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Our starting point

Fuzzy set theory offers a means of modelling natural-language
expressions like “warm”/”cold”, “low”/”high”, and the like.
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Logic based on fuzzy sets

On the fine level, properties are modelled by subsets.
Properties now being modelled by fuzzy sets,
how should we realise logical combinations?

The common principle:

Operations on fuzzy sets are defined pointwise.

That is, there is
supposed to be a
binary operation

� : [0, 1]2 → [0, 1]

interpreting the
conjunction:
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Triangular norms

Definition (Schweizer, Sklar)

An operation � : [0, 1]2 → [0, 1] is called a t-norm if:

(N1) � is associative;

(N2) � is commutative;

(N3) a� 1 = a;

(N4) � is monotone:
a 6 b implies a� c 6 b� c.

The t-norm is to interpret the conjunction.

The implication is interpreted by its residuum:

a→ b = max {c ∈ [0, 1] : a� c 6 b}, a, b ∈ [0, 1].

A t-norm possesses a residuum if it is left-continuous.
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Mathematical fuzzy logic

The logic MTL ...

uses the real unit interval [0, 1] as the set of truth degrees,

interprets the (main) conjunction by a left-continuous
t-norm and the implication by its residuum.

MTL possesses a Hilbert-style axiomatisation
(Esteva, Godo; Jenei, Montagna).
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Understanding fuzzy logics?

There are some never solved issues in fuzzy logic:

Does fuzzy logic comply with the concern of
modelling natural-language expressions (of the relevant type)?

If so, why should we choose which t-norm
for which application?

Which (left-continuous) t-norms are at our disposal?

Not being able to answer the first two questions,
let us focus on the last one.
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Early observation

There
are many
t-norms.



Further observation

There are also many (mainly geometric) construction methods:

ordinal sum
rotation and rotation-annihilation (Jenei)

triple rotation (Maes, De Baets)

H-transform (Zemánková)



Classification of left-continuous t-norms?

Our concern

Describe left-continuous t-norms systematically enough
so as to make order at least out of the existing examples
and their closure under the known construction methods.



Suitable ordered algebras

Definition

An `-monoid is an algebra (L;∧,∨, ·, 1) such that

(1) (L;∧,∨) is a lattice;

(2) (L; ·, 1) is a monoid;

(3) for any a, b, c,

a · (b ∨ c) = a · b ∨ a · c,
(a ∨ b) · c = a · c ∨ b · c.

An `-monoid is called

commutative if so is ·,
integral if 1 is the top element.
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Tomonoids, t-norms

Definition

A tomonoid is an `-monoid whose order is total.

A binary operation � on [0, 1] is a t-norm if and only if

([0, 1];∧,∨,�, 1)

is a commutative, integral tomonoid.
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Congruences

Congruences of integral `-monoids?

They are not 1-regular, but we may still consider
congruences induced by sub-`-monoids.

Another type are Rees congruences:
cutting off a part from below.
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Filter-induced congruences

We assume in the sequel commutativity.

Definition

A filter of an integral `-monoid is
an upwards closed sub-`-monoid.

Proposition (McCarthy; Blount, Tsinakis)

Let F be a filter of an integral `-monoid L. Define, for a, b ∈ L,

a θF b if a f 6 b and b f 6 a for some f ∈ F .

Then θF is a congruence.

We call the congruence classes F -classes
and we denote the quotient by L/F .
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Example

Consider the integral tomonoid ([0, 1];∧,∨,�H , 1),

where �H is the following t-norm:
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Example

The quotient of ([0, 1];∧,∨,�H , 1) by the filter (3
4 , 1].



Coextensions by `-monoids

Definition

Let L be an integral `-monoid and
let P be the quotient of L by a filter F .
Then we call L the coextension of P by F .

Challenge

Given integral `-monoids P and F ,
determine the coextensions of P by F .
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Idea for what follows

Let (L;∧,∨, ·, 1) be an integral `-monoid and F its filter.

Then the product splits into the following mappings:

(1) · : F × F → F .
(2) · : F ×R→ R, where R is an F -class other than F .
(3) · : R× S → R · S, where R,S are F -classes other than F .

Assume we are given
L/F and F .
Our idea of how to
construct L:

We assume (L;∧,∨).

