The proof of CSP Dichotomy Conjecture for 5-element domain

Dmitriy Zhuk
zhuk.dmitriy@gmail.com

Department of Mathematics and Mechanics
Moscow State University

Arbeitstagung Allgemeine Algebra
91th Workshop on General Algebra
Brno, February 5-7, 2016
Outline

1. What is CSP?
2. Transitive Closure
3. 1-Consistency
4. Absorbtion
5. Rosenberg Completeness Theorem
6. Central Relations
7. Partial Order Relations
8. All Functions
9. Linear Case
10. Algorithm
Definitions

Let A be a finite set.
A mapping $A^n \rightarrow \{0, 1\}$ is called an n-ary predicate.
A subset $\rho \subseteq A^n$ is called an n-ary relation.

- We do not distinguish between predicates and relations.
Constraint Satisfaction Problem

Let G be a finite set of predicates.

CSP(G)

Given: a conjunction of predicates, i.e. a formula

$$\rho_1(x_{i_1,1}, \ldots, x_{i_1,n_1}) \land \cdots \land \rho_s(x_{i_s,1}, \ldots, x_{i_s,n_s}),$$

where $\rho_1, \ldots, \rho_s \in G$.

Decide: whether the formula is satisfiable.
Constraint Satisfaction Problem

Let G be a finite set of predicates.

CSP(G)

Given: a conjunction of predicates, i.e. a formula

$$\rho_1(x_{i_1,1}, \ldots, x_{i_1,n_1}) \land \cdots \land \rho_s(x_{i_s,1}, \ldots, x_{i_s,n_s}),$$

where $\rho_1, \ldots, \rho_s \in G$.

Decide: whether the formula is satisfiable.

Example

$A = \{0, 1, 2\}, G = \{x < y, x \leq y\}$.

CSP instances:

$x_1 < x_2 \land x_2 < x_3 \land x_3 < x_4,$
Constraint Satisfaction Problem

Let G be a finite set of predicates.

CSP(G)

Given: a conjunction of predicates, i.e. a formula

$$\rho_1(x_{i_1,1}, \ldots, x_{i_1,n_1}) \land \cdots \land \rho_s(x_{i_s,1}, \ldots, x_{i_s,n_s}),$$

where $\rho_1, \ldots, \rho_s \in G$.

Decide: whether the formula is satisfiable.

Example

$A = \{0, 1, 2\}, G = \{x < y, x \leq y\}$.

CSP instances:

$x_1 < x_2 \land x_2 < x_3 \land x_3 < x_4$, **No solutions**
Constraint Satisfaction Problem

Let G be a finite set of predicates.

CSP(G)

Given: a conjunction of predicates, i.e. a formula

$$
\rho_1(x_{i_1,1}, \ldots, x_{i_1,n_1}) \land \cdots \land \rho_s(x_{i_s,1}, \ldots, x_{i_s,n_s}),
$$

where $\rho_1, \ldots, \rho_s \in G$.

Decide: whether the formula is satisfiable.

Example

$A = \{0, 1, 2\}, \ G = \{x < y, x \leq y\}$.

CSP instances:

- $x_1 < x_2 \land x_2 < x_3 \land x_3 < x_4$, No solutions
- $x_1 \leq x_2 \land x_2 \leq x_3 \land x_3 \leq x_1$,
Constraint Satisfaction Problem

Let G be a finite set of predicates.

CSP(G)

Given: a conjunction of predicates, i.e. a formula

$$\rho_1(x_{i_1,1}, \ldots, x_{i_1,n_1}) \land \cdots \land \rho_s(x_{i_s,1}, \ldots, x_{i_s,n_s}),$$

where $\rho_1, \ldots, \rho_s \in G$.

Decide: whether the formula is satisfiable.

Example

$A = \{0, 1, 2\}$, $G = \{x < y, x \leq y\}$.

CSP instances:

$x_1 < x_2 \land x_2 < x_3 \land x_3 < x_4$, No solutions

$x_1 \leq x_2 \land x_2 \leq x_3 \land x_3 \leq x_1$, $x_1 = x_2 = x_3 = 0$.
A weak near unanimity operation (WNU) is an operation f satisfying
$f(x, x, \ldots, x) = x$ and
\[f(x, \ldots, x, y) = f(x, \ldots, x, y, x) = \cdots = f(y, x, \ldots, x). \]
A weak near unanimity operation (WNU) is an operation f satisfying:

$f(x, x, \ldots, x) = x$ and

$f(x, \ldots, x, y) = f(x, \ldots, x, y, x) = \cdots = f(y, x, \ldots, x)$.

