in this case:

Proposition 20

Let \mathcal{B} be an up-closed (or down-closed) subalgebra of an ordered algebra \mathcal{A}. Assume that \mathcal{A} has the algebraic SCEP with respect to \mathcal{B}. Then \mathcal{A} has SCEP with respect to \mathcal{B} as an ordered algebra.
If we restrict ourselves to **up-closed** or **down-closed** subalgebras, then we also get the **SQEP**:

Theorem 19

Let B be an **up-closed** (or **down-closed**) subalgebra of an ordered algebra A, where $A \times A$ is Hamiltonian. If σ is a **compatible quasiorder** on B which is a convex subset of $B \times B$ then there exists a compatible quasiorder Σ on A such that $\Sigma \cap (B \times B) = \sigma$ and $\Sigma \cap \Sigma^{-1} \cap (B \times A) = \sigma \cap \sigma^{-1}$.

The **SCEP** is also transferable from the underlying unordered algebra in this case:

Proposition 20

Let B be an **up-closed** (or **down-closed**) subalgebra of an ordered algebra A. Assume that A has the algebraic **SCEP** with respect to B. Then A has **SCEP** with respect to B as an ordered algebra.
If we restrict ourselves to up-closed or down-closed subalgebras, then we also get the SQEP:

Theorem 19

Let B be an up-closed (or down-closed) subalgebra of an ordered algebra A, where $A \times A$ is Hamiltonian. If σ is a compatible quasiorder on B which is a convex subset of $B \times B$ then there exists a compatible quasiorder Σ on A such that $\Sigma \cap (B \times B) = \sigma$ and $\Sigma \cap \Sigma^{-1} \cap (B \times A) = \sigma \cap \sigma^{-1}$.

The SCEP is also transferable from the underlying unordered algebra in this case:

Proposition 20

Let B be an up-closed (or down-closed) subalgebra of an ordered algebra A. Assume that A has the algebraic SCEP with respect to B. Then A has SCEP with respect to B as an ordered algebra.
Outline

1 Introduction
 • Background

2 Preliminaries
 • Ordered universal algebras
 • Congruence extension properties

3 Hamiltonian ordered algebras
 • Hamiltonian ordered algebras and CEP
 • Hamiltonian squares and congruence extension

4 Final remarks
 • Open problems
Theorem 17 is patterned after the following result of V. Gould and M. Wild:

Theorem 21

If \(A \) is an algebra such that \(A \times A \) is Hamiltonian, then \(A \) has the SCEP. In particular, each Hamiltonian variety of unordered algebras has the SCEP.

This raises the question whether

Problem 22

Each Hamiltonian variety of ordered algebras has the (ordered) \((S)\)CEP.

Here, variety means an inequational class, i.e., a class of all ordered algebras satisfying some set of inequalities.
Theorem 17 is patterned after the following result of V. Gould and M. Wild:

Theorem 21

If A is an algebra such that $A \times A$ is Hamiltonian, then A has the SCEP. In particular, each Hamiltonian variety of unordered algebras has the SCEP.

This raises the question whether

Problem 22

Each Hamiltonian variety of ordered algebras has the (ordered) (S)CEP.

Here, variety means an inequational class, i.e. a class of all ordered algebras satisfying some set of inequalities.
Theorem 17 is patterned after the following result of V. Gould and M. Wild:

Theorem 21

If A is an algebra such that $A \times A$ is Hamiltonian, then A has the SCEP. In particular, each Hamiltonian variety of unordered algebras has the SCEP.

This raises the question whether

Problem 22

Each Hamiltonian variety of ordered algebras has the (ordered) (S)CEP.

Here, variety means an inequational class, i.e. a class of all ordered algebras satisfying some set of inequalities.
Theorem 17 is patterned after the following result of V. Gould and M. Wild:

Theorem 21

If A is an algebra such that $A \times A$ is Hamiltonian, then A has the CEP. In particular, each Hamiltonian variety of unordered algebras has the CEP.

This raises the question whether

Problem 22

Each Hamiltonian variety of ordered algebras has the (ordered) (S)CEP.

Here, variety means an inequational class, i.e. a class of all ordered algebras satisfying some set of inequalities.
The best we can say at the moment is

Theorem 23

Each strongly Hamiltonian variety of ordered algebras has the SCEP.

One could also ask for more, namely whether the convexity assumptions in Theorem 17 are necessary and perhaps one could prove this theorem without them, or under weaker assumptions, like all subalgebras of \mathcal{A} needing to be Hamiltonian.

We do not have answers or counterexamples to these questions at the moment.
...and questions.

The best we can say at the moment is

Theorem 23

Each strongly Hamiltonian variety of ordered algebras has the SCEP.

One could also ask for more, namely whether the convexity assumptions in Theorem 17 are necessary and perhaps one could prove this theorem without them, or under weaker assumptions, like all subalgebras of \mathcal{A} needing to be Hamiltonian.

We do not have answers or counterexamples to these questions at the moment.
...and questions.

The best we can say at the moment is

Theorem 23

Each strongly Hamiltonian variety of ordered algebras has the SCEP.

One could also ask for more, namely whether the convexity *assumptions* in Theorem 17 are *necessary* and perhaps one could prove this theorem without them, or under weaker assumptions, like all subalgebras of \mathcal{A} needing to be Hamiltonian.

We do not have answers or counterexamples to these questions at the moment.
...and questions.

The best we can say at the moment is

Theorem 23

Each strongly Hamiltonian variety of ordered algebras has the SCEP.

One could also ask for more, namely whether the convexity assumptions in Theorem 17 are necessary and perhaps one could prove this theorem without them, or under weaker assumptions, like all subalgebras of \mathcal{A} needing to be Hamiltonian.

We do not have answers or counterexamples to these questions at the moment.
Well, at least one in the hand...
Thank you for listening!