We determine the
mappings (2), (3)
individually.
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Part (1)

Let (L;∧,∨, ·, 1) be an integral `-monoid and F its filter.

(1) · : F × F → F .

This is the product of F and hence assumed.



Modules over an `-monoid

Definition

Let F be an integral `-monoid.
Then an F -module is a ∨-semilattice R
together with a mapping ? : F ×R→ R such that

? preserves (finite) joins in each argument,

f ? (g ? r) = f g ? r for any r ∈ R and f, g ∈ F
and 1 ? r = r for any r ∈ R.

Call an F -module weakly transitive if,
for any r, s ∈ R there is an f ∈ F such that f ? r 6 s.

Notes.

This is the ∨-semilattice version of an S-poset (Fakhruddin).

Replacing F by a quantale Q and “finite joins” by
“arbitrary joins”, this is a Q-module (Abramsky, Vickers).
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Part (2)

Lemma

Let F be a filter of the integral `-monoid L.
Then each F -class R is a weakly transitive F -module:

f ? r = f · r, f ∈ F, r ∈ R.



Homomorphisms of F -modules

Definition

Let R and S be F -modules.
Then ϕ : R→ S is a homomorphism if
ϕ preserves joins and

ϕ(f ? r) = f ? ϕ(r)

for any f ∈ F and r ∈ R.

Definition

Let R, S, and T be F -modules.
Then ψ : R× S → T is a bihomomorphism if
ψ preserves joins in each argument and

ψ(f ? r, s) = ψ(r, f ? s) = f ? ψ(r, s)

for any f ∈ F , r ∈ R, and s ∈ S.
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Part (3)

Lemma

Let F be a filter of the integral `-monoid L.
Then for any F -classes R and S, viewed as F -modules,

R× S → R · S, (r, s) 7→ r · s

is a bihomomorphism.



Interlude from linear algebra

Let V , W , Z be linear spaces.
A mapping ψ : V ×W → Z is called bilinear
if ψ(v, ) and ψ( , w) are linear for fixed v ∈ V , w ∈W .

The tensor product of V and W consists of
a linear space V ⊗W and a bilinear map π : V ×W → V ⊗W
such that:

For any bilinear map ψ : V ×W → Z, there is a linear map
ψ̄ : V ⊗W → Z such that ψ = ψ̄ ◦ π.

V ×W π //

ψ

%%

V ⊗W

ψ̄

��
Z
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Interlude from linear algebra

The construction of the tensor product:

Put V ⊗W = F (V ×W )/N ,
where F (V ×W ) is the free vector space on V ×W
and N is the subspace spanned by

(v1, w) + (v2, w)− (v1 + v2, w),

(v, w1) + (v, w2)− (v, w1 + w2),

λ(v, w)− (λv,w),

λ(v, w)− (v, λw),

where v, v1, v2 ∈ V , w,w1, w2 ∈W , and λ is a scalar.



Adapting the idea to Q-modules (Joyal, Tierney; C. Russo)

Let Q be a quantale and let R and S be Q-modules.

Then a tensor product R⊗Q S can be defined,
and its existence proved,
similarly to the case of linear spaces.

linear spaces Q-modules

addition sup
scalar multiplication action of the elements of Q



Tensor product of F -modules

Definition

Let F be an integral `-monoid and let R and S be F -modules.

A tensor product of R and S is an F -module T
together with a bihomomorphism π : R× S → T
such that:

For any bihomomorphism ψ : R× S → U ,
there is a unique homomorphism ψ̄ : T → U such that ψ = ψ̄ ◦π.

In this case, (T, π) is essentially unique.

We write R⊗F S for T , and r ⊗F s for π(r, s).

R× S π //

ψ

$$

R⊗F S

ψ̄

��
Z



Tensor product of F -modules

Theorem

Let F be an integral `-monoid and let R and S be F -modules.

The tensor product R⊗F S exists.

The construction of the tensor product:

Put R⊗F S = F(R× S)/ ∼,
where F(R× S) is the free ∨-semilattice on R× S
and ∼ is the smallest congruence such that

{(r1 ∨ r2, s)} ∼ {(r1, s), (r2, s)},
{(r, s1 ∨ s2} ∼ {(r, s1), (r, s2)},
{(f ? r, s)} ∼ {(r, f ? s)},

where r, r1, r2 ∈ R, s, s1, s2 ∈ S, and f ∈ F .
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Summarising

Let (L;∧,∨, ·, 1) be an integral `-monoid and F its filter.