Suppose $(x = c)$ belongs to G for every $c \in A$.

Conjecture CSP(G) is solvable in polynomial time if there exists a WNU preserving G. CSP(G) is NP-complete otherwise.

Theorem [Ralph McKenzie and Miklós Maróti]

CSP(G) is NP-complete if no WNU preserving G.

Challenge Given a finite set of predicates G and a WNU w that preserves G. Find an algorithm that solves CSP(G) in polynomial time.

Dmitriy Zhuk zhuk.dmitriy@gmail.com (Moscow State University)
A weak near unanimity operation (WNU) is an operation f satisfying $f(x, x, \ldots, x) = x$ and $f(x, \ldots, x, y, x) = \cdots = f(y, x, \ldots, x)$.

Suppose $(x = c)$ belongs to G for every $c \in A$.

Conjecture

CSP(G) is solvable in polynomial time if there exists a WNU preserving G, CSP(G) is NP-complete otherwise.
A weak near unanimity operation (WNU) is an operation f satisfying
\[f(x, x, \ldots, x) = x \text{ and } f(x, \ldots, x, y) = f(x, \ldots, x, y, x) = \cdots = f(y, x, \ldots, x). \]

Suppose $(x = c)$ belongs to G for every $c \in A$.

Conjecture

$\text{CSP}(G)$ is solvable in polynomial time if there exists a WNU preserving G, $\text{CSP}(G)$ is NP-complete otherwise.

Theorem [Ralph McKenzie and Miklós Maróti]

$\text{CSP}(G)$ is NP-complete if no WNU preserving G.
A weak near unanimity operation (WNU) is an operation f satisfying
$f(x, x, \ldots, x) = x$ and
$f(x, \ldots, x, y) = f(x, \ldots, x, y, x) = \cdots = f(y, x, \ldots, x)$.

Suppose $(x = c)$ belongs to G for every $c \in A$.

Conjecture

CSP(G) is solvable in polynomial time if there exists a WNU preserving G, CSP(G) is NP-complete otherwise.

Theorem [Ralph McKenzie and Miklós Maróti]

CSP(G) is NP-complete if no WNU preserving G.

Challenge

Given a finite set of predicates G and a WNU w that preserves G. Find an algorithm that solves CSP(G) in polynomial time.
Given a CSP instance

\[\rho_1(x_{i,1}, \ldots, x_{i,n_1}) \land \cdots \land \rho_s(x_{i_s,1}, \ldots, x_{i_s,n_s}), \]

where \(\rho_1, \ldots, \rho_s \in G. \)
Given a CSP instance

\[\rho_1(x_{i_1,1}, \ldots, x_{i_1,n_1}) \land \cdots \land \rho_s(x_{i_s,1}, \ldots, x_{i_s,n_s}), \]

where \(\rho_1, \ldots, \rho_s \in G. \)

Step 1: Generate all binary constraints

For every constraint \(\rho(x_1, \ldots, x_n) \) and \(i, j \in \{1, 2, \ldots, n\} \) we add a binary constraint \(\sigma_{i,j}(x_i, x_j) \), where

\[\sigma_{i,j}(y_i, y_j) = \exists y_1 \ldots \exists y_{i-1} \exists y_{i+1} \ldots \exists y_{j-1} \exists y_{j+1} \ldots \exists y_n \rho(y_1, \ldots, y_n). \]
Step 2: Transitive closure.

For every 2 binary constraints $\rho_1(x_i, x_j)$ and $\rho_2(x_j, x_k)$ we add the constraint $\rho_3(x_i, x_k)$, where $\rho_3(y_1, y_2) = \exists z \rho_1(y_1, z) \land \rho_2(z, y_2)$.
Transitive Closure

Step 2: Transitive closure.

For every 2 binary constraints $\rho_1(x_i, x_j)$ and $\rho_2(x_j, x_k)$ we add the constraint $\rho_3(x_i, x_k)$, where $\rho_3(y_1, y_2) = \exists z \rho_1(y_1, z) \land \rho_2(z, y_2)$.

Example

We have constraints $(x_1 \leq x_2)$ and $(x_2 \leq x_3)$. We add $(x_1 \leq x_3)$.
1-Consistency

Let D_i be the domain of x_i. A CSP instance is called **1-consistent** if x_i in any constraint takes all values from D_i.

Step 3: Constraint propagation.

We can provide 1-consistency: if a variable x_i takes only values from $D'_i \subset D_i$ in a constraint then we reduce the domain of x_i to D'_i and restrict all other constraints.

Example CSP instance on $A = \{0, 1, 2\}$, $x_1 < x_2 \land x_2 < x_3 \land x_3 < x_4$.

$x_1 < x_2 \Rightarrow$ the domain of x_2 can be reduced to $\{1, 2\}$,

$x_2 < x_3 \Rightarrow$ the domain of x_3 can be reduced to $\{2\}$,

$x_3 < x_4 \Rightarrow$ no solution for x_4. We get a contradiction.

We cannot reduce forever, hence either we get 1-consistency, or we get a contradiction.
1-Consistency

Let D_i be the domain of x_i. A CSP instance is called 1-consistent if x_i in any constraint takes all values from D_i.

Step 3: Constraint propagation.

We can provide 1-consistency:

if a variable x_i takes only values from $D'_i \subset D_i$ in a constraint then we reduce the domain of x_i to D'_i and restrict all other constraints.
1-Consistency

Let D_i be the domain of x_i. A CSP instance is called 1-consistent if x_i in any constraint takes all values from D_i.

Step 3: Constraint propagation.

We can provide 1-consistency:

if a variable x_i takes only values from $D'_i \subseteq D_i$ in a constraint then we reduce the domain of x_i to D'_i and restrict all other constraints.

Example

CSP instance on $A = \{0, 1, 2\}$, $x_1 < x_2 \land x_2 < x_3 \land x_3 < x_4$.

Dmitriy Zhuk zhuk.dmitriy@gmail.com (Moscow State University)

CSP for small domain

AAA91 8 / 19
1-Consistency

Let D_i be the domain of x_i. A CSP instance is called 1-consistent if x_i in any constraint takes all values from D_i.

Step 3: Constraint propagation.

We can provide 1-consistency:
if a variable x_i takes only values from $D'_i \subset D_i$ in a constraint then we reduce the domain of x_i to D'_i and restrict all other constraints.

Example

CSP instance on $A = \{0, 1, 2\}$, $x_1 < x_2 \land x_2 < x_3 \land x_3 < x_4$.
$x_1 < x_2 \Rightarrow$ the domain of x_2 can be reduced to $\{1, 2\}$.
1-Consistency

Let D_i be the domain of x_i. A CSP instance is called 1-consistent if x_i in any constraint takes all values from D_i.

Step 3: Constraint propagation.

We can provide 1-consistency:
if a variable x_i takes only values from $D'_i \subset D_i$ in a constraint then we reduce the domain of x_i to D'_i and restrict all other constraints.

Example

CSP instance on $A = \{0, 1, 2\}$, $x_1 < x_2 \land x_2 < x_3 \land x_3 < x_4$.

$x_1 < x_2 \Rightarrow$ the domain of x_2 can be reduced to $\{1, 2\}$,

$x_2 < x_3 \Rightarrow$ the domain of x_3 can be reduced to $\{2\}$,
1-Consistency

Let D_i be the domain of x_i. A CSP instance is called 1-consistent if x_i in any constraint takes all values from D_i.

Step 3: Constraint propagation.

We can provide 1-consistency:
if a variable x_i takes only values from $D'_i \subset D_i$ in a constraint then we reduce the domain of x_i to D'_i and restrict all other constraints.

Example

CSP instance on $A = \{0, 1, 2\}$, $x_1 < x_2 \land x_2 < x_3 \land x_3 < x_4$.
$x_1 < x_2 \Rightarrow$ the domain of x_2 can be reduced to $\{1, 2\}$,
$x_2 < x_3 \Rightarrow$ the domain of x_3 can be reduced to $\{2\}$,
$x_3 < x_4 \Rightarrow$ no solution for x_4. We get a contradiction.

- We cannot reduce forever, hence either we get 1-consistency, or we get a contradiction.
Libor Barto said something about absorption...said it is very important...
Libor Barto said something about absorption...said it is very important... But it was complicated... I consider only binary absorption!
Libor Barto said something about absorption... said it is very important... But it was complicated... I consider only binary absorption!

Definition

A subuniverse B absorbs A if there exists a binary operation $f \in \text{Clo}(w)$ such that $f(B, A) \subseteq B$ and $f(A, B) \subseteq B$.

- $\text{Clo}(w)$ is the clone generated by a WNU w.
Libor Barto said something about absorption... said it is very important... But it was complicated... I consider only binary absorption!

Definition

A subuniverse B absorbs A if there exists a binary operation $f \in \text{Clo}(w)$ such that $f(B, A) \subseteq B$ and $f(A, B) \subseteq B$.

- $\text{Clo}(w)$ is the clone generated by a WNU w.

Step 4: Absorbing restriction.

If B_i absorbs D_i, we reduce the domain D_i to B_i. Then we go to Step 3 and provide 1-consistency!