Then the product splits into the following mappings:

(1) · : F × F → F .
This is the filter F .

(2) · : F ×R→ R, where R is an F -class other than F .
This mapping makes R into an F -module.

(3) · : R× S → R · S, where R,S are F -classes other than F .
Viewing R and S as F -modules, this is a bihomomorphism
and can hence be identified with a homomorphism from the
tensor product R⊗F S to R · S.
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Building a coextension

Theorem

Let P and F be integral `-monoids.
Let (L;∧,∨, 1) be a lattice with 1 and θ a congruence of L
such that 1/θ ∼= (F ;∧,∨, 1) and L/θ ∼= (P ;∧,∨, 1).

Assume that

each θ-class is a weakly transitive F -module;

for each two θ-classes R,S 6= F , there is
an F -module homomorphisms ϕR⊗SRS : R⊗ S → R · S,
and we have

ϕRS⊗TRST (ϕR⊗SRS (r ⊗ s)⊗ t) = ϕR⊗STRST (r ⊗ ϕS⊗TST (s⊗ t))

ϕ
R⊗(S∨T )
R(S∨T ) (r ⊗ (s ∨ t)) = ϕR⊗SRS (r ⊗ s) ∨ ϕR⊗TRT (r ⊗ t)

for any θ-classes R,S, T 6= F , and r ∈ R, s ∈ S, t ∈ T .
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Theorem (ctd.)
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r · s =
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the product r · s in F if r, s ∈ F ,
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ϕR⊗SRS (r ⊗ s) if r ∈ R 6= F and s ∈ S 6= F .

Then (L;∧,∨, ·, 1) is a coextension of P by F ,
and all coextensions of P by F arise in this way.
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The above example reversed

Consider the five-element  Lukasiewicz
chain  L5 = {−4,−3,−2,−1, 0},

( L5;∧,∨,+, 0),

and the tomonoid (R−;∧,∨,+, 0).

Our aim is to coextend the tomonoid
 L5 by R−.

We assume the result to be a tomonoid
L ordered as follows:
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We have to make R−
a weakly transitive R−-module.
We can set

f ? r = f + r where f, r ∈ R−.

The tensor product is R− ⊗R− R− ∼= R−,
and thus the homomorphisms are,
for some σ ∈ R−, of the form

ϕ(r ⊗ s) = r + s+ σ.

We conclude that our
coextension, scaled to [0, 1],
is of this form:
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Archimedean real coextensions

An integral tomonoid is Archimedean if, for any a 6 b < 1,
there is an n > 1 such that bn 6 a.

Definition

A coextension of an integral tomonoid
by a filter F is called

Archimedean if F is Archimedean,

real if each congruence class is order-isomorphic
to a real interval.



Archimedean real coextensions

Theorem (Th. V., 2014) – qualitative formulation

Let L be an Archimedean real coextension
of the integral, quantic tomonoid P .

Given the congruence classes, we have, up to isomorphisms:

filter The filter F is uniquely
determined;

up to one point, the
F -modules are uniquely
determined;

up to one point per field,
the remaining parts of L
are uniquely determined.



Example of an Archimedean real coextension

The tomonoid to be extended.

The congruence classes are
real intervals.

The unique choices for each
“triangular part”.

The “rectangular parts” are
uniquely determined as well.
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H-transforms

Let us coextend the cancellative integral tomonoid P :

a · c = b · c implies a = b.

We put L = {(p, f) : p ∈ P, f ∈ F},
endowed with the lexicographic order.

For each p ∈ P\{1},
{(p, f) : f ∈ F} is an F -module:

f ? (p, g) = (p, f · g).

For each p, q ∈ P\{1}, we have the bihomomorphism

ψ((p, f), (q, g)) = (p · q, f · g).

Thus we get the tomonoid L with

(p, f) · (q, g) = (p · q, f · g).

Applied to tomonoids based on t-norms,
this is Zemánková’s H-transform.
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Dual of an F -module (D. Kruml)

Let the lattice R be an F -module for some integral `-monoid F .