- Constraint propagation cannot give a contradiction in this case!
That was all I knew about CSP...
But I know a bit about Clone Theory...Let try to apply it!
That was all I knew about CSP...
But I know a bit about Clone Theory...Let try to apply it!

Main Results in Clone Theory

1. The description of all clones on 2 elements (Post's Lattice).
2. Rosenb erg's description of all maximal clones on k elements
 Rosenb erg Completeness Theorem
 There are only following maximal clones on k elements.
 1. Maximal clone of monotone functions;
 2. Maximal clone of auto dual functions;
 3. Maximal clone dened by an equivalence relation;
 4. Maximal clone of quasi-linear functions;
 5. Maximal clone dened by a unary relation;
 6. Maximal clone dened by a central relation;
 7. Maximal clone dened by an h-universal relation.
That was all I knew about CSP... But I know a bit about Clone Theory...Let try to apply it!

Main Results in Clone Theory

1. The description of all clones on 2 elements (Post’s Lattice).
That was all I knew about CSP... But I know a bit about Clone Theory... Let try to apply it!

Main Results in Clone Theory

1. The description of all clones on 2 elements (Post’s Lattice).
That was all I knew about CSP...
But I know a bit about Clone Theory...Let try to apply it!

Main Results in Clone Theory

1. The description of all clones on 2 elements (Post’s Lattice).
2. Rosenberg’s description of all maximal clones on k elements.
That was all I knew about CSP...
But I know a bit about Clone Theory...Let try to apply it!

Main Results in Clone Theory

1. The description of all clones on 2 elements (Post’s Lattice).
2. Rosenberg’s description of all maximal clones on k elements.

Rosenberg Completeness Theorem

There are only following maximal clones on k elements.

1. Maximal clone defined by a unary relation;
2. Maximal clone of monotone functions;
3. Maximal clone of autodual functions;
4. Maximal clone defined by an equivalence relation;
5. Maximal clone of quasi-linear functions;
6. Maximal clone defined by a central relation;
7. Maximal clone defined by an h-universal relation.
Let C be the clone generated by the WNU w on D_i and all constants from D_i.

1. C is the clone of all functions on D_i, or C belongs to one of the maximal clones.

2. Maximal clone defined by a unary relation; cannot happen because of constants.

3. Maximal clone defined by an h-universal relation; cannot happen because of WNU.

4. Maximal clone of autodual functions; cannot happen because of constants.

5. Maximal clone defined by an equivalence relation; factorize WNU, generate a new clone, apply Rosenb erg Theorem again.

6. Maximal clone defined by a central relation.

7. Maximal clone of monotone functions.

Let C be the clone generated by the WNU w on D_i and all constants from D_i.

Apply Rosenberg theorem. Then

1. C is the clone of all functions on D_i,

or C belongs to one of the maximal clones.
Let \mathcal{C} be the clone generated by the WNU w on D_i and all constants from D_i.

Apply Rosenberg theorem. Then

1. \mathcal{C} is the clone of all functions on D_i,
2. or \mathcal{C} belongs to one of the maximal clones.
3. Maximal clone defined by a unary relation;
4. Maximal clone defined by an h-universal relation; cannot happen because of WNU
5. Maximal clone of autodual functions; cannot happen because of constants
6. Maximal clone defined by an equivalence relation; factorize WNU, generate a new clone, apply Rosenberg Theorem again
7. Maximal clone defined by a central relation;
Let C be the clone generated by the WNU w on D_i and all constants from D_i.

Apply Rosenberg theorem. Then

1. C is the clone of all functions on D_i, or C belongs to one of the maximal clones.

2. Maximal clone defined by a unary relation; cannot happen because of constants
Let C be the clone generated by the WNU w on D_i and all constants from D_i.

Apply Rosenberg theorem. Then

1. C is the clone of all functions on D_i,

or C belongs to one of the maximal clones.

2. Maximal clone defined by a unary relation; cannot happen because of constants

3. Maximal clone defined by an h-universal relation;
Let C be the clone generated by the WNU w on D_i and all constants from D_i.

Apply Rosenberg theorem. Then

1. C is the clone of all functions on D_i, or C belongs to one of the maximal clones.

2. Maximal clone defined by a unary relation; cannot happen because of constants.

3. Maximal clone defined by an h-universal relation; cannot happen because of WNU.
Let \mathcal{C} be the clone generated by the WNU w on D_i and all constants from D_i.

Apply Rosenberg theorem. Then

1. \mathcal{C} is the clone of all functions on D_i,

2. Maximal clone defined by a unary relation; cannot happen because of constants

3. Maximal clone defined by an h-universal relation; cannot happen because of WNU

4. Maximal clone of autodual functions;
Let \(C \) be the clone generated by the WNU \(w \) on \(D_i \) and all constants from \(D_i \).

Apply Rosenberg theorem. Then

1. \(C \) is the clone of all functions on \(D_i \),

or \(C \) belongs to one of the maximal clones.

2. Maximal clone defined by a unary relation; cannot happen because of constants

3. Maximal clone defined by an \(h \)-universal relation; cannot happen because of WNU

4. Maximal clone of autodual functions; cannot happen because of constants
Let C be the clone generated by the WNU w on D_i and all constants from D_i.
Apply Rosenberg theorem. Then

1. C is the clone of all functions on D_i,

or C belongs to one of the maximal clones.

2. Maximal clone defined by a unary relation; cannot happen because of constants

3. Maximal clone defined by an h-universal relation; cannot happen because of WNU

4. Maximal clone of autodual functions; cannot happen because of constants

5. Maximal clone defined by an equivalence relation;
Let \(C \) be the clone generated by the WNU \(w \) on \(D_i \) and all constants from \(D_i \).

Apply Rosenberg theorem. Then

1. \(C \) is the clone of all functions on \(D_i \),

or \(C \) belongs to one of the maximal clones.

2. Maximal clone defined by a unary relation; cannot happen because of constants

3. Maximal clone defined by an \(h \)-universal relation; cannot happen because of WNU

4. Maximal clone of autodual functions; cannot happen because of constants

5. Maximal clone defined by an equivalence relation; factorize WNU, generate a new clone, apply Rosenberg Theorem again
Let C be the clone generated by the WNU w on D_i and all constants from D_i.

Apply Rosenberg theorem. Then

1. C is the clone of all functions on D_i,

or C belongs to one of the maximal clones.

2. Maximal clone defined by a unary relation; cannot happen because of constants

3. Maximal clone defined by an h-universal relation; cannot happen because of WNU

4. Maximal clone of autodual functions; cannot happen because of constants

5. Maximal clone defined by an equivalence relation; factorize WNU, generate a new clone, apply Rosenberg Theorem again

6. Maximal clone defined by a central relation;
Let C be the clone generated by the WNU w on D_i and all constants from D_i.
Apply Rosenberg theorem. Then

1. C is the clone of all functions on D_i,

or C belongs to one of the maximal clones.

2. Maximal clone defined by a unary relation; cannot happen because of constants

3. Maximal clone defined by an h-universal relation; cannot happen because of WNU

4. Maximal clone of autodual functions; cannot happen because of constants

5. Maximal clone defined by an equivalence relation; factorize WNU, generate a new clone, apply Rosenberg Theorem again

6. Maximal clone defined by a central relation;

7. Maximal clone of monotone functions;
Let C be the clone generated by the WNU w on D_i and all constants from D_i.

Apply Rosenberg theorem. Then

1. C is the clone of all functions on D_i,

or C belongs to one of the maximal clones.

2. Maximal clone defined by a unary relation; cannot happen because of constants

3. Maximal clone defined by an h-universal relation; cannot happen because of WNU

4. Maximal clone of autodual functions; cannot happen because of constants

5. Maximal clone defined by an equivalence relation; factorize WNU, generate a new clone, apply Rosenberg Theorem again

6. Maximal clone defined by a central relation;

7. Maximal clone of monotone functions;

8. Maximal clone of quasi-linear functions;
Central Relations

To simplify we consider only binary central relations.

A relation \(\rho \subseteq A \times A \) is called central if it is reflexive, symmetric, and there exists \(c \) such that \(\{ c \} \times A \subseteq \rho \).

- the set of all elements \(c \) such that \(\{ c \} \times A \subseteq \rho \) is called center.

Step 5: Central restriction. If \(C_i \) is a center in \(D_i \), we reduce \(D_i \) to \(C_i \). Then we go to Step 3 and provide 1-consistency!

If we don't have binary absorption, then constraint propagation cannot give a contradiction in this case!
To simplify we consider only binary central relations.

A relation $\rho \subseteq A \times A$ is called central if it is reflexive, symmetric, and there exists c such that $\{c\} \times A \subseteq \rho$.

- the set of all elements c such that $\{c\} \times A \subseteq \rho$ is called center.

Step 5: Central restriction.

If C_i is a center in D_i, we reduce D_i to C_i.

Then we go to Step 3 and provide 1-consistency!
Central Relations

To simplify we consider only binary central relations.

A relation $\rho \subseteq A \times A$ is called central if it is reflexive, symmetric, and there exists c such that $\{c\} \times A \subseteq \rho$.

- the set of all elements c such that $\{c\} \times A \subseteq \rho$ is called center.

Step 5: Central restriction.

If C_i is a center in D_i, we reduce D_i to C_i. Then we go to Step 3 and provide 1-consistency!

- if we don’t have binary absorbtion, then constraint propagation cannot give a contradiction in this case!
Every maximal clone of monotone functions is defined by a partial order relation with a greatest and a least element.

- the least element can be viewed as a center.

![Diagram with nodes 0, 1, 2, 3, 4 showing a partial order relation and the least element as a center.]

Dmitriy Zhuk
zhuk.dmitriy@gmail.com
(Moscow State University)
Every maximal clone of monotone functions is defined by a partial order relation with a greatest and a least element.

- the least element can be viewed as a center.

Step 5: Central restriction.

If we have a partial order on D_i, we reduce D_i to $\{g\}$ where g is the least element.

Then we go to Step 3 and provide 1-consistency!
Every maximal clone of monotone functions is defined by a partial order relation with a greatest and a least element.

- the least element can be viewed as a center.

Step 5: Central restriction.

If we have a partial order on D_i, we reduce D_i to $\{g\}$ where g is the least element.

Then we go to Step 3 and provide 1-consistency!

- if we don’t have binary absorption, then constraint propagation cannot give a contradiction in this case!
For a congruence σ the clone generated by w/σ and constants is the clone of all functions.
For a congruence σ the clone generated by w/σ and constants is the clone of all functions.

Step 6: “All Functions” restriction.
Choose any equivalence class E in σ and reduce the domain D_i to E. Then we go to Step 3 and provide 1-consistency!
For a congruence σ the clone generated by w/σ and constants is the clone of all functions.

Step 6: “All Functions” restriction.

Choose any equivalence class E in σ and reduce the domain D_i to E. Then we go to Step 3 and provide 1-consistency!

- if we don’t have a binary absorption and a center, then constraint propagation cannot give a contradiction in this case!
Maximal clone of quasi-linear functions

- If a WNU is a quasi-linear function then it can be represented as
 \(t \cdot (x_1 + x_2 + \ldots + x_n) \) for an integer \(t \) and an operation + from an abelian group.
If a WNU is a quasi-linear function then it can be represented as $t \cdot (x_1 + x_2 + \ldots + x_n)$ for an integer t and an operation $+$ from an abelian group.

Step 7: Linear restriction

1. For every i choose the minimal congruence σ_i on D_i such that the WNU w/σ_i can be represented as $t \cdot (x_1 + x_2 + \ldots + x_n)$.
Maximal clone of quasi-linear functions

- If a WNU is a quasi-linear function then it can be represented as $t \cdot (x_1 + x_2 + \ldots + x_n)$ for an integer t and an operation $+$ from an abelian group.

Step 7: Linear restriction

1. For every i choose the minimal congruence σ_i on D_i such that the WNU w/σ_i can be represented as $t \cdot (x_1 + x_2 + \ldots + x_n)$.
2. Factorize all the constraints, i.e. replace every predicate ρ by $\rho'(x_1, \ldots, x_n) = \exists y_1 \ldots \exists y_n \rho(y_1, \ldots, y_n) \land (x_1, y_1) \in \sigma_i \land \ldots \land (x_n, y_n) \in \sigma_n$

The obtained CSP instance we denote by Θ
If a WNU is a quasi-linear function then it can be represented as $t \cdot (x_1 + x_2 + \ldots + x_n)$ for an integer t and an operation $+$ from an abelian group.

Step 7: Linear restriction

1. For every i choose the minimal congruence σ_i on D_i such that the WNU w/σ_i can be represented as $t \cdot (x_1 + x_2 + \ldots + x_n)$.

2. Factorize all the constraints, i.e. replace every predicate ρ by $\rho'(x_1, \ldots, x_n) = \exists y_1 \ldots \exists y_n \rho(y_1, \ldots, y_n) \land (x_1, y_1) \in \sigma_i \land \cdots \land (x_n, y_n) \in \sigma_n$.

 The obtained CSP instance we denote by Θ.

3. Solve Θ using any algorithm for Mal’tsev case.
Maximal clone of quasi-linear functions

- If a WNU is a quasi-linear function then it can be represented as \(t \cdot (x_1 + x_2 + \ldots + x_n) \) for an integer \(t \) and an operation + from an abelian group.

Step 7: Linear restriction

1. For every \(i \) choose the minimal congruence \(\sigma_i \) on \(D_i \) such that the WNU \(w/\sigma_i \) can be represented as \(t \cdot (x_1 + x_2 + \ldots + x_n) \).

2. Factorize all the constraints, i.e. replace every predicate \(\rho \) by

\[
\rho'(x_1, \ldots, x_n) = \exists y_1 \ldots \exists y_n \rho(y_1, \ldots, y_n) \land (x_1, y_1) \in \sigma_{i_1} \land \cdots \land (x_n, y_n) \in \sigma_{i_n}
\]

The obtained CSP instance we denote by \(\Theta \).

3. Solve \(\Theta \) using any algorithm for Mal’tsev case.

4. If \(\Theta \) has a solution, we reduce every domain \(D_i \) to the equivalence class from the solution. **This restriction is 1-consistent!!!**
Maximal clone of quasi-linear functions

- If a WNU is a quasi-linear function then it can be represented as $t \cdot (x_1 + x_2 + \ldots + x_n)$ for an integer t and an operation $+$ from an abelian group.

Step 7: Linear restriction

1. For every i choose the minimal congruence σ_i on D_i such that the WNU w/σ_i can be represented as $t \cdot (x_1 + x_2 + \ldots + x_n)$.

2. Factorize all the constraints, i.e. replace every predicate ρ by

 $$\rho'(x_1, \ldots, x_n) = \exists y_1 \ldots \exists y_n \rho(y_1, \ldots, y_n) \land (x_1, y_1) \in \sigma_i \land \cdots \land (x_n, y_n) \in \sigma_i$$

 The obtained CSP instance we denote by Θ

3. Solve Θ using any algorithm for Mal’tsev case.

4. If Θ has a solution, we reduce every domain D_i to the equivalence class from the solution. **This restriction is 1-consistent!!!**

5. If Θ doesn’t have a solution then we find a subset A'_i of the original domain A_i such that no solutions with $x_i \in A'_i \setminus A_i$.

Dmitriy Zhuk zhuk.dmitriy@gmail.com (Moscow State University)
Algorithm

1. Generate all binary constraints.
Algorithm

1. Generate all binary constraints.
2. Transitive Closure.

If necessary go to Step 1.

If there exists a binary absorption
Apply Absorbing Restriction and go to Step 3.

If there exists a center
Apply Central Restriction and go to Step 3.

If we get all functions after factorization
Apply All Functions restriction and go to Step 3.

If the WNU w is quasi-linear after factorization
Solve the Maltsev CSP.
If there is a solution, apply Linear Restriction and go to Step 4.
otherwise, reduce the original domain A_i to A'_i.

Either it gives a solution, or it reduces the original domain A_i to A'_i, or it proves that no general solutions.
Algorithm

1. Generate all binary constraints.
2. Transitive Closure.
3. Provide 1-consistency. If necessary go to Step 1.

If there exists a binary absorption
Apply Absorbing Restriction and go to Step 3.

If there exists a center
Apply Central Restriction and go to Step 3.

If we get all functions after factorization
Apply All Functions restriction and go to Step 3.

If the WNU \(w \) is quasi-linear after factorization
Solve the Maltsev CSP.
If there is a solution, apply Linear Restriction and go to Step 4.
otherwise, reduce the original domain \(A_i \) to \(A_i' \).
Either it gives a solution, or it reduces the original domain \(A_i \) to \(A_i' \), or it proves that no general solutions.
Algorithm

1. Generate all binary constraints.
2. Transitive Closure.
3. Provide 1-consistency. If necessary go to Step 1.
4. If there exists a binary absorption
 Apply Absorbing Restriction and go to Step 3.
5. If there exists a center
 Apply Central Restriction and go to Step 3.
6. If we get all functions after factorization
 Apply All Functions restriction and go to Step 3.
7. If the WNU w is quasi-linear after factorization
 Solve the Maltsev CSP.
 If there is a solution, apply Linear Restriction and go to Step 4.
 otherwise, reduce the original domain A_i to A'_i.
 Either it gives a solution, or it reduces the original domain A_i to A'_i, or it proves that no general solutions.
Algorithm

1. Generate all binary constraints.
2. Transitive Closure.
3. Provide 1-consistency. If necessary go to Step 1.
4. If there exists a binary absorption
 Apply Absorbing Restriction and go to Step 3.
5. If there exists a center
 Apply Central Restriction and go to Step 3.
Algorithm

1. Generate all binary constraints.
2. Transitive Closure.
3. Provide 1-consistency. If necessary go to Step 1.
4. If there exists a binary absorption
 Apply Absorbing Restriction and go to Step 3.
5. If there exists a center
 Apply Central Restriction and go to Step 3.
6. If we get all functions after factorization
 Apply “All Functions” restriction and go to Step 3.
7. If the WNU w is quasi-linear after factorization
 Solve the Maltsev CSP.
 If there is a solution, apply Linear Restriction and go to Step 4.
 otherwise, reduce the original domain A_i to A_i'. Either it gives a solution,
 or it reduces the original domain A_i to A_i', or it proves that no general solutions.
Algorithm

1. Generate all binary constraints.
2. Transitive Closure.
3. Provide 1-consistency. If necessary go to Step 1.
4. If there exists a binary absorption
 Apply Absorbing Restriction and go to Step 3.
5. If there exists a center
 Apply Central Restriction and go to Step 3.
6. If we get all functions after factorization
 Apply “All Functions” restriction and go to Step 3.
7. If the WNU w is quasi-linear after factorization
 - Solve the Maltsev CSP.
 - If there is a solution, apply Linear Restriction and go to Step 4.
 - otherwise, reduce the original domain A_i to A'_i.
Algorithm

1. Generate all binary constraints.
2. Transitive Closure.
3. Provide 1-consistency. If necessary go to Step 1.
4. If there exists a binary absorption
 Apply Absorbing Restriction and go to Step 3.
5. If there exists a center
 Apply Central Restriction and go to Step 3.
6. If we get all functions after factorization
 Apply “All Functions” restriction and go to Step 3.
7. If the WNU w is quasi-linear after factorization
 - Solve the Maltsev CSP.
 - If there is a solution, apply Linear Restriction and go to Step 4.
 - Otherwise, reduce the original domain A_i to A'_i.

Either it gives a solution,
or it reduces the original domain A_i to A'_i,
or it proves that no general solutions.
Does the algorithm work?

I can prove that it works if we don't apply linear restrictions twice.

Why does it work for 5-element domain? It probably doesn't... But since \(2+2+2>5\), there are only few possibilities for the case when we can apply a linear restriction twice. I updated my algorithm a bit for these cases.

Theorem

CSP Dichotomy conjecture holds for domain 5:

\[
\text{CSP} (G) \text{ is tractable if there exists a WNU preserving } G, \text{ and NP-complete otherwise.}
\]

Dmitriy Zhuk
zhuk.dmitriy@gmail.com (Moscow State University)
Does the algorithm work?

I can prove that it works if we don’t apply linear restrictions twice.

Theorem

CSP Dichotomy conjecture holds for domain 5: $\text{CSP}(G)$ is tractable if there exists a WNU preserving G, and NP-complete otherwise.

Theorem

If an algebra A omits unary type and any type, then Steps 1-3 of the algorithm solve $\text{CSP}(A)$.
Does the algorithm work?
I can prove that it works if we don’t apply linear restrictions twice.

Why does it work for 5-element domain?
Does the algorithm work?
I can prove that it works if we don’t apply linear restrictions twice.

Why does it work for 5-element domain?
It probably doesn’t… But
Does the algorithm work?
I can prove that it works if we don’t apply linear restrictions twice.

Why does it work for 5-element domain?
It probably doesn’t… But
- Since $2+2+2>5$,
Does the algorithm work?
I can prove that it works if we don’t apply linear restrictions twice.

Why does it work for 5-element domain?
It probably doesn’t... But

- Since $2+2+2 > 5$, there are only few possibilities for the case when we can apply a linear restriction twice.
Does the algorithm work?
I can prove that it works if we don’t apply linear restrictions twice.

Why does it work for 5-element domain?
It probably doesn’t... But

- Since $2+2+2>5$, there are only few possibilities for the case when we can apply a linear restriction twice.
- I updated my algorithm a bit for these cases.
Does the algorithm work?
I can prove that it works if we don’t apply linear restrictions twice.

Why does it work for 5-element domain?
It probably doesn’t... But
- Since $2 + 2 + 2 > 5$, there are only few possibilities for the case when we can apply a linear restriction twice.
- I updated my algorithm a bit for these cases.

Theorem
CSP Dichotomy conjecture holds for domain 5: \(\text{CSP}(G) \) is tractable if there exists a WNU preserving \(G \), and NP-complete otherwise.
Does the algorithm work?
I can prove that it works if we don’t apply linear restrictions twice.

Why does it work for 5-element domain?
It probably doesn’t... But
- Since $2+2+2>5$, there are only few possibilities for the case when we can apply a linear restriction twice.
- I updated my algorithm a bit for these cases.

Theorem
CSP Dichotomy conjecture holds for domain 5: \(\text{CSP}(G) \) is tractable if there exists a WNU preserving \(G \), and NP-complete otherwise.

Theorem
If an algebra \(A \) omits unary type and affine type, then Steps 1-3 of the algorithm solve \(\text{CSP}(A) \).
Thank you for your attention