Assume that f ? is residuated for each f ∈ F , that is,
there is mapping \? such that

f ? r 6 s iff r 6 f \? s.

Then the dual lattice Rop together with

\? : F ×Rop → Rop

is an F -module as well, called the dual F -module.
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The rotation

Let us coextend the three-element  Lukasiewicz chain
 L3 = {−2,−1, 0}, by an integral tomonoid F .

We put L = {(−2, f) : f ∈ F op} ∪ {(−1, 0)} ∪ {(0, f) : f ∈ F},
endowed with the lexicographic order.

We make {(−2, f) : f ∈ F op} into an F -module:

f ? (−2, g) = (−2, f \?g).

The singleton {(−1, 0)} is a trivial F -module.

The only bihomomorphism to be determined is trivial.

Applied to t-norms,
this is Jenei’s
rotation construction.

the dual
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Group extensions in an ordered setting (J. Janda, Th. V.)

Grillet’s and Leech’s group coextensions of monoids generalise
Schreier’s theory of group extensions.

The construction can be adapted to the ordered case:
pomonoid coextension of pomonoids.

Provided that the congruence is filter-induced,
this construction is covered in our framework as well.
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Rees congruences

From now on, commutativity is no longer necessary.

Lemma

Let (L;∧,∨, ·, 1) be an integral `-monoid and q ∈ L.
Define, for a, b ∈ L,

a θq b if a = b or a, b 6 q.

Then θq is a congruence.

We denote the quotient by L/q and
we call it the Rees quotient by q.
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We denote the quotient by L/q and
we call it the Rees quotient by q.



Example

Consider the five-element  Lukasiewicz chain
 L5 = {−4,−3,−2,−1, 0},

( L5;∧,∨,+, 0),

and the atom of  L5, i.e., −3.

Then the Rees quotient of  L5 by −3 is

 L4 = {−3,−2,−1, 0}.



One-element coextensions (M. Petŕık, Th. V.)

Definition

Let L be a finite integral tomonoid and
let P = L/α be the Rees quotient by the atom α of L.
Then we call L a one-element (Rees) coextension of P .

Challenge

Given a finite integral tomonoid P ,
determine all one-element coextensions of P .
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Challenge
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determine all one-element coextensions of P .



Tomonoid partitions

Definition

Let (L;∧,∨, ·, 1) be an
integral tomonoid.

For (a, b), (c, d) ∈ L× L, let

(a, b)∼ (c, d) if a · b = c · d,
(a, b) P (c, d) if a 6 c and b 6 d.

Then we call (L2,P,∼, (1, 1)) a
tomonoid partition.



Tomonoid partitions

Lemma

Let (L;6) be a chain, let 1 ∈ L,
and let ∼ be an equivalence relation on L2.

Then (L2,P,∼, (1, 1)) is a tomonoid partition if and only if:

(P1) (a, b)∼ (a′, b′) P (c, d)∼ (c′, d′) P (a, b) implies (a, b)∼ (c, d).

(P2) For any a, b ∈ L there is exactly one c ∈ L such that
(a, b)∼ (1, c)∼ (c, 1).

(P3) (a, b)∼ (d, 1) and (b, c)∼ (1, e) imply (d, c)∼ (a, e).



Conditions (P1), (P2)

(P1) (a, b)∼ (a′, b′) P (c, d)∼
(c′, d′) P (a, b) implies
(a, b)∼ (c, d).

(P2) For any a, b ∈ L there is
exactly one c ∈ L such
that (a, b)∼ (1, c)∼ (c, 1).



The “Reidemeister” condition (P3)

(P3) (a, b)∼ (d, 1) and
(b, c)∼ (1, e) imply
(d, c)∼ (a, e).



The Rees quotient by the atom

Now let us go the other way round ...



The one-element coextensions

We determine the Archimedean one-element coextensions of
the six-element tomonoid shown.
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We insert a row and a
column for a new atom.

The lower area must now
be divided between the
new atom and the new 0.

We identify the clear cases.

We identify pairs
equivalent due to
conditions (P1)–(P3).

We reduce the partition to
two subsets, taking into
account monotonicity.

Theorem (M. Petŕık, Th. V.)

In the way shown, we obtain all one-element coextensions
of a given finite, integral tomonoid.
